(A) Features You Should Notice About A Graph
 (1) Basic Curves

The following basic curve shapes should be recognisable from the equation;
a) Straight lines: $y=x$ (both pronumerals are to the power of one)
b) Parabolas: $y=x^{2}$ (one pronumeral is to the power of one, the other the power of two)
NOTE: general parabola is $y=a x^{2}+b x+c$
c) Cubics: $y=x^{3}$ (one pronumeral is to the power of one, the other the power of three)
NOTE: general cubic is $y=a x^{3}+b x^{2}+c x+d$
d) Polynomials in general
e) Hyperbolas: $y=\frac{1}{x}$ OR $x y=1$
(one pronomeral is on the bottom of the fraction, the other is not $O R$ pronumerals are multiplied together)
f) Exponentials: $y=a^{x}$ (one pronumeral is in the power)
g) Circles: $x^{2}+y^{2}=r^{2}$ (both pronumerals are to the power of two, coefficients are the same)
h) Ellipses: $a x^{2}+b y^{2}=k$ (both pronumerals are to the power of two, coefficients are NOT the same)
(NOTE: if signs are different then hyperbola)
i) Logarithmics: $y=\log _{a} x$
j) Trigonometric: $y=\sin x, y=\cos x, y=\tan x$
k) Inverse Trigonmetric: $y=\sin ^{-1} x, y=\cos ^{-1} x, y=\tan ^{-1} x$

(2) Odd \& Even Functions

These curves have symmetry and are thus easier to sketch
a) ODD: $f(-x)=-f(x)$ (symmetric about the origin, i.e. 180 degree rotational symmetry)
b) EVEN : $f(-x)=f(x)$ (symmetric about the y axis)

(3) Symmetry in the line $y=x$

If x and y can be interchanged without changing the function, the curve is relected in the line $y=x$
e.g. $x^{3}+y^{3}=1$ (in other words, the curve is its own inverse)

(4) Dominance

As x gets large, does a particular term dominate?
a) Polynomials: the leading term dominates
e.g. $y=x^{4}+3 x^{3}-2 x+2, x^{4}$ dominates
b) Exponentials: e^{x} tends to dominate as it increases so rapidly
c) In General: look for the term that increases the most rapidly i.e. which is the steepest

NOTE: check by substituting large numbers e.g. 1000000

(5) Asymptotes

a) Vertical Asymptotes: the bottom of a fraction cannot equal zero
b) Horizontal/Oblique Asymptotes: Top of a fraction is constant, the fraction cannot equal zero
NOTE: if order of numerator \geq order of denominator, perform a polynomial division. (curves can cross horizontal/oblique asymptotes, good idea to check)

(6) The Special Limit

Remember the special limit seen in 2 Unit i.e. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, it could come in handy when solving harder graphs.

(B) Using Calculus

Calculus is still a tremendous tool that should not be disregarded when curve sketching. However, often it is used as a final tool to determine critical points, stationary points, inflections.

(1) Critical Points

When $\frac{d y}{d x}$ is undefined the curve has a vertical tangent, these points are called critical points.
(2) Stationary Points

When $\frac{d y}{d x}=0$ the curve is said to be stationary, these points may be minimum turning points, maximum turning points or points of inflection.
(3) Minimum/Maximum Turning Points
a) When $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0$, the point is called a minimum turning point
b) When $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0$, the point is called a maximum turning point NOTE: testing either side of $\frac{d y}{d x}$ for change can be quicker for harder functions
(4) Inflection Points
a) When $\frac{d^{2} y}{d x^{2}}=0$ and $\frac{d^{3} y}{d x^{3}} \neq 0$, the point is called an inflection point NOTE: testing either side of $\frac{d^{2} y}{d x^{2}}$ for change can be quicker for harder functions
b) When $\frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}=0$ and $\frac{d^{3} y}{d x^{3}} \neq 0$, the point is called a horizontal point of inflection

(5) Increasing/Decreasing Curves

a) When $\frac{d y}{d x}>0$, the curve has a positive sloped tangent and is
b) When $\frac{d y}{d x}<0$, the curve has a negative sloped tangent and is

(6) Implicit Differentiation

This technique allows you to differentiate complicated functions e.g. Sketch $x^{3}+y^{3}=1$

On differentiating implicitly;
Note: \bullet the curve has symmetry in $y=x$

- it passes through $(1,0)$ and $(0,1)$
- it is asymptotic to the line $y=-x$

$$
\begin{gathered}
\because y^{3}=1-x^{3} \\
\text { i.e. } y^{3} \neq-x^{3} \\
\quad y \neq-x
\end{gathered}
$$

$$
\begin{aligned}
3 x^{2}+3 y^{2} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-x^{2}}{y^{2}}
\end{aligned}
$$

This means that $\frac{d y}{d x}<0$ for all x
Except at $(1,0)$: critical point \&
$(0,1)$: horizontal point of inflection

