HURLSTONE AGRICULTURAL HIGH SCHOOL

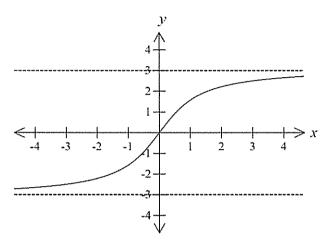
EXTENSION 2 MATHEMATICS 2013 **YEAR 12**

TRIAL (TASK 4) EXAMINATION

EXAMINERS ~ S. GEE, G. HUXLEY

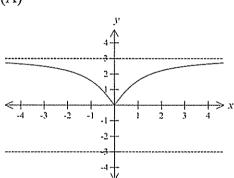
GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time -3 hours.
- Attempt all questions.
- Each question in part B is worth 15
- All necessary working should be shown in every question in Part B.
- This paper contains Ten(10) multiple choice questions in Part A and Six(6) free response questions in Part B, totalling 14 pages including title page, multiple choice answer sheet and standard integral table.
- Board approved calculators and MathAids may be used.


- Each free response question is to be started in a new answer booklet. Write the question number and your student number at the top of each answer booklet.
- You must hand in the multiple choice answer sheet as well as an answer booklet for each question even if a question has not been attempted.
- This examination must NOT be removed from the examination room

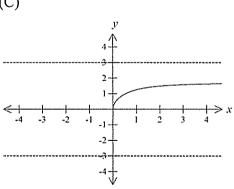
STUDENT NAME:	
TEACHER:	

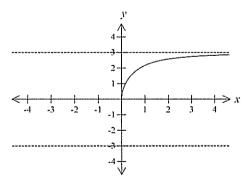
Part A Multiple Choice (Complete on the answer sheet provided)


QUESTION 1

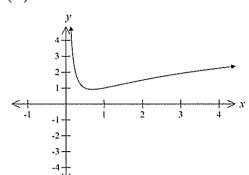
The diagram shows the graph of the function y = f(x).

Which of the following is the graph of $y = \sqrt{f(x)}$?

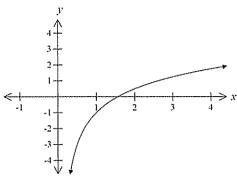

(A)


(B)

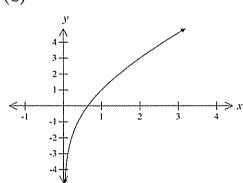
(C)

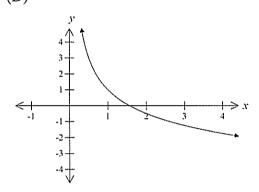


(D)

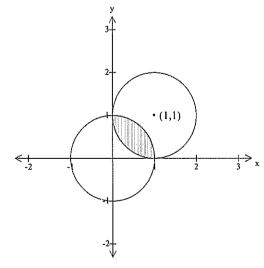


Which of the following is the sketch of $y = \log_2 x + \frac{1}{x}$?


(A)


(B)

(C)



(D)

QUESTION 3

Consider the Argand diagram below.

Which inequality could define the shaded area?

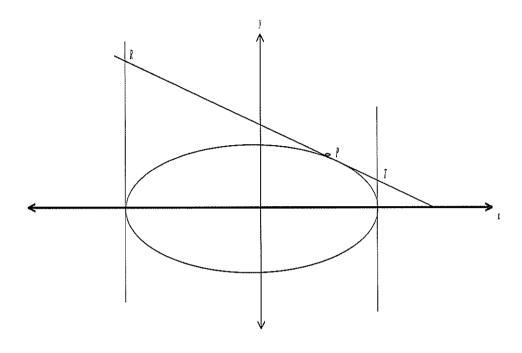
(A)
$$|z| \le 1$$
 and $|z - (1-i)| \ge 1$

(B)
$$|z| \le 1$$
 and $|z - (1+i)| \ge 1$

(C)
$$|z| \le 1$$
 and $|z - (1-i)| \le 1$

(D)
$$|z| \le 1$$
 and $|z - (1+i)| \le 1$

It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where a and b are real numbers. Which expression factorises P(z) over the real numbers?


- (A) $(z-1)(z^2+6z-10)$
- (B) $(z-1)(z^2-6z-10)$
- (C) $(z+1)(z^2+6z+10)$
- (D) $(z+1)(z^2-6z+10)$

QUESTION 5

How many distinct permutations of the letters of the word 'ATTAINS' are possible in a straight line when the word begins and ends with the letter T?

- (A) 60
- (B) 120
- (C) 360
- (D) 1260

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

What is the equation of the tangent at P?

(A)
$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$$

(B)
$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

(C)
$$\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$$

(D)
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

QUESTION 7

What is the value of $\int_0^1 \frac{e^x}{1+e^x} dx$?

(A)
$$\log_e(1+e)$$

$$(B)$$
 1

(C)
$$\log_e\left(\frac{1+e}{2}\right)$$

(D)
$$\log_e \frac{e}{2} - 2$$

The equation $24x^3 - 12x^2 - 6x + 1$ has roots α , β and γ .

What is the value of α if $\alpha = \beta + \gamma$?

- (A) $-\frac{1}{2}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D)

QUESTION 9

Consider the hyperbola with the equation $\frac{x^2}{144} - \frac{y^2}{25} = 1$.

What are the equations of the directrices?

- (A) $x = \pm \frac{13}{144}$
- (B) $x = \pm \frac{13}{25}$
- (C) $x = \pm \frac{25}{13}$
- (D) $x = \pm \frac{144}{13}$

QUESTION 10

The polynomial $P(x) = x^4 + ax^2 + bx + 28$ has a double root at x = 2.

What are the values of a and b?

- (A) a = -11 and b = -12
- (B) a = -5 and b = -12
- (C) a = -11 and b = 12
- (D) a = -5 and b = 12

QUESTION 11 (Commence a new answer booklet)

Marks

- For the complex number $w=1-i\sqrt{3}$: (a)
 - Find |w| and arg(w)(i)

2

Express $\overline{w}, w^2, \frac{1}{w}$ and \sqrt{w} in the form a + ib. (ii) Plot them on the Argand diagram.

5

Describe and sketch the locus of the point z such that |z+3i|+|z-3i|=10(b)

2

Show that $(1-2i)^2 = -3-4i$. (i) (c)

1

- Hence solve the equation $x^2 5x + (7+i) = 0$ (ii)

2

- Let *OABC* be a square on the Argand diagram where *O* is the origin. (d) The points A and C represent the complex numbers z and iz respectively.
 - Find the complex number represented by B. (i)

1

The square is now rotated through 45° in an anticlockwise direction about O(ii) to OA'B'C'. Find the complex number represented by A'.

2

QUESTION 12 (Commence a new answer booklet)

Marks

- (a) For the curve, $f(x) = \frac{4x}{1+x^2}$,
 - (i) Prove the curve y = f(x) has a relative minimum at A(-1,-2), a relative maximum at B(1,2) and a point of inflexion at O(0,0). Sketch y = f(x)

3

- (ii) The cubic curve $g(x) = ax^3 + bx^2 + cx + d$ also has a relative minimum at A(-1,-2) and a relative maximum at B(1,2).
 - (α) Obtain values of the coefficients a, b, c, and d.

2

(β) Deduce that O is also a point of inflexion on y = g(x)

1

(iii) Prove that the two curves y = f(x) and y = g(x) have only the three points A, B and O in common.

2

(b) Given $h(x) = 6 + x - x^2$ Draw neat sketches, on separate diagrams, of at least one third of a page for

1

(ii) y = |h(x)|

y = h(x)

(i)

1

(iii) $y = \sqrt{h(x)}$

1

 $(iv) y^2 = h(x)$

1

1

 $(v) y = \frac{1}{h(x)}$

(vi) $y = e^{h(x)}$

1

(vii) $y = \log_2 h(x)$

1

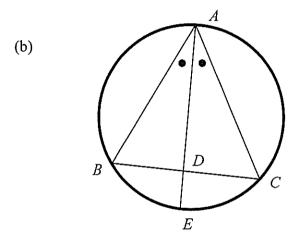
QUESTION 13 (Commence a new answer booklet)

Marks

2

2

- (a) Consider the ellipse E whose equation is $\frac{x^2}{4} + \frac{y^2}{2} = 1$.
 - (i) Show that the equation of E may be written in the parametric form


$$x = 2\cos\theta$$

$$y = \sqrt{2}\sin\theta$$

(ii) Assuming that the perimeter of E is given by the formula

$$p = 2 \int_{0}^{\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta \text{ show that } p = 2\sqrt{2} \int_{0}^{\pi} \left[\sqrt{2 - \cos^{2}\theta}\right] d\theta$$

(iii) Use five evenly spaced function values from $\theta = 0$ to $\theta = \pi$ and Simpson's rule to estimate p correct to two decimal places.

In the diagram, the bisector AD of $\angle BAC$ has been extended to intersect the circle ABC at E.

- (i) Prove that the triangles ABE and ADC are similar.
- (ii) Show that AB.AC=AD.AE.
- (iii) Prove that $AD^2 = AB.AC BD.DC$.
- (c) Given $a_n = \sqrt{2 + a_{n-1}}$ for integers $n \ge 1$, and that $a_0 = 1$, use the process of mathematical induction to prove for $n \ge 1, \sqrt{2} < a_n < 2$.
- (d) A woman travelling along a straight flat road passes three points at intervals of 200 metres. From these points she observes the angle of elevation of the top of the hill to the left of the road to be respectively 30°,45° and again 45°. Find the height of the hill to the nearest metre.

QUESTION 14 (Commence a new answer booklet)

Marks

- (a) $P\left(pt, \frac{t}{p}\right)$ and $Q\left(qt, \frac{t}{q}\right)$ are two points on the rectangular hyperbola: $xy = t^2$, where p and q are constants.
 - (i) Show that the gradient of PQ is $\frac{-1}{pq}$
 - (ii) Show that the gradient of the tangent to the hyperbola at P is $\frac{-1}{p^2}$
 - (iii) Hence, or otherwise, determine an expression for q in terms of p that will
 Make PQ a normal to the hyperbola at P.
- (b) For the hyperbola $5x^2 4y^2 = 20$
 - (i) Find the eccentricity and the co-ordinates of the foci.
 - (ii) Find the equations of the asymptotes.
- (c) When the polynomial P(x) is divided by (x+2)(x-3) the remainder is 4x+1.

 What is the remainder when P(x) is divided by (x+2)?
- (d) (i) Show that 2+i is a zero of $x^3-11x+20=0$.
 - (ii) Hence, or otherwise, solve $x^3 11x + 20 = 0$.
- (e) The equation $x^3 + 2x 1 = 0$ has roots α , β , δ .
 - Find the polynomial equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\delta}$.

QUESTION 15 (Commence a new answer booklet)

Marks

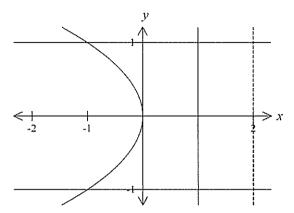
(a) Evaluate the integral
$$\int_{-2}^{2} x \sqrt{4 - x^2} - \sqrt{4 - x^2} dx$$

(b) Using integration by parts, evaluate:
$$\int_{0}^{1} x \tan^{-1} x \ dx$$
 3

(c) (i) Find the real numbers a, b, c such that
$$\frac{5}{x^2(2-x)} = \frac{ax+b}{x^2} + \frac{c}{2-x}$$

(ii) Hence, or otherwise, find
$$\int \frac{20}{x^2(2-x)} dx$$
 3

(d) Let
$$I_n = \int_1^2 (\ln x)^n dx$$
, where *n* is a positive integer.


(i) Show that
$$I_n = 2(\ln 2)^n - nI_{n-1}$$

(ii) Hence evaluate
$$I_4 = \int_1^2 (\ln x)^4 dx$$
. Write your answer in exact form.

QUESTION 16 (Commence a new answer booklet)

Marks

(a) (i) The region bounded by the lines x = 1, y = 1, y = -1 and by the curve $x = -y^2$ is rotated through 360° about the line x = 2 to form a solid.

By considering summation of slices in the shape of circular discs, show that the correct expression for the volume of the solid generated is:

$$V = \int_{-1}^{1} \pi \left(y^4 + 4y^2 + 4 \right) dy$$

- (ii) Hence or otherwise, evaluate the volume of the solid of revolution.
- (b) (i) Draw a neat sketch of the region enclosed by the curve $y=4x-x^2$, the x-axis, and the lines x=1 and x=3.

 Include in your diagram all points of intersection.
 - (ii) Use the method of cylindrical shells to find the volume of the solid generated when the area in part (i) is rotated about the y-axis.
- (c) (i) On a number plane, draw the region bounded by: the curve $v^2 = 4x$ and the lines x + y = 0 and x = 4.
 - (ii) A solid is generated using the region in (i) as a base. There are square cross-sectional slices perpendicular to the x – axis. Each has a side with one end-point on the line x+y=0and the other on the curve $y^2 = 4x$.
 - (α) Show that the area of a cross-section is given by:

$$A(x) = 4x + x^2 + 4x^{\frac{3}{2}}.$$

(β) Hence find the volume of the solid formed. 2

END OF EXAMINATION

STUDENT NUMBER:

HURLSTONE AGRICULTURAL HIGH SCHOOL

2013 TRIAL EXAMINATION YEAR 12 EXTENSION 2 MATHEMATICS

PART A Answers

- 1 a b c d
- 2 a b c d
- 3 a b c d
- 4 a b c d
- 5 a b c d
- 6 a b c d
- 7 a b c d
- 8 a b c d
- 9 a b c d
- 10 a b c d

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

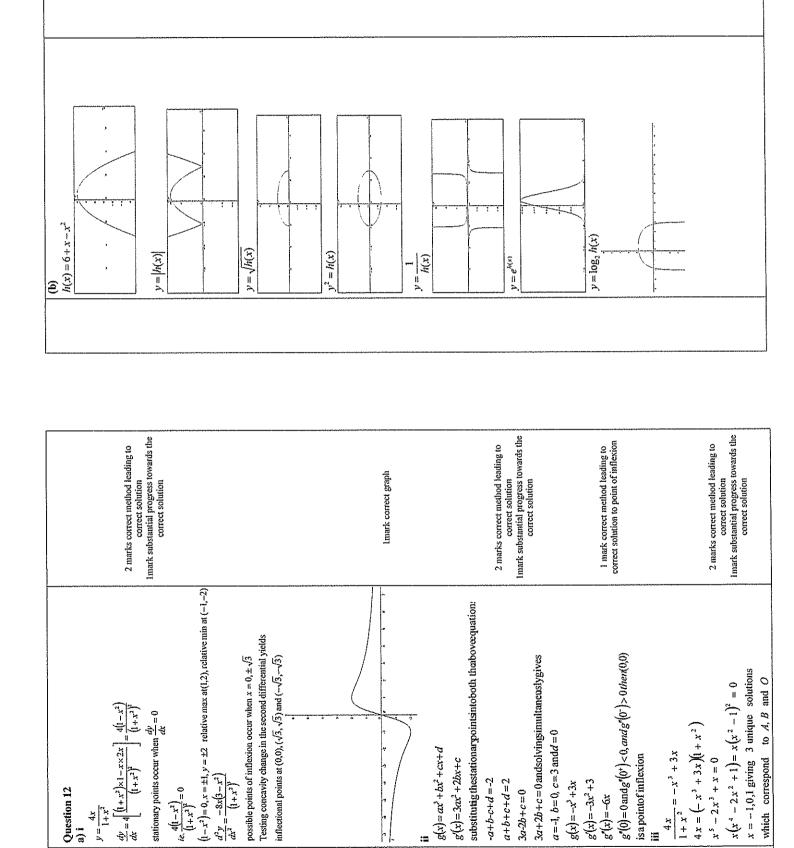
$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C \,, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C, \ a > 0, \ -a < x < a$$


$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right) + C, \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

2 marks both correct answer lmark one correct answer 5 marks correct method leading to correct solutions with correct graph 4 marks (1) incorrect answer 3 marks (2) incorrect answers or error con graph 2 marks substantial method leading to some correct solutions Imarkelementary progress towards the correct solution	Question 11 a) $ w = 1 - \sqrt{3}i$ $ w = \sqrt{1^2 + (-\sqrt{3})^2} = 2$ $\arg(w) = \tan^{-1}(\frac{-\sqrt{3}}{1}) = \frac{-\pi}{3}$ $ii \overline{w} = 1 + \sqrt{3}i$ $w^2 = (1 - \sqrt{3}i)^2 = -2 - 2\sqrt{3}i$ $\frac{1}{w} = \frac{1}{1 - \sqrt{3}i} + \sqrt{3}i = \frac{1 + \sqrt{3}i}{4}$ $\frac{1}{w} = \frac{1}{1 - \sqrt{3}i} + \sqrt{3}i = \frac{1 + \sqrt{3}i}{4}$ $1 - \sqrt{3}i = (a^2 - b^2) + 2iab$ $a^2 - b^2 = 1, \ 2ab = -\sqrt{3}$ $a = \frac{\pm \sqrt{6}}{2}, \ b = \frac{\pm \sqrt{2}}{2}$ $\sqrt{w} = \frac{\sqrt{6} - \sqrt{2}i}{2}, \ \sqrt{6} + \sqrt{2}i$ $\sqrt{w} = \frac{\sqrt{6} - \sqrt{2}i}{2}, \ \sqrt{6} + \sqrt{2}i$ $\sqrt{w} = \frac{\sqrt{6} - \sqrt{2}i}{2}, \ \sqrt{6} + \sqrt{2}i$ $\sqrt{w} = \frac{\sqrt{6} - \sqrt{2}i}{2}, \ \sqrt{6} + \sqrt{2}i$ $\sqrt{6} - \frac{\sqrt{6}i}{2}, \ \sqrt{6}i$ $\sqrt{6} - \frac{\sqrt{6}i}{2}, \ \sqrt$	E.
Marking Guidelines	Outcome Solutions	Outc
graphs of a wide variety of functions arts and recurrence formulae, to problems argument	and polynomass. combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions combines the ideas of algebra and calculus to determine volumes uses the techniques of siking and cylindrical shells to determine volumes applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems applies further techniques abstract ideas and relationships using appropriate rotation and logical argument.	
d abstract settings mbers and of conic sections stions such as those involving conic sections	ate strategi hip between	200
	Question No. 1-13 Solutions and Marking Guidelines Outcomes Addressed in this Questions	Quest
Task 4 Trial 2013	ar 12 Extension 2 Mathematics	Year 12

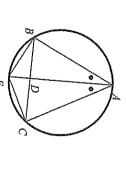
$z' = z \left(\cos \theta \cos \frac{\pi}{4} - \sin \theta \sin \frac{\pi}{4} + i \left(\sin \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4} \right) \right)$ $z' = z \left(\cos \theta \cos \frac{\pi}{4} - \sin \theta \sin \frac{\pi}{4} + i \left(\sin \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4} \right) \right)$ $z' = \frac{ z }{\sqrt{2}} \left(\cos \theta - \sin \theta + i \sin \theta + i \cos \theta \right)$ $z' = \frac{ z }{\sqrt{2}} \left(\cos \theta + i \sin \theta + i (\cos \theta + i \sin \theta) \right)$ $z' = \frac{1}{\sqrt{2}} \left(z (\cos \theta + i \sin \theta) + i z (\cos \theta + i \sin \theta) \right)$ $z' = \frac{1}{\sqrt{2}} (z (\cos \theta + i \sin \theta) + i z (\cos \theta + i \sin \theta) \right)$ $z' = \frac{1}{\sqrt{2}} (z (\cos \theta + i \sin \theta) + i z (\cos \theta + i \sin \theta) \right)$	$x = \frac{5 \pm \sqrt{-3-4i}}{2}$ $x = \frac{5 \pm (1-2i)}{2}$ $x = \frac{5 \pm (1-2i)}{2}$ $x = 3-i, 2+i$ $0)$ $OB = OA + OC = z + iz = z(1+i) \text{ (parallelogram of vectors)}$ $in)$ $z = z \arg(z) \text{ and } z = z' $ $\lim_{z \to 1} 2 \arcsin(z) - \lim_{z \to 1} x = x(1+i) \text{ (parallelogram of vectors)}$ $\lim_{z \to 1} x = x(1+i) \text{ (parallelogram of vectors)}$ $\lim_{z \to 1} x = x(1+i) \text{ (parallelogram of vectors)}$: ellipse has equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$ c) i) $(1-2i)^2 = 1-4i+4i^2$ $= 1-4i-4=-3-4i$ Imark correct solution ii) $x = \frac{5 \pm \sqrt{25-4(7+i)}}{2}$	b) $ z+3i + z-3i =10$ is an ellipse major axis y axis under the locus definition is an ellipse major axis y axis under the locus definition 2 marks correct method leading to correct solution 2 marks substantial progress towards the using geometry or $a^2 = b^2 (1 - e^2)$ and a focus $be = 3$ correct solution $be = 5, a = 4$
ethod leading to Aution gress towards th	thod leading to lution gress towards the lution function at the lution at solution a solution	1 solution	thod leading to lution gress towards the

E6

lmark correct graph

Imark correct graph

1mark correct graph


Imark correct graph

1mark correct graph

Imark correct graph

Imark correct graph

	E2/E9	
$p = 2\sqrt{2} \int_{0}^{\pi} \left[\sqrt{2 - \cos^{2}\theta} \right] d\theta$ iii) iii) iii $f(0) = \sqrt{2 - \cos^{2}\theta}$ $f(0) = \sqrt{2 - \cos^{2}\theta} = 1$ $f\left(\frac{\pi}{4}\right) = \sqrt{2 - \cos^{2}\frac{\pi}{4}} = \sqrt{\frac{3}{2}}$ $f\left(\frac{3\pi}{4}\right) = \sqrt{2 - \cos^{2}\theta} d\theta = \frac{\pi}{6} \left(1 + \sqrt{2} + 4 \times \sqrt{\frac{3}{2}}\right) + \frac{\pi}{6} \left(1 + \sqrt{2} + 4 \times \sqrt{\frac{3}{2}}\right)$ $\therefore p \approx 2\sqrt{2} \times \left[\frac{\pi}{12} \left(1 + \sqrt{2} + 4 \times \sqrt{\frac{3}{2}}\right) + \frac{\pi}{12} \left(1 + \sqrt{2} + 4 \times \sqrt{\frac{3}{2}}\right)\right] \approx 10.83$	$x = 2\cos\theta \qquad y = \sqrt{2}\sin\theta$ $\frac{dx}{d\theta} = -2\sin\theta \frac{dy}{d\theta} = \sqrt{2}\cos\theta$ $p = 2\int_{0}^{\pi} \left(\sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} \right) d\theta$ $p = 2\int_{0}^{\pi} \left(\sqrt{\left(-2\sin\theta\right)^{2} + \left(\sqrt{2}\cos\theta\right)^{2}} \right) d\theta$ $p = 2\int_{0}^{\pi} \left(\sqrt{2\sin^{2}\theta + 2\cos^{2}\theta} \right) d\theta$ $p = 2\int_{0}^{\pi} \left(\sqrt{2\sin^{2}\theta + 2\cos^{2}\theta + 2\sin^{2}\theta} \right) d\theta$ $p = 2\int_{0}^{\pi} \left(\sqrt{2 + 2\sin^{2}\theta} \right) d\theta$ $p = 2\sqrt{2}\int_{0}^{\pi} \left(\sqrt{1 + \sin^{2}\theta} \right) d\theta = 2\sqrt{2}\int_{0}^{\pi} \left(\sqrt{1 + 1 - \cos^{2}\theta} \right) d\theta$	Question 13 a) i) i) $\frac{x^2}{4} + \frac{y^2}{2} = 1, x = 2\cos\theta, y = \sqrt{2}\sin\theta$ $\frac{x^2}{4} + \frac{(2\cos\theta)^2}{4} + \frac{(\sqrt{2}\sin\theta)^2}{2} = 1 \text{ then } E \text{ can be written as}$ $x = 2\cos\theta, y = \sqrt{2}\sin\theta \text{ in parametric form.}$ $\frac{4\cos^2\theta}{4} + \frac{2\sin^2\theta}{2} = \cos^2\theta + \sin^2\theta = 1$ ii)
2 marks correct method leading to correct solution Imark substantial progress towards the correct solution	2 marks correct method leading to correct solution lmark substantial progress towards the correct solution	Imark correct solution

Ξ

Ξ

Prove that the triangles ABE and ADC are similar.

In $\triangle ABE$ and $\triangle ADC$ $\angle BAE = \angle DAC(AD \text{ bisects } \angle BAC \text{ by data})$

∴ ∆ABE /// ∆ADC (equiangular) $\angle AEB = \angle ACD$ (angles subtended by common chord AB)

2 marks correct method, with reasons, teading to correct solution Imark substantial progress, with reasons, towards the correct solution

 Ξ Show that AB.AC=AD.AE.

Since corresponding sides of similar triangles are in the same ratio then

 $\frac{AB}{AD} = \frac{AE}{AC} = \frac{BE}{DC}$ $: AB \times AC = AD \times AE$

 \equiv Prove that $AD^2 = AB.AC - BD.DC$.

In $\triangle ABD$ and $\triangle CED$

 $\angle ADB = \angle CDE$ (vertically opposite angles)

∠ADB = ∠CDE (angles subtended by common chord AC) | 2 marks correct method, with reasons, leading to correct solution | linark substantial progress, with reasons, towards the correct solution

 $\therefore \frac{AD}{CD} = \frac{BD}{ED} \text{ or }$ $BD \times DC = AD \times DE$

 $AB \times AC = AD \times AE \text{ (from (ii))}$

 $AB \times AC - BD \times DC = AD \times AE - AD \times DE$

 $= AD \times AD = AD^2$ = AD(AE - DE)

I mark correct method, with reasons, leading to correct solution

 $ie\sqrt{2} < a_n < 2$ for $n \ge 1$ given $a_0 = 1$ and $a_n = \sqrt{2 + a_{n-1}}$ c) Prove true for n = 1

 $a_n = \sqrt{2 + a_{n-1}}$, then $a_1 = \sqrt{2 + a_0} = \sqrt{2 + 1} = \sqrt{3}$

 $\sqrt{2}<\sqrt{3}<\sqrt{4}$

 $\therefore \sqrt{2} < a_1 < 2$ and true for n = 1

3 marks correct method leading to correct solution
2 marks substantial progress towards the correct solution
1 mark elementary progress towards the correct solution

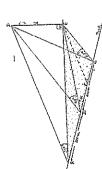
Assume true for n = k ie $a_k = \sqrt{2 + a_{k-1}}$

Assume true for n = k + 1 ie $a_{k+1} = \sqrt{2 + a_k}$

from $\sqrt{2} < a_k < 2$

 $2+\sqrt{2}<2+\alpha_k<2+2$

 $\sqrt{2+\sqrt{2}}<\sqrt{2+a_k}<\sqrt{4}$


since $2 < 2 + \sqrt{2}$, then $\sqrt{2} < \sqrt{2 + \sqrt{2}}$ and hence

 $\sqrt{2} < \sqrt{2 + \sqrt{2}} < \sqrt{2 + a_k} < 2$

but $a_{k+1} = \sqrt{2 + a_k}$, and $\sqrt{2} < a_{k+1} < 2$

: if true for is true n = k is true for n = k + 1 and by the proof mathematical induction true for all positive integral n.

Ŧ

 $EA = h \cot 30^{\circ}, BE = h \cot 45^{\circ}, CE = h \cot 45^{\circ}$

 $\cos \angle ECB = \frac{h^2 + 200^2 - h^2}{2 \times 200 \times h} = \frac{100}{h}$

 $\frac{1}{1} = \frac{80000 - h^2}{1}$ $\angle ECB = \angle ECA$: $\cos \angle ECB = \cos \angle ECA$ $h^2 + 400^2 - (\sqrt{3}h)^2$ $2\times400\times h$ cos ZECA = ...

 $\frac{100}{h} = \frac{80000 - h^2}{400h}$

 $40000 = 80000 - h^2$

 $h^2 = 40000$

h = 200m

2 marks correct method leading to correct solution Imark substantial progress towards the correct solution

Mathemati	Mathematics Extension 2 Solutions and Marking Guidelines	HSC Trial 2013
Question 14 Outcome	Solutions	Marking Guidelines
£4 (a)	(i) $M_{pq} = \frac{\frac{t-t}{q-pt}}{\frac{q}{qt-pt}} = \frac{pt-qt}{pq} \times \frac{1}{qt-pt} = \frac{-1}{pq}$	<u>1 mark:</u> Sufficient working shown.
	(ii) Lots of choices: e.g.: $y' = \frac{-t^2}{p^2 t^2}$ or $y' = \frac{-y}{x}$	1 mark: Sufficient working shown.
	or $M_T = \frac{\sin -1}{q \to p} \frac{-1}{pq}$ all leading to $M_T = \frac{-1}{p^2}$	
	(iii) $\frac{-1}{pq} \times \frac{-1}{p^2} = -1 \rightarrow q = \frac{-1}{p^3}$	2 marks: Correct solution. 1 mark: Relationship between gradients.
	Full marks required q to be the subject.	
£4 (b)	(i) $e = \frac{3}{2}$ Foci = $(\pm 3, 0)$	2 marks: Both correct 1 mark: One correct.(foci CFPA)
	(ii) $y = \pm \frac{\sqrt{5}}{2}x$	1 mark: Correct lines CFPA.
E4 (c)	$P(x) = (x+2)(x-3)Q(x)+4x+1$ $\therefore P(-2) = 0+4(-2)+1$ =-7	2 marks: Correct solution 1 marks: Considerable progress.
_	Remainder when division by $(x+2)=-7$	
E4	(i) Substitute $x = 2 + i$:	2 marks: Correct solution, with sufficient working.
(d)	$(2+i)^{3}-11(2+i)+20=(2+i)[(2+i)^{2}-11]+20$ $=(2+i)(4i-8)+20$ $=8i-16-4-8i+20$ $=0$	1 mark: Considerable progress.
	(ii) Real coefficients, so complex conjugate pairs are roots.Sum of roots = 0	2 marks: Correct solution 1 mark: Considerable progress.
	x=2+i, $2-i$, -4 are roots.	

• ~	
	E4 (e)
Required polynomial is: $x^3 - 2x^2 - 1 = 0$ or equivalent.	$\left(\frac{1}{x}\right)^3 + 2\left(\frac{1}{x}\right) - 1 = 0$ has roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$
	2 marks: Correct solution 1 mark: Considerable progress.

(e)	(e) (x) (x)	
	Required polynomial is: $x^3 - 2x^2 - 1 = 0$ or equivalent.	
Mathematics	ics Extension 2 Solutions and Marking Guidelines	HSC Trial 2013
Question 15		
Outcome	Solutions	Marking Guidelines
E8	$\int_{0}^{2} \sqrt{A + x^{2}} dx$	2 marks: Correct answer
(a)	$\int X\sqrt{4-\lambda} = \sqrt{4-\lambda} \text{(i.i.)}$	1 mark: Considerable progress.
	$=0-\int_{0}^{2} \sqrt{4-x^2} dx$	
	$=-2\pi$ units	
	First integral $= 0$ because it is an odd function.	
	Second integral is the area of a semi-circle with radius = 2	
	2 very simple marks if you recognised the forms. Lots of time spent by those who didn't. Several people forgot the pesky negative sign probably because they were thinking of positive	
	area.	The state of the s
E8	$\int_{0}^{1} x \tan^{-1} x dx = \frac{1}{2} x^{2} \tan^{-1} x \Big _{0}^{1} - \int_{0}^{1} \frac{1}{2} x^{2} \left(\frac{1}{1+x^{2}} \right) dx$	3 marks: Correct answer with sufficient working
	$= \frac{\pi}{8} - \frac{1}{5} \left[1 - \frac{1}{1 + x^2} dx \right]$	2 marks: : Considerable progress.
	$=\frac{\pi}{8} - \frac{1}{2} \left[x - \tan^{-1} x \right]$	
	$=\frac{\pi}{4}-\frac{1}{2}$	
	Evaluating the integral was the tricky bit	
ES	$5 = (ax+b)(2-x)+cx^{2}$ (i) 5 , 5	2 marks: All 3 correct.
<u> </u>	: a = c = 4 b = - 4 2	1 mark: Either b correct or a and c correct.
	Since a and c were equal, finding both was only worth 1 mark out of 2.	

	(!!)	3 marks: Correct answer with sufficient
	(1)	working
	$\int \frac{20}{x^2(2-x)} dx = 4 \int \frac{5}{x^2(2-x)} dx$	2 marks:: Considerable progress.
	$= \int \frac{5x + 10}{x^2} + \frac{5}{2 - x} dx$	1 mark: Some progress.
	$=5\left(\ln x - \frac{2}{x} - \ln 2 - x \right)dx$	
	The absolute value signs weren't essenial for the marks.	
E8	(1)	2 marks: Correct solution, with sufficient working. This includes the 2nd integral on
(p)	$I_n = \int_1^2 1(\ln x)^n dx = \chi \left(\ln \chi \right)^n \int_1^n -\int_1^2 \frac{x^n}{x} (\ln x)^n dx$	the 1^{st} line that shows how the factor of x is divided out. 1 mark: Considerable progress.
	$=2(\ln 2)^n - 0 - \int_0^2 n(\ln x)^{n-1} dx$	
	$=2(\ln 2)^{\nu}-I_{u-1}$	
	Line 1 is very important. Several people lost a mark by not showing the full operation.	
	(ii)	(ii) 3 marks: Correct solution, with sufficient working.
	$I_0 = 1$	2 marks: 1 error in working that is followed
	$I_1 = 2 (\ln 2) - I_0$	unough consistently when calculating an variables.
	$I_2 = 2(\ln 2) - 2I_1$	1 mark: Partial progress.
	$I_3 = 2(\ln 2) - 3I_2$	
	$I_4 = 2(\ln 2) - 4I_3$	
	$I_4 = 2 (\ln 2)^4 - 8(\ln 2)^3 + 24(\ln 2)^2 - 48 \ln 2 + 24$	
	The lowest success rate occurred when the calculation was attempted as one big expression.	

HSC Trial 2013

Mathematics Extension 2 Solutions and Marking Guidelines

Solutions of $x = 2$. $+ y^2$ $+ y^2$ $+ y^2$ $+ y^4$ $+ y^$	 Question 16	9	
(i) Using a boundary of $x = 2$. Radius = $2 - x = 2 + y^2$ Radius = $2 - x = 2 + y^2$ $A(y) = \pi (2 + y^2)^2 \longrightarrow \Delta V = \pi (2 + y^2)^2 \Delta y$ $V = \frac{\ln \pi}{2} \sum_{i=1}^{n} (4 + 4y^2 + y^4) dy$ $= \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ Students thankled the conjusing question well. Frorking that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y^2 instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ $= \pi \left[\frac{y^5}{5} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^3$ Excellent exam technique. Most people used the given answer in part (f) and got full marks for this part. (i)	 Outcome	Solutions	Marking Guidelines
Radius = $2 - x = 2 + y^2$ $A(y) = \pi (2 + y^2)^2 \longrightarrow \Delta V = \pi (2 + y^2)^2 \Delta y$ $V = \frac{1}{2} \sin^{-1} \left[\frac{1}{2} (4 + 4y^2 + y^4) \Delta y \right]$ $= \pi \int_{-1}^{1} (4 + 4y^2 + y^4) \Delta y$ $= \pi \int_{-1}^{1} (4 + 4y^2 + y^4) \Delta y$ Students handled the confusing question well. Working that was crossed our was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y^2 instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^2 + y^4) \Delta y$ $= \pi \left[\frac{y^5}{5} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \pi \left[\frac{1}{5} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \pi \left[\frac{1}{15} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^3$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (ii) (iv) $= \frac{1}{15} + \frac$	 E7	(i) Using a boundary of $x = 2$.	3 marks: Correct solution
Radius = $2 - x = 2 + y^2$ $A(y) = \pi (2 + y^2)^2 \rightarrow \Delta V = \pi (2 + y^2)^2 \Delta y$ $V = \frac{1}{2y - y^2} \sum_{i=1}^{1} \pi (4 + 4y^2 + y^4) \Delta y$ $= \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ Students handled the confusing question well. Working that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was thus to some students subtracting y^2 instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ $= \pi \left[\frac{y^5}{5} + \frac{4y^5}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{units}^3$ $= \frac{166\pi}{15} \text{units}^3$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (ii)	 (u)		2 marks: Considerable progress
$A(y) = \pi (2 + y^{2})^{2} \longrightarrow \Delta V = \pi (2 + y^{2})^{2} \Delta y$ $V = _{\Delta y \to 0} \sum_{-1}^{\ln n} \pi (4 + 4y^{2} + y^{4}) \Delta y$ $= \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$ $= \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$ Students handled the confusing question well. Working that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y' instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$ $= \pi \left[\frac{y^{5}}{5} + \frac{4y^{3}}{3} + 4y \right]_{-1}^{1}$ $= \pi \left[\frac{y^{5}}{5} + \frac{4y^{3}}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units }^{3}$ $= \frac{166\pi}{15} \text{ units }^{3}$ $= \frac{166\pi}{15} \text{ units }^{3}$ $= \frac{1}{15} \text{ units }^$		Radius = $2 - x = 2 + y^2$	1 mark: Partial progress.
$V = \sum_{\Delta y \to 0}^{\ln n} \sum_{k=1}^{1} \pi (4 + 4y^2 + y^4) \Delta y$ $= \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ Students handled the confinsing question well. Working that was crossed our was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some sindents subtracting y^2 instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ $= \pi \left[\frac{y^5}{5} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^3$ $= \frac{166\pi}{15} \text{ units}^3$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (i) (i) $= \frac{1}{2} \int_{-1}^{1} \frac{1}{3} \int_{-1}^{$		$A(y) = \pi (2 + y^2)^2 \longrightarrow \Delta V = \pi (2 + y^2)^2 \Delta y$	
$= \pi \int_{-1}^{1} (4+4y^{2}+y^{4}) dy$ Students handled the confinsing question well. Working that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y^{2} instead of adding. (ii) $V = \pi \int_{-1}^{1} (4+4y^{2}+y^{4}) dy$ $= \pi \left[\frac{y^{5}}{5} + \frac{4y^{3}}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^{3}$ $= \frac{166\pi}{15} \text{ units}^{3}$ (i) (i) (i) (i) (i) (i) (i) (i)		$V = \lim_{\Delta_1 \to 0} \sum_{i=1}^{1} \pi \left(4 + 4y^2 + y^4 \right) \Delta y$	
Students handled the confusing question well. Working that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y^2 instead of adding. (ii) $V = \pi \int_{-1}^{1} (4 + 4y^2 + y^4) dy$ $= \pi \left[\frac{y^5}{5} + \frac{4y^3}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^3$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (i) (i) $s = \frac{1}{4} + \frac{1}$		$= \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$	
(ii) $V = \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$ $= \pi \left[\frac{y^{5}}{5} + \frac{4y^{3}}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^{3}$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (i) $\begin{cases} 1 \\ 5 \\ 4 \end{cases} \end{cases}$ $\begin{cases} 6 \\ 5 \end{cases} \end{cases}$ $\begin{cases} 6 \\ 7 \end{cases} \end{cases}$ $\begin{cases} 6 \\ 7 \end{cases} \end{cases}$ $\begin{cases} 6 \\ 7 \end{cases} \end{cases}$		Students handled the confusing question well. Working that was crossed out was still marked, and full marks could be gained by at least 3 different answers. The only problem was due to some students subtracting y ² instead of adding.	
$V = \pi \int_{-1}^{1} (4 + 4y^{2} + y^{4}) dy$ $= \pi \left[\frac{y^{5}}{5} + \frac{4y^{3}}{3} + 4y \right]_{-1}^{1}$ $= \frac{166\pi}{15} \text{ units}^{3}$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (i) s		(ii)	2 marks: Correct answer CFPA
$=\pi \left[\frac{v^{5}+4v^{3}+4y}{5}+4y\right]_{-1}^{1}$ $=\frac{166\pi}{15} \text{ units}^{3}$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (i) s		$V = \pi \int (4 + 4y^2 + y^4) dy$	1 mark: Considerable progress.
$=\frac{166\pi}{15} \text{ units}^{3}$ Excellent exam technique. Most people used the given answer in part (i) and got full marks for this part. (b) s^{-1}		$=\pi \left[\frac{v^{5}}{5} + \frac{4v^{3}}{3} + 4y \right]^{1}$	
(i) (b) (c) (c) (d) (d) (e) (e) (f) (f) (f) (f) (g) (g) (g) (g		$=\frac{166\pi}{15}$ units ³	
(b) (d) 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Excellent exam technique. Most people used the given answer in part (t) and got full marks for this part.	
1 3 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E7	(0)	1 mark: Correct, neat diagram, showing all noints of intersection, and shading.
	(q)	2 3 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	politis of findisection, and snaming.
7		7 7	

 (B)
 $V = \lim_{\Delta x \to 0} \sum_{x=0}^{4} 4x + 4x \sqrt{x} + x^{2} \Delta x$
$= \int_{0}^{4} 4x + 4x^{\frac{3}{2}} + x^{2} dx$
$=2x^{2} + \frac{8x^{\frac{5}{2}}}{5} + \frac{x^{3}}{3} + 2x^{2} + \frac{8x^{\frac{5}{2}}}{5} + \frac{x^{3}}{3}$
1568

marks for this part, even though (a) was incorrect. It was very pleasing to see the number of people who got full

2 marks: 1 error in working that is followed through consistently when calculating all 1 mark: Partial progress.

$=2\pi \left[\frac{4x^3}{3} - \frac{x^4}{4}\right]_1^3 = \frac{88\pi}{3}$	$\to V = 2\pi \int_{1}^{3} 4x^{2} - x^{3} dx$	$\therefore A(x) = 2\pi x \left(4x - x^2\right) \rightarrow \Delta V = 2\pi \left(4x^2 - x^3\right) \Delta x$	(II)Naulus or such - a. troffin or such / 'a

2 marks: 1 error in working that is followed through consistently when calculating all 1 mark: Partial progress. variables.

marks, because there was no progress towards the correct path really changed the question and made it difficult to award any Some people thought that every cylinder had a height of 3. This

E7 <u></u> Ξ I mark: Correct, neat diagram, showing all points of intersection, and shading.

Ξ
_
5
·
Thickn
SSS
2
since
H
5

So, if $y^2 = 4x$, $y = 2\sqrt{x}$ is the component above the x-axis.

If x + y = 0, y = -x is the component below the axis.

Sidelength =
$$2\sqrt{x} - (-x) = 2\sqrt{x} + x$$

$$A(x) = (2\sqrt{x} + x)^{2} = 4x + 4x\sqrt{x} + x^{2}$$

(a) 2 marks: Correct solution, with sufficient working. 1 mark: Considerable progress.

