Acceleration with Uniform Circular Motion

Uniform circular motion is when a particle moves with constant angular velocity. (: the magnitude of the linear velocity will also be constant)

A particle moves from *A* to *P* with constant angular velocity.

The acceleration of the particle is the change in velocity with respect to time.

v Δv

This triangle of vectors is similar to ΔOAP

Forces Involved in Uniform Circular Motion $F = \frac{mv^2}{r}$ OR $F = mr\omega^2$

e.g. (*i*) (2003)

A particle P of mass m moves with constant angular velocity ω on a circle of radius r. Its position at time t is given by;

 $x = r \cos \theta$ $y = r \sin \theta$, where $\theta = \omega t$

a) Show that there is an inward radial force of magnitude $mr\omega^2$ acting on *P*.

b) A telecommunications satellite, of mass *m*, orbits Earth with constant angular velocity ω at a distance *r* from the centre of the Earth. The gravitational force exerted by Earth on the satellite is $\frac{Am}{r^2}$ where

A is a constant. By considering all other forces on the satellite to be negligible, show that; \Box

$$r = \sqrt[3]{\frac{A}{\omega^2}}$$

$$m\ddot{x} = mr\omega^{2} \int \frac{Am}{r^{2}} \qquad mr\omega^{2} = \frac{Am}{r^{2}}$$

$$r^{3} = \frac{Am}{m\omega^{2}}$$

$$= \frac{A}{\omega^{2}}$$

$$r = \sqrt[3]{\frac{A}{\omega^{2}}}$$

(*ii*) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it.

A mass of 2kg is attached to one end of the string and it is revolved in a circle.

Find the greatest angular velocity which may be imparted without breaking the string. $m\ddot{x}$

