Miscellaneous Dynamics Questions

e.g. (*i*) (1992) – *variable angular velocity*

The diagram shows a model train *T* that is moving around a circular track, centre *O* and radius *a* metres.

The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S.

Let $\angle TNS = \phi$ and $\angle TOS = \theta$ as in the diagram

a) Express
$$\frac{d\theta}{dt}$$
 in terms of a and u

$$l = a\theta$$

$$\frac{dl}{dt} = a\frac{d\theta}{dt}$$

$$u = a\frac{d\theta}{dt}$$
b) Show that $a\sin(\theta - \phi) \cdot (x + a)\sin\phi = 0$ and deduce that;

$$\frac{d\phi}{dt} = \frac{u\cos(\theta - \phi)}{(x + a)\cos\phi + a\cos(\theta - \phi)}$$

$$\angle NTO + \angle TNO = \angle TOS \qquad (exterior \angle, \Delta OTN)$$

$$\angle NTO + \phi = \theta$$

$$\angle NTO = \theta - \phi \qquad \text{In } \Delta NTO; \frac{a}{\sin\phi} = \frac{a + x}{\sin(\theta - \phi)}$$

$$a\sin(\theta - \phi) = (a + x)\sin\phi$$

$$\underline{a}\sin(\theta - \phi) - (a + x)\sin\phi = 0$$

differentiate with respect to t

$$a\cos(\theta - \phi)\left(\frac{d\theta}{dt} - \frac{d\phi}{dt}\right) - (a + x)\cos\phi \cdot \frac{d\phi}{dt} = 0$$

$$a\cos(\theta - \phi) \cdot \frac{d\theta}{dt} - [a\cos(\theta - \phi) + (a + x)\cos\phi] \cdot \frac{d\phi}{dt} = 0$$

$$[a\cos(\theta - \phi) + (a + x)\cos\phi] \cdot \frac{d\phi}{dt} = a\cos(\theta - \phi) \cdot \frac{u}{a}$$

$$\frac{d\phi}{dt} = \frac{u\cos(\theta - \phi)}{a\cos(\theta - \phi) + (a + x)\cos\phi}$$

c) Show that $\frac{d\phi}{dt} = 0$ when NT is tangential to the track.
when NT is a tangent;

$$\angle NTO = 90^{\circ} \qquad \text{(tangent } \bot \text{ radius)}$$

$$\therefore \theta - \phi = 90^{\circ}$$

$$\frac{d\phi}{dt} = \frac{u\cos90^{\circ}}{a\cos90^{\circ} + (a + x)\cos\phi}$$

$$\therefore \frac{d\phi}{dt} = 0$$

d) Suppose that x = a

Show that the train's angular velocity about N when $\theta = \frac{\pi}{2}$ is $\frac{3}{5}$ times the angular velocity about N when $\theta = 0$

(ii) (2000)

A string of length *l* is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction.

Let *O* be the centre of this circle and *A* the initial position of *P*. Let *s* denote the arc length *AP*, $v = \frac{ds}{ds}$,

 $\theta = \angle AOP$ and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. $\frac{d^2s}{dt^2} = \frac{1}{l}\frac{d}{d\theta}\left(\frac{1}{2}v^2\right)$

a)	Show	that th	e tangential	acceleration	of <i>P</i> is	given by	$\frac{a}{1}\frac{2}{2}$	- =
			_					

 $= \frac{1}{l} \cdot \frac{dv}{d\theta} \cdot v$ $= \frac{1}{l} \cdot \frac{dv}{d\theta} \cdot \frac{d}{dv} \left(\frac{1}{2}v^{2}\right)$ $\frac{d^2s}{dt^2} = \frac{dv}{dt}$ $s = l\theta$ $v = \frac{ds}{ds}$ $= \frac{dv}{d\theta} \cdot \frac{d\theta}{dt}$ $= l \frac{d\theta}{dt}$ $=\frac{1}{l}\frac{d}{d\theta}\left(\frac{1}{2}v^2\right)$ $=\frac{dv}{dv}\cdot\frac{v}{dv}$

b) Show that the equation of motion of *P* is $\frac{1}{l} \frac{d}{d\theta} \left(\frac{1}{2}v^2\right) = -g\sin\theta$

c) Deduce that
$$V^2 = v^2 + 2gl(1 - \cos\theta)$$

 $\frac{1}{l}\frac{d}{d\theta}\left(\frac{1}{2}v^2\right) = -g\sin\theta$
 $\frac{d}{d\theta}\left(\frac{1}{2}v^2\right) = -gl\sin\theta$
 $\frac{1}{2}v^2 = gl\cos\theta + c$
 $v^2 = 2gl\cos\theta + c$

$P_{1S} = -g \sin \theta$
$m\ddot{s} = -mg\sin\theta$
$\ddot{s} = -g\sin\theta$
$\frac{1}{l}\frac{d}{d\theta}\left(\frac{1}{2}v^2\right) = -g\sin\theta$
when $\theta = 0, v = V$
$\therefore V^2 = 2gl + c$
$c = V^2 - 2gl$
$v^2 = 2gl\cos\theta + V^2 - 2gl$
$V^2 = v^2 + 2gl - 2gl\cos\theta$
$V^2 = v^2 + 2gl(1 - \cos\theta)$

d) Explain why *T*-mg cos $\theta = \frac{1}{7}mv^2$

 $mg\cos\theta$

тÿ

 $m\ddot{x} = T - mg\cos\theta$

But, the resultant force towards the centre is centripetal force.

$$\frac{mv^2}{l} = T - mg\cos\theta$$
$$T - mg\cos\theta = \frac{1}{l}mv^2$$

e) Suppose that $V^2 = 3gl$. Find the value of θ at which T = 0 $T - mg \cos \theta = \frac{1}{l}m[V^2 - 2gl(1 - \cos \theta)]$ $0 - mg \cos \theta = \frac{1}{l}m[3gl - 2gl(1 - \cos \theta)]$ $- mg \cos \theta = m(g + 2g \cos \theta)$ $3mg \cos \theta = -mg$ f) Consider the situation in part e). Briefly describe, in words, the path of *P* after the tension *T* becomes zero.

When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc.

Its initial velocity would be tangential to the circle with magnitude;

(*iii*) (2003)

A particle of mass *m* is thrown from the top, *O*, of a very tall building with an initial velocity *u* at an angle of α to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions.

The equations of motion in the horizontal and vertical directions are given respectively by

$$\ddot{x} = -k\dot{x}$$
 and $\ddot{y} = -k\dot{y} - g$

where *k* is a constant and the acceleration due to gravity is *g*.

(You are NOT required to show these)

a) Derive the result $\dot{x} = ue^{-kt} \cos \alpha$ $t = -\frac{1}{k} \log \left(\frac{\dot{x}}{u \cos \alpha}\right)$ $\frac{d\dot{x}}{dt} = -k\dot{x}$ $t = -\frac{1}{k} \int_{u\cos\alpha}^{\dot{x}} \frac{d\dot{x}}{\dot{x}}$ $-kt = \log\left(\frac{\dot{x}}{u\cos\alpha}\right)$ $t = -\frac{1}{k} \left[\log \dot{x} \right]_{u \cos \alpha}^{\dot{x}}$ $k = -\frac{1}{k} \left[\log \dot{x} - \log(u \cos \alpha) \right]$ $\frac{x = u e^{-kt} \cos \alpha}{\frac{\dot{x} = u e^{-kt} \cos \alpha}{k}}$ b) Verify that $\dot{y} = \frac{1}{k} \left[(ku \sin \alpha + g) e^{-kt} - g \right]$ satisfies the appropriate $u\cos\alpha$

equation of motion and initial condition

$$\frac{dy}{dt} = -k\dot{y} - g \qquad -kt = \log(k\dot{y} + g) - \log(ku\sin\alpha + g) -kt = \log(k\dot{y} + g) - \log(ku\sin\alpha + g) -kt = \log\left(\frac{k\dot{y} + g}{ku\sin\alpha + g}\right) \frac{k\dot{y} + g}{ku\sin\alpha + g} = e^{-kt} \dot{y} = \frac{1}{k} [(ku\sin\alpha + g)e^{-kt} - g]$$

c) Find the value of t when the particle reaches its maximum height

Maximum height occurs when $\dot{y} = 0$

$$t = -\frac{1}{k} \left[\log(k\dot{y} + g) \right]_{u\sin\alpha}^{0}$$

$$t = -\frac{1}{k} \left[\log(g) - \log(ku\sin\alpha + g) \right]$$

$$t = \frac{1}{k} \log\left(\frac{ku\sin\alpha + g}{g}\right)$$

d) What is the limiting value of the horizontal displacement of the particle? $x = \lim u \cos \alpha \int_{0}^{\infty} e^{-kt} dt$

$$\dot{x} = ue^{-kt} \cos \alpha \qquad \qquad x = \lim_{t \to \infty} u \cos \alpha \int_{0}^{0} e^{-kt} dt$$
$$\frac{dx}{dt} = ue^{-kt} \cos \alpha \qquad \qquad x = \lim_{t \to \infty} u \cos \alpha \left[-\frac{1}{k} e^{-kt} \right]_{0}^{t}$$
$$x = \lim_{t \to \infty} \frac{u \cos \alpha}{k} \left(-e^{-kt} + 1 \right)$$
$$x = \frac{u \cos \alpha}{k}$$

