Inequations \& Inequalities

An inequation is a problem where we are trying to find possible values, solved the same as an equation, ending up with a pronumeral as the subject of the inequation.
e.g. Solve $5 x+3<2$

$$
\begin{aligned}
& 5 x+3<2 \\
& 5 x<-1 \\
& x<-\frac{1}{5} \\
& \hline
\end{aligned}
$$

1. Quadratic Inequations
e.g. (i) $x^{2}+5 x-6<0$

$$
\begin{gathered}
(x+6)(x-1)<0 \\
-6<x<1
\end{gathered}
$$

Q : for what values of x is the

$$
\text { (ii) }-x^{2}-3 x+4 \leq 0
$$ parabola below the x axis?

$$
\begin{array}{r}
x^{2}+3 x-4 \geq 0 \\
(x+4)(x-1) \geq 0 \\
x \leq-4 \text { or } x \geq 1 \\
\hline
\end{array}
$$

Note: quadratic inequalities always have solutions in the form

$$
?<x<? \text { OR } x<? \text { or } x>?
$$

2. Inequations with Pronumerals in the Denominator

Test $x=-1 \frac{1}{-1} \geq 3 X \quad$ Test $x=\frac{1}{4} \frac{1}{1} \geq 3 \sqrt{4} \quad$ Test $x=1 \quad \frac{1}{1} \geq 3 X$
$\therefore 0<x \leq \frac{1}{3}$

$$
\text { (ii) } \begin{array}{rlrl}
\frac{2}{x+3} & <5 & \frac{2}{x+3} & =5 \\
x+3 \neq 0 & 2 & =5 x+15 \\
x \neq-3 & 5 x & =-13 \\
& x & =-\frac{13}{5}
\end{array}
$$

$$
\therefore x<-3 \text { or } x>-\frac{13}{5}
$$

An inequality is a problem that you are proving to be true for a known set of values, ending up with what you are trying to prove, solved the same as an identity proof.

After stating what you are trying to prove (or the question might do it for you) you start with an algebraic expression (NOT an equation/inequation) and manipulate it into another expression.

In order to prove LHS < RHS, you might;

1) start with the LHS and manipulate it into $<$ RHS
2) start with LHS - RHS and manipulate it into <0
3) start with the LHS and manipulate it into a new LHS expression then independently start with the RHS and manipulate it into a new RHS expression, then prove that
new LHS < new RHS
\therefore LHS $<$ RHS
3. Proving Inequalities
(I) Start with a known result

$$
\begin{aligned}
& \text { If } x-y>y+z \text { prove } y<\frac{x-z}{2} \\
& x-y>y+z \\
&-2 y>z-x \\
& y<\frac{x-z}{2} \\
& \hline
\end{aligned}
$$

Note: you can only move terms from side to side of known facts
(II) Move everything to the left

Show that if $a \geq 0, b \geq 0$ then $a b\left(a^{2}+b^{2}\right) \geq 2 a^{2} b^{2}$

$$
\begin{aligned}
a b\left(a^{2}+b^{2}\right)-2 a^{2} b^{2} & =a b\left(a^{2}-2 a b+b^{2}\right) \\
& =a b(a-b)^{2} \\
& \geq 0
\end{aligned}
$$

$$
\therefore a b\left(a^{2}+b^{2}\right) \geq 2 a^{2} b^{2}
$$

(III) Squares are positive or zero

Show that if a, b and c are positive, then $a^{2}+b^{2}+c^{2} \geq a b+b c+a c$

$$
\begin{aligned}
(a-b)^{2} & \geq 0 \\
a^{2}-2 a b+b^{2} & \geq 0 \\
a^{2}+b^{2} & \geq 2 a b \\
a^{2}+c^{2} & \geq 2 a c \\
b^{2}+c^{2} & \geq 2 b c \\
2 a^{2}+2 b^{2}+2 c^{2} & \geq 2 a b+2 b c+2 a c \\
a^{2}+b^{2}+c^{2} & \geq a b+b c+a c
\end{aligned}
$$

Exercise 3A; 4, 6ace, 7bdf, 8bdf, 9, 11, 12, 13ac, 15, 18bcd, 22, 24

