(D) Addition \& Subtraction of

Ordinates

$y=f(x)+g(x)$ can be graphed by first graphing $y=f(x)$ and $y=g(x)$ separately and then adding their ordinates together.
NOTE: First locate points on $y=f(x)+g(x)$ corresponding to $f(x)=0$ and $g(x)=0$, then plot further points by addition and subtraction of ordinates and finally locate the position of stationary points.
e.g. $y=x+\frac{1}{x}$

$$
\xrightarrow{y=\frac{1}{x}} x
$$

Things to keep in mind:

Discontinuities: any exclusions in the domain of the original function(s) remain in the new function

$$
\text { e.g. } \begin{aligned}
f(x) & =x+\frac{1}{x}, g(x)=1-\frac{1}{x} \\
y & =f(x)+g(x) \\
& =x+1, x \neq 0
\end{aligned}
$$

x-intercept: If $f(x)=-g(x)$, then $y=f(x)+g(x)=0$
symmetry: like functions retain symmetry when added odd function + odd function = odd function
even function + even function $=$ even function

$$
\begin{array}{lll}
\text { e.g. } y=|x+3|+|1-x| & & \\
x \leq-3 ; & -3<x<1 ; & x \geq 1 ; \\
y=-(x+3)+(1-x) & y=(x+3)+(1-x) & y=(x+3)-(1-x) \\
y=-x-3+1-x & y=x+3+1-x & y=x+3-1+x \\
y=-2 x-2 & y=4 & y=2 x+2
\end{array}
$$

$y=f(x)-g(x)$ can be graphed by first graphing $y=f(x)$ and $y=-g(x)$ separately and then adding the ordinates together.
e.g. $y=x-\sin x$

[^0]
[^0]: \square Equation 1: $y=x$
 \square Equation 2: $y=-\sin x$
 \square Equation 3: $y=x-\sin x$

