(E) Multiplication of Functions

The graph of $y=f(x) . g(x)$ can be graphed by first graphing $y=f(x)$ and $y=g(x)$ separately and then examining the sign of the product. Special note needs to be made of points where $f(x)=0$ or 1 , or $g(x)=0$ or 1 .

NOTE: The regions on the number plane through which the graph must pass should be shaded in as the first step.

Things to keep in mind:

Discontinuities: any exclusions in the domain of the original function(s) remain in the new function
x-intercept: If $f(x)=0$ or $g(x)=0$, then $y=f(x) \times g(x)=0$
symmetry: symmetric graphs will retain some form of symmetry
odd function \times odd function $=$ even function
odd function \times even function $=$ oddfunction
even function \times even function $=$ even function
e.g. $y=x^{2}(x+1)(x-1)^{3}$

(F) Division of Functions

The graph of $y=\frac{f(x)}{g(x)}$ can be graphed by;
Step 1: First graph $y=f(x)$ and $y=g(x)$ separately.
Step 2: Mark in vertical asymptotes
Step 3: Shade in regions in which the curve must be (same as multiplication.
Step 4: Investigate the behaviour of the function for large values of x (find horizontal/oblique asymptotes , look at dominance)

$$
\begin{aligned}
y & =\frac{(x+1)(x-2)}{(x+2)(x-1)} \\
& =\frac{x^{2}-x-2}{x^{2}+x-2} \\
& =1-\frac{2 x}{x^{2}+x-2} \quad \therefore \text { horizontal asymptote }: y=1
\end{aligned}
$$

$$
\text { e.g. } y=\frac{(x+1)(x-2)}{(x+2)(x-1)}
$$

e.g. $y=\frac{\sin x}{x} \quad y^{\uparrow}$
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

