Volumes By Non Circular Cross-Sections

e.g. Find the volume of this rectangular pyramid

$$A(z) = xy$$

Find x in terms of z

Method 2: using coordinate geometry

Method 1: using similar
$$\Delta$$
's

$$m = \frac{b-0}{0-h}$$

$$= \frac{-b}{h}$$

$$x-0 = \frac{-b}{h}(z-h)$$

$$x = \frac{b(h-z)}{h}$$

Similarly;

$$y = \frac{a(h-z)}{h}$$

$$A(z) = \left[\frac{b(h-z)}{h}\right] \left[\frac{a(h-z)}{h}\right]$$
$$= \frac{ab(h-z)^{2}}{h^{2}}$$
$$\Delta V = \frac{ab(h-z)^{2}}{h^{2}} \cdot \Delta z$$

$$V = \lim_{\Delta z \to 0} \sum_{z=0}^{h} \frac{ab(h-z)^2}{h^2} \cdot \Delta z$$

$$= \frac{ab}{h^2} \int_0^h (h-z)^2 dz$$

$$= \frac{ab}{h^2} \left[\frac{(h-z)^3}{-3} \right]_0^h$$

$$= \frac{ab}{h^2} \left\{ 0 + \frac{h^3}{3} \right\}$$

$$= \frac{abh}{3} \text{ units}^3$$

(ii) A solid has a circular base, $x^2 + y^2 = 4$, and each cross section is a square perpendicular to the base.

(iii) (2012) The solid ABCD is cut from a quarter cylinder of radius r as shown. Its base is an isosceles triangle ABC with AB = AC. The length of BC is a and the midpoint of BC is X. The cross-sections perpendicular to AX are rectangles. A typical cross-section is shown shaded in the diagram.

Find the volume of the solid *ABCD*.

$$A(z) = xy$$

Find y in terms of z

$$A(z) = xy$$

$$A(z) = \frac{az}{r} \sqrt{r^2 - z^2}$$

$$\Delta V = \frac{az}{r} \sqrt{r^2 - z^2} \cdot \Delta z$$

Find x in terms of z

$$V = \lim_{\Delta z \to 0} \sum_{z=0}^{r} \frac{az}{r} \sqrt{r^2 - z^2} \cdot \Delta z$$

$$= \frac{a}{r} \int_{0}^{r} z \sqrt{r^2 - z^2} dz$$

$$= -\frac{a}{2r} \int_{0}^{r} -2z \sqrt{r^2 - z^2} dz$$

$$= \frac{a}{2r} \left[\frac{2}{3} (r^2 - z^2)^{\frac{3}{2}} \right]_{r}^{0}$$

$$= \frac{a}{3r} (r^3 - 0)$$

$$= \frac{ar^2}{3} \text{ units}^3$$

Note: Mean = 1.01/4

"Cambridge" Exercise 6C; 2, 3, 5 to 8, 10 to 19

Patel Exercise 3A; 16ade, 19

Patel Exercise 3C; 2, 7, 8