The Conical Pendulum

Force Diagram

Resultant Forces
$m \ddot{x}=\frac{m v^{2}}{r}$

$T=$ tension in the string (always away from object)
$\theta=\angle$ string makes with vertical
$\omega=$ angular velocity of pendulum

$\begin{aligned} & \quad m \ddot{x}=\frac{m v^{2}}{r} \\ & \text { horizontal forces }=\frac{m v^{2}}{r} \end{aligned}$	$\begin{array}{r} m \ddot{y}=0 \\ \text { vertical forces }=0 \end{array}$	
$\begin{gathered} T \sin \theta \\ T \sin \theta=\frac{m v^{2}}{r} \quad\left(=m r \omega^{2}\right) \end{gathered}$	$\left\{\begin{array}{l} T \cos \theta \\ m g \end{array}\right.$	$\begin{aligned} T \cos \theta-m g & =0 \\ T \cos \theta & =m g \end{aligned}$

$$
\begin{aligned}
\frac{T \sin \theta}{T \cos \theta} & =\frac{m v^{2}}{r} \times \frac{1}{m g} \\
\tan \theta & =\frac{v^{2}}{r g}
\end{aligned} \quad\left(=\frac{r \omega^{2}}{g}\right)
$$

But in $\triangle A O P$

$$
\begin{aligned}
\tan \theta & =\frac{r}{h} \\
\therefore \frac{v^{2}}{r g} & =\frac{r}{h} \\
h & =\frac{r^{2} g}{v^{2}} \quad\left(=\frac{g}{\omega^{2}}\right)
\end{aligned}
$$

Implications
-depth of the pendulum below A is independent of the length of the string.
-as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90 .
Find the rise in the level of the bob.

$\therefore \tan \theta=m r \omega^{2} \times \frac{1}{m g}$

$$
=\frac{r \omega^{2}}{g}
$$

$$
\begin{aligned}
\text { But } \tan \theta & =\frac{r}{h} \\
\therefore \frac{r \omega^{2}}{g} & =\frac{r}{h} \\
h & =\frac{g}{\omega^{2}}
\end{aligned}
$$

$$
\text { when } \begin{array}{rlrl}
\omega & =60 \mathrm{rev} / \mathrm{min} & h & =\frac{g}{(2 \pi)^{2}} \\
& =\frac{120 \pi}{60} \mathrm{rad} / \mathrm{s} & & =\frac{g}{4 \pi^{2}} \mathrm{~m} \\
& =2 \pi \mathrm{rad} / \mathrm{s} &
\end{array}
$$

$$
\begin{aligned}
\therefore \text { rise in height } & =\left[\frac{g}{4 \pi^{2}}-\frac{g}{9 \pi^{2}}\right] \mathrm{m} \\
& =0.14 \mathrm{~m}
\end{aligned}
$$

(ii) (2002)

A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity ω.

The angle of the cone at its vertex is 2α where $\alpha>\frac{\pi}{4}$, and the string makes an angle of α with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg .
Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of N is $N \sin \alpha$

$$
\begin{array}{cc}
\quad T_{c} & \frac{c}{N}=\sin \alpha \\
m g & \begin{array}{c}
c=N \sin \alpha
\end{array} \\
\begin{array}{l}
\therefore \text { the vertical component } \\
\text { of } N \text { is } N \sin \alpha
\end{array}
\end{array}
$$

b) Show that $T+N=\frac{m g}{\sin \alpha}$, and find an expression for $T-N$ in terms of m, l and ω
horizontal forces $=m r \omega^{2}$

vertical forces $=0$

$T \sin \alpha+N \sin \alpha=m g$

$$
\begin{aligned}
(T+N) \sin \alpha & =m g \\
T+N & =\frac{m g}{\sin \alpha}
\end{aligned}
$$

$$
T \cos \alpha-N \cos \alpha=m r \omega^{2}
$$

$$
\begin{aligned}
(T-N) \cos \alpha & =m r \omega^{2} \\
T-N & =\frac{m r \omega^{2}}{\cos \alpha}
\end{aligned}
$$

$$
\text { But } \frac{r}{l}=\cos \alpha \quad \therefore T-N=m l \omega^{2}
$$

c) The angular velocity is increased until $N=0$, that is, when the particle is about to lose contact with the cone.
Find an expression for this value of ω in terms of α, l and g
When $N=0$;

$$
T=\frac{m g}{\sin \alpha} \text { and } T=m l \omega^{2}
$$

$$
\begin{aligned}
\therefore \frac{m g}{\sin \alpha} & =m l \omega^{2} \\
\omega^{2} & =\frac{g}{l \sin \alpha}
\end{aligned}
$$

$$
\omega=\sqrt{\frac{g}{l \sin \alpha}}
$$

"Cambridge" Exercise 9B; all

Patel Exercise 9C; all

