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This page is for use by teachers ONLY 
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Exam Outcomes 
1. Use the relationship between functions, inverse functions and derivatives (Differential Calculus) 
2. Study of simple harmonic and projectile motion (Motion) 
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5. Problem solving (PS) 
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Section I 
 
10 marks 
Attempt Questions 1–10 
Allow about 15 minutes for this section 
 
 
Use the multiple–choice answer sheet for Questions 1–10 
 
 
1)! A point P moves in the xy-plane such that P(tanθ, cotθ) is its parametric presentation with the 

parameter θ, where θ is any real number.  The locus of P then is 

 
 (A)  Parabola 

 (B)  Circle 

 (C)  Hyperbola 

 (D)  Straight Line 

 
 
2)! Let P(x) be a polynomial of degree n > 0.  Let Q(x) be a polynomial of degree m ≤ n such that  
 

P(x) = (x – a)r Q(x) + R(x) 
 
 Then the degree of R(x) is 

 (A)  n + m + r 

 (B)  n – m – r 

 (C)  n + m – r 

 (D)  n – m + r 

 

3)! The sum of this infinite geometric series ...
22

1
2
1

2
112 −+−+− is closest to 

 (A)  0.5 

 (B)  1 

 (C)  1.5 

 (D)  2 
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4)! Let T(x) be a function defined by T(x) = [f(x)g(x)]n + 1, where f(x) and g(x) are  

 two real functions.  Then 
dx
dT  is 

 (A)  
dx
dg

dx
dfxgxf1n(

dx
dT n ⋅+= )]()()[  

 (B)  ][)]()()[
dx
dg

dx
dfxgxf1n(

dx
dT n ++=   

 (C)  ][)]()()[
dx
dgg

dx
dffxgxf1n(

dx
dT n ++=  

 (D)  ][)]()()[
dx
dgf

dx
dfgxgxf1n(

dx
dT n ++=   

 
 
5)! The only set of inequalities that represents the shaded regions between the circle 

 and the square below is 

 
 (A)  x2 + y2 ≤ 1 and |x| + |y| ≥ 1 

 (B)  x2 + y2 ≤ 1 and |x| – |y| ≥ 1 

 (C)  x2 + y2 ≤ 1 and |x – y| ≥ 1 

 (D)  x2 + y2 ≤ 1 and |x + y| ≤ 1 

 
 
6)! Consider the functions f(x) = ex and g(x) = lnx.  Let a be a real number such that a > 1. 

 The only correct statement of the following is 

 (A)  f′ (a) ≤ g′ (a)  

 (B)  f′ (a) ≥  g′ (a) 

 (C)  f′ (a) < g′ (a) 

 (D)  f′ (a) > g′ (a) 

O –1 x 

y 

1 

1 

–1 
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7)! Let f(x) be the cubic polynomial defined by f(x) = (x – 1)3 + x.  The point (1, 1) is 

 

 (A)  a stationary point of f(x) 

 (B)  a turning point of f(x) 

 (C)  a horizontal point of inflexion of f(x) 

 (D)  a non-horizontal point of inflexion of f(x) 
 

8)! The only correct statement about the function
)(
)()(

θ
θθ

−
+

=
45cos5

45sin2f is that 

   (A)  it is a constant function 

   (B)  it varies as θ varies 

   (C)  it has a maximum value 0⋅4 

   (D)  it has a minimum value 0⋅4 

 

9)! The domain and range for the function y = 2 cos−1(x) is 

 

 (A) Domain: –1 ≤ x ≤ 1, Range: 0 ≤ y ≤ 2π 

 (B) Domain: –1 ≤ x ≤ 1, Range: 0 ≤ y ≤ π 

 (C) Domain: 0 ≤ x ≤ 1, Range: 0 ≤ y ≤ 2π 

 (D) Domain:0 ≤ x ≤ 1, Range: 0 ≤ y ≤ π 

 

 

10)! Consider f(x) = ln (x) – ln (–x).  Then f(x) is 

 

 (A)  An even function 

 (B)  An odd function 

 (C)  Undefined everywhere  

 (D)  A relation which is not a function 
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Section II 
 
60 marks 
Attempt Questions 11–14 
Allow about 1 hour and 45 minutes for this section 
 
 
In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations 
 
 
Question 11  (15 marks) Start a NEW page 
 
(a)! Find all exact values of the angle ( )3tan 1 −−  in radians       1 
 
 
 
(b)! A(–5, 6) and B(1, 3) are two points.  Find the coordinates of the point P which      2 
 divides the interval AB externally in the ratio 5:2. 
 
 
(c)! The perpendicular distance from the point (x1, y1) to the line y = x + 3 is 22       2 
 and to x-axis is 3.  Find the coordinates of the point (x1, y1). 
 
 

(d)! Find all possible solutions for the equation 
)(

)()(
2

2
2

2
2

x42
1x21x2

−
−

=− .      2 

 
 
(e)! Show that the first derivative of the function xsinx2 may be given as      3 

 
xsin

xsin2xcos + . 

 
 
(f)! Consider the following functions 
 

f(x) = x2 + 4x – 12 and 
x2
6xxg

−
+

=)(  

 
   (i) Solve the identity f(x) ≤ 0 and indicate your solution on a number line.      2 
 
   (ii) Solve the identity g(x) ≤ 0 and indicate your solution on a number line.      2 
 
   (iii) Find the simultaneous solution of the two inequalities f(x) ≤ 0 and g(x) ≤ 0.     1 
 
 
 
 
 
Proceed to next page for question (12) 
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Question 12  (15 marks) Start a NEW page 
 
(a)! A circular plate is being expanded by heating.  When the radius just reaches a value     1 
 of 20 cm, it (the radius) is increasing at the rate of 0·01 cm/s.  Find the rate of increase 
 in the area at this moment in terms of π. 
 
(b)! Consider the two exponential functions y = e2x and y = ex + 2. 
 
   (i) Draw a neat sketch showing the graphs of y = e2x and y = ex + 2      2 
  on the same diagram, showing any asymptotes and axes intercepts. 
 
   (ii) Show that the coordinates of the point of intersection of y = e2x      1 
  and y = ex + 2 is (ln2, 4). 
 
   (iii) Find the area bounded by the y-axis and the two curves y = e2x      2 
  and y = ex + 2.  Give your final answer correct to 2 decimal places. 
 
(c)! The size of the acute angle between the tangents drawn to the curve y = lnx at the     2 

 points where x = 1 and x = x1 is 
6
π .  Find the exact value of x1. 

 
 
(d)!              3 

 
 

 XY is a diameter in the circle above.  Given that ∠X = 35° and ∠Q = 25°, find the size 
 of ∠YPR, giving reasons. 
 
(e)! Let y = sin−1(1 − x2). 

   (i) By using the substitution u = 1 – x2, or otherwise, show that 
2x1

2
dx
dy

−

−
= .    1 

   (ii) Hence show that f ′ (x) = 0 where f(x) = 2 cos−1 )(
2

x − sin−1(1 − x2).     1 

   (iii)  Hence or otherwise, show that 2 cos−1 )(
2

x − sin−1(1 − x2) = 
2
π .     2 

 
 
 
Proceed to next page for question (13) 

X 

R 

P 

Y 

Q 
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Question 13  (15 marks) Start a NEW page 
 

(a)! Evaluate  ∫ −
1

0

2 dxx1  using the substitution x = sin θ.       2 

 
(b)!   (i) State the conditions that the quadratic expression ax2 + bx + c       1 
  is negative definite. 
 
   (ii) Show that the expression (k2 + k)x2 − (2k − 6)x + 2, where k ≠ 0,      1 
  can never be negative definite. 
 
   (iii) Find the range of values of k for which the expression is positive definite.    1 
 
 
(c)! Prove by mathematical induction that         3 
 
 )!1n(n!n)1n(...!310!25!12 2 +×=×+++×+×+×  for all integers n = 1, 2, 3, … 
 
(d)! A machine which initially costs $49 000 loses value at a rate proportional to the  
 difference between its current value $M and its final scrap value $1000.  After 2 years  
 the value of the machine is $25 000. 
 

  (i) Explain why )( 1000Mk
dt

dM
−−=  for some constant k > 0, and verify that    2 

ktAe1000M −+= , A constant, is a solution of this equation. 
 
   (ii) Find the exact values of A and k.         3 
 
   (iii) Find the value of the machine, and the time that has elapsed, when     2  
  the machine is losing value at a rate equal to one quarter of the initial 
  rate at which it loses value. 
 
 
 
 
 
Proceed to next page for question (14) 
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Question 14  (15 marks) Start a NEW page 
 
(a)! A particle is moving with simple harmonic motion in a straight line. 
 It has amplitude of 10 metres and a period of 10 seconds. 
  

   (i) Prove that it would take the particle
5
3cos5 1−

π
 sec to travel from one      2 

  of the extremities of its path to a point 4 metres away? 
 
   (ii) At what speed, correct to whole m/s, would the particle reach this position?    1 
 
(b)! It is known that ln x + sin x = 0 has a root close to x = 0·5. Use one application of    2 
 Newton’s Method to obtain a better approximation of the root to 4 decimal places. 
 
(c)! A projectile with initial velocity U ms–1 at an angle of projection α, and  acceleration 

downwards due to gravity, g, has been fired from the origin. 
 
   (i)  At a time t ≥ 0 seconds the projectile is at the point (x, y), prove that     3 

   x = Ut cos α   and 2gt
2
1sinUty −= α  

 
   (ii)  Show that the equation of the path of a projectile is given by      2 

   αα 2
2

2
sec

U2
gxtanxy −=  

 
 Nicholas throws a small pebble from a fixed point O on level ground, with a velocity 

1ms107U −= at an angle α, with the horizontal.  Shortly afterwards, he throws another  
small pebble from the same point at the same speed but at a different angle to the 
horizontal β, where β  < α, as shown.  The pebbles collided at a point P(10, 15).  

 Consider the acceleration downwards due to gravity is g = 9⋅8 ms–1. 

 
 
   (iii)  Show that the two possible initial angles of projection are      3 

α = tan–18 and β = tan–12 
 
   (iv)  Show that the time elapsed between when the pebbles were thrown     2 

was 
7

50650 − seconds. 

End of paper 
 [[End Of Qns]] 

β 
α 

x 

P 

y 

O A 

15 m 

10 m 
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STANDARD INTEGRALS 
 
 
 

   0nif,0x;1n,x
1n

1dxx 1nn <≠−≠
+

=∫ +  

 

   ∫ >= 0x,xlndx
x
1  

 

   ∫ ≠= 0a,e
a
1dxe axax  

 

   ∫ ≠= 0a,axsin
a
1dxaxcos  

    

   ∫ ≠−= 0a,axcos
a
1dxaxsin  

 

   ∫ ≠= 0a,axtan
a
1dxaxsec2  

 

   ∫ ≠= 0a,axsec
a
1dxaxtanaxsec  

 

   ∫ ≠=
+

− 0a,
a
xtan

a
1dx

xa
1 1

22  

 

   ∫ <<−≠=
−

− axa,0a,
a
xsindx

xa

1 1
22

 

 

   ∫ >>−+=
−

0ax),axxln(dx
ax

1 22
22

 

    

   ∫ ++=
+

)axxln(dx
ax

1 22
22

  

    
 

NOTE:  ln x   =   loge x,  x > 0 
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