

2013 HSC TRIAL EXAMINATION

Mathematics Extension 1

General Instructions:

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks-70

SECTION I Pages 3-5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

(SECTION II Pages 6–9

60 marks

- Attempt Questions 11–14
- Allow about 1 hours 45 minutes for this section

Student Name: _____ Teacher Name: _____

1

This paper MUST NOT be removed from the examination room

This page is for use by teachers ONLY

Student Name:	Teacher Name:
otaaont namo.	10001101 11011101

Exam Outcomes

- 1. Use the relationship between functions, inverse functions and derivatives (**Differential Calculus**)
- 2. Study of simple harmonic and projectile motion (Motion)
- Manipulate polynomial functions (Polynomials)
 Applies angle and chord properties of the circle (Circle Geometry)
- 5. Problem solving (**PS**)

Paper Grid

Paper Griu			
Outcome	Mark	Qn-Num/Out-of	Mark
Differential Calculus /33	/33	1 /1 4 /1 6 /1 8 /1 9 /1 10/1	/6
		11-a / 1 11-e / 3	/4
		12-a / 1 12-b / 5 12-c / 2 12-e / 4	/12
		13-a / 2 13-d / 7	/9
	14-b / 2	/2	
Motion	/13	14 -a / 3 14-c / 10	/13
Polynomials /5	2/1 7/1	/2	
		13-b / 3	/3
Circle Geometry	/3	12-d / 3	/3
Problem Solving		3/1 5/1	/2
	/16	11-b / 2 11-c / 2 11-d / 2 11 -f / 5	/11
		13-c / 3	/3
Exam Total	/70		%

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple–choice answer sheet for Questions 1–10

- 1)! A point P moves in the xy-plane such that $P(\tan \theta, \cot \theta)$ is its parametric presentation with the parameter θ , where θ is any real number. The locus of P then is
 - (A) Parabola
 - (B) Circle
 - (C) Hyperbola
 - (D) Straight Line
- 2)! Let P(x) be a polynomial of degree n > 0. Let Q(x) be a polynomial of degree $m \le n$ such that

$$P(x) = (x - a)^r Q(x) + R(x)$$

Then the degree of R(x) is

- (A) n + m + r
- (B) n-m-r
- (C) n + m r
- (D) n m + r
- 3)! The sum of this infinite geometric series $\sqrt{2} 1 + \frac{1}{\sqrt{2}} \frac{1}{2} + \frac{1}{2\sqrt{2}} \dots$ is closest to
 - (A) 0.5
 - (B) 1
 - (C) 1.5
 - (D) 2

4)! Let T(x) be a function defined by $T(x) = [f(x)g(x)]^{n+1}$, where f(x) and g(x) are two real functions. Then $\frac{dT}{dx}$ is

(A)
$$\frac{dT}{dx} = (n+1)[f(x)g(x)]^n \frac{df}{dx} \cdot \frac{dg}{dx}$$

(B)
$$\frac{dT}{dx} = (n+I)[f(x)g(x)]^n \left[\frac{df}{dx} + \frac{dg}{dx}\right]$$

(C)
$$\frac{dT}{dx} = (n+1)[f(x)g(x)]^n [f\frac{df}{dx} + g\frac{dg}{dx}]$$

(D)
$$\frac{dT}{dx} = (n+1)[f(x)g(x)]^n \left[g\frac{df}{dx} + f\frac{dg}{dx}\right]$$

5)! The only set of inequalities that represents the shaded regions between the circle and the square below is

(A)
$$x^2 + y^2 \le 1$$
 and $|x| + |y| \ge 1$

(B)
$$x^2 + y^2 \le I$$
 and $|x| - |y| \ge I$

(C)
$$x^2 + y^2 \le 1$$
 and $|x - y| \ge 1$

(D)
$$x^2 + y^2 \le 1$$
 and $|x + y| \le 1$

6)! Consider the functions $f(x) = e^x$ and g(x) = lnx. Let a be a real number such that a > 1. The only correct statement of the following is

(A)
$$f'(a) \leq g'(a)$$

(B)
$$f'(a) \ge g'(a)$$

(C)
$$f'(a) < g'(a)$$

(D)
$$f'(a) > g'(a)$$

- (A) a stationary point of f(x)
- (B) a turning point of f(x)
- (C) a horizontal point of inflexion of f(x)
- (D) a non-horizontal point of inflexion of f(x)

8)! The only correct statement about the function $f(\theta) = \frac{2\sin(\theta + 45)}{5\cos(45 - \theta)}$ is that

- (A) it is a constant function
- (B) it varies as θ varies
- (C) it has a maximum value 0.4
- (D) it has a minimum value 0.4

9)! The domain and range for the function $y = 2 \cos^{-1}(x)$ is

- (A) Domain: $-1 \le x \le 1$, Range: $0 \le y \le 2\pi$
- (B) Domain: $-1 \le x \le 1$, Range: $0 \le y \le \pi$
- (C) Domain: $0 \le x \le 1$, Range: $0 \le y \le 2\pi$
- (D) Domain: $0 \le x \le 1$, Range: $0 \le y \le \pi$

10)! Consider $f(x) = \ln(x) - \ln(-x)$. Then f(x) is

- (A) An even function
- (B) An odd function
- (C) Undefined everywhere
- (D) A relation which is not a function

Section II

60 marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Start a NEW page

(a)! Find all exact values of the angle $tan^{-1}(-\sqrt{3})$ in radians

1

(b)! A(-5, 6) and B(1, 3) are two points. Find the coordinates of the point P which divides the interval AB externally in the ratio 5:2.

2

(c)! The perpendicular distance from the point (x_I, y_I) to the line y = x + 3 is $2\sqrt{2}$ and to x-axis is 3. Find the coordinates of the point (x_I, y_I) .

2

(d)! Find all possible solutions for the equation $(2x^2 - I)^2 = \frac{(2x^2 - I)^2}{(2 - 4x^2)}$.

2

(e)! Show that the first derivative of the function $2x\sqrt{\sin x}$ may be given as $\frac{\cos x + 2\sin x}{\sqrt{\sin x}}.$

3

(f)! Consider the following functions

$$f(x) = x^2 + 4x - 12$$
 and $g(x) = \frac{x+6}{2-x}$

(i) Solve the identity $f(x) \le 0$ and indicate your solution on a number line.

2

(ii) Solve the identity $g(x) \le 0$ and indicate your solution on a number line.

2

(iii) Find the simultaneous solution of the two inequalities $f(x) \le 0$ and $g(x) \le 0$.

1

Proceed to next page for question (12)

Question 12 (15 marks) Start a NEW page

- (a)! A circular plate is being expanded by heating. When the radius just reaches a value of 20 cm, it (the radius) is increasing at the rate of 0.01 cm/s. Find the rate of increase in the area at this moment in terms of π .
- 1

- Consider the two exponential functions $y = e^{2x}$ and $y = e^{x} + 2$. (b)!
 - Draw a neat sketch showing the graphs of $y = e^{2x}$ and $y = e^{x} + 2$ (i) on the same diagram, showing any asymptotes and axes intercepts.
- 2

Show that the coordinates of the point of intersection of $y = e^{2x}$ (ii) and $y = e^x + 2$ is (ln2, 4).

- 1
- Find the area bounded by the y-axis and the two curves $y = e^{2x}$ (iii) and $y = e^x + 2$. Give your final answer correct to 2 decimal places.
- 2
- (c)!The size of the acute angle between the tangents drawn to the curve y = lnx at the points where x = I and $x = x_I$ is $\frac{\pi}{6}$. Find the exact value of x_I .
- 2

(d)!

3

XY is a diameter in the circle above. Given that $\angle X = 35^{\circ}$ and $\angle Q = 25^{\circ}$, find the size of $\angle YPR$, giving reasons.

- Let $y = \sin^{-1}(1 x^2)$. (e)!
 - By using the substitution $u = 1 x^2$, or otherwise, show that $\frac{dy}{dx} = \frac{-2}{\sqrt{1 x^2}}$. (i) 1
 - Hence show that f'(x) = 0 where $f(x) = 2 \cos^{-1}(\frac{x}{\sqrt{2}}) \sin^{-1}(1 x^2)$. (ii) 1
 - Hence or otherwise, show that $2\cos^{-1}(\frac{x}{\sqrt{2}}) \sin^{-1}(1 x^2) = \frac{\pi}{2}$. 2 (iii)

Proceed to next page for question (13)

Question 13 (15 marks) Start a NEW page

(a)! Evaluate
$$\int_{0}^{1} \sqrt{1-x^2} dx$$
 using the substitution $x = \sin \theta$.

- (b)! (i) State the conditions that the quadratic expression $ax^2 + bx + c$ is negative definite.
 - (ii) Show that the expression $(k^2 + k)x^2 (2k 6)x + 2$, where $k \ne 0$, can never be negative definite.
 - (iii) Find the range of values of k for which the expression is positive definite. 1
- (c)! Prove by mathematical induction that $2 \times 1! + 5 \times 2! + 10 \times 3! + ... + (n^2 + 1) \times n! = n \times (n + 1)! \text{ for all integers } n = 1, 2, 3, ...$
- (d)! A machine which initially costs \$49 000 loses value at a rate proportional to the difference between its current value M and its final scrap value \$1000. After 2 years the value of the machine is \$25 000.
 - (i) Explain why $\frac{dM}{dt} = -k(M 1000)$ for some constant k > 0, and verify that $M = 1000 + Ae^{-kt}$, A constant, is a solution of this equation.
 - (ii) Find the exact values of A and k.
 - (iii) Find the value of the machine, and the time that has elapsed, when the machine is losing value at a rate equal to one quarter of the initial rate at which it loses value.

Proceed to next page for question (14)

Question 14 (15 marks) Start a NEW page

- (a)! A particle is moving with simple harmonic motion in a straight line. It has amplitude of *10* metres and a period of *10* seconds.
 - (i) Prove that it would take the particle $\frac{5}{\pi} cos^{-1} \frac{3}{5}$ sec to travel from one of the extremities of its path to a point 4 metres away?
 - (ii) At what speed, correct to whole m/s, would the particle reach this position?
- (b)! It is known that $\ln x + \sin x = 0$ has a root close to x = 0.5. Use one application of Newton's Method to obtain a better approximation of the root to 4 decimal places.
- (c)! A projectile with initial velocity $U \text{ ms}^{-1}$ at an angle of projection α , and acceleration downwards due to gravity, g, has been fired from the origin.
 - (i) At a time $t \ge 0$ seconds the projectile is at the point (x, y), prove that $x = Ut \cos \alpha$ and $y = Ut \sin \alpha \frac{1}{2}gt^2$
 - (ii) Show that the equation of the path of a projectile is given by $y = x \tan \alpha \frac{gx^2}{2U^2} sec^2 \alpha$

Nicholas throws a small pebble from a fixed point O on level ground, with a velocity $U = 7\sqrt{10} \ ms^{-1}$ at an angle α , with the horizontal. Shortly afterwards, he throws another small pebble from the same point at the same speed but at a different angle to the horizontal β , where $\beta < \alpha$, as shown. The pebbles collided at a point P(10, 15). Consider the acceleration downwards due to gravity is $g = 9.8 \ ms^{-1}$.

- (iii) Show that the two possible initial angles of projection are $\alpha = tan^{-1}8$ and $\beta = tan^{-1}2$
- (iv) Show that the time elapsed between when the pebbles were thrown was $\frac{\sqrt{650} \sqrt{50}}{7}$ seconds.

3

End of paper

[End Of Qns]

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x, x > 0$

1

HS(-Trial Ext(1) 2013 Mult. Choice Answers

See ton (I)

1) (

6) D

2/ B

7) D

3) B

8) A

4) D

9) A

5) A

10) C

$$\frac{5 \times 1 + -2 \times -5}{3}$$
, $\frac{5 \times 3 + -2 \times 6}{3}$

$$=\frac{15}{3},\frac{3}{3}$$

perp distance

$$\left| \frac{-1 \times_1 - 1 \cdot y_1 + 3}{\sqrt{2}} \right| = 2\sqrt{2}$$
.

when
$$y = -3$$
 $y = \pm 3$ when $y = -3$ $x = -10$.

$$(\pm 4,3), (2,-3), (10,-3)$$

(C) $(2\chi^2 - 1)^2 = \frac{(2\chi^2 - 1)^2}{(2 - 4\chi^2)}$

$$(2x^{2}-1)^{2}(2-4x^{2})-(2x^{2}-1)^{2}=0$$

$$(2x^2-1)^2[2-4x^2-1]=0$$

$$(2z^{2}-1)=0 \text{ or } (1-4x^{2})=0$$

$$x^{2}=\frac{1}{2}$$

$$(1-2x)(1+7x)=0$$

$$x=\frac{1}{2}$$

$$x=\frac{1}{2}$$

$$(x+6)(x-2) \le 0$$

$$(i) \quad \frac{x+6}{2-x} \le 0$$

$$(12)$$

$$-\alpha) A = \pi r^{2}$$

$$\frac{dA}{dr} = 2\pi r$$

$$\frac{dr}{dt} = 0.01$$

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$\frac{C=20}{dr} = 2\pi \times 20 \times 0.01$$
$$= 0.477 \text{ cm/sec}.$$

ii)
$$e^{2x} = e^{x} + 2$$
.
 $e^{2x} - e^{x} - 2 = 0$
 $(e^{x})^{2} - e^{x} - 2 = 0$
 $(e^{x} - 2)(e^{x} + 1) = 0$.

$$e^{x} = 2$$
 $t e^{x} = 1$
 $x = \ln 2$ No. rol 2.
 $y = e^{2 \ln 2} = e^{\ln 2^{2}}$
 $= e^{\ln 4}$
 $= 4$ $i = (\ln 2, 4)$

$$|i|i\rangle A - \int_{0}^{1} \left[\frac{e^{x} + 2 - e^{2x}}{e^{x} + 2 - e^{2x}} \right] ds .$$

$$= \left[\frac{e^{x} + 2x - \frac{e^{2x}}{2}}{o} \right]_{0}^{1}$$

$$= \left[\frac{e^{x} + 2x - \frac{e^{2x}}{2}}{o} \right]_{0}^{1}$$

$$= \left[\frac{e^{h^{2}} + 2h^{2} - \frac{e^{2h^{2}}}{2}}{o} \right]_{0}^{1}$$

$$= \left(2 + 2h^{2} - \frac{4}{2} \right) - \left(1 - \frac{1}{2} \right)$$

 $=2h_2-\frac{1}{2}$

C)
$$Tan O = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
 $y = ln x$
 $solution \frac{ds}{dn} = \frac{1}{x}$

for $x = 1$, $m_1 = 1$

for $x = x$, $m_2 = \frac{1}{x}$,

 $solution Tan (G) = \left| \frac{1 - \frac{1}{x_1}}{1 + 1 \cdot \frac{1}{x_1}} \right|$
 $\frac{1}{\sqrt{3}} = \left| \frac{x_1 - 1}{x_1 + 1} \right|$
 $\frac{1}{\sqrt{3}} = \left| \frac{x_1 - 1}{x_1 + 1} \right|$

$$\frac{\chi_{1}-1}{\chi_{1}+1} = \frac{1}{\sqrt{3}} \text{ or } \frac{\chi_{1}-1}{\chi_{1}+1} = -\frac{1}{\sqrt{3}}.$$

$$\sqrt{3}\chi_{1}-\sqrt{3} = \chi_{1}+1 \qquad \sqrt{3}\chi_{1}-\sqrt{3} = -\chi_{1}-1$$

$$\sqrt{3}\chi_{1}-\chi_{1} = \sqrt{3}+1 \qquad \sqrt{3}\chi_{1}+\chi_{1} = \sqrt{3}-1$$

$$\chi_{1} = \frac{\sqrt{3}+1}{\sqrt{3}-1} \qquad \chi_{1} = \frac{\sqrt{3}-1}{\sqrt{3}+1}$$

=2+53

= 2-53

$$\frac{12}{d} \frac{1}{d} \frac{1}{1} \frac{$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{1}{\sqrt{1-(1-2x^2+x^4)}} \times \frac{-2x}{\sqrt{1-1+2x^2-x^4}}$$

$$= \frac{-1}{\sqrt{1-1+2x^2-x^4}}$$

$$= \frac{-2x}{\sqrt{x^2(2-x^2)}}$$

$$= \frac{-2x}{\sqrt{2-x^2}}$$

$$= \frac{-2x}{\sqrt{2-x^2}}$$

$$= \frac{-2}{\sqrt{2-x^2}}$$

ii)
$$f(x) = 2 \cos^{-1}(\frac{x}{\sqrt{2}}) - \sin^{-1}(1-x^2)$$

$$f(x) = 2 \cdot \frac{-1}{\sqrt{(y_2)^2 - x^2}} - \frac{-2}{\sqrt{2-x^2}}$$

$$= \frac{-2 \cdot }{\sqrt{2-x^2}} + \frac{2}{\sqrt{2-x^2}}$$

iii) If
$$f(x) = 0$$
 than

 $y = f(x)$ is a horizontal

line.

i.e. $y = c$

$$f(0) = 2 cos^{-1}(\frac{0}{\sqrt{2}}) - sin^{-1}(1-o^{2})$$

$$= 2 cos^{-1}(0) - sin^{-1}(1)$$

$$= 2 \times \frac{T}{2} - \frac{T}{2}$$

$$= I$$

$$f(a) = \overline{\xi}$$

b)
$$\int_0^1 \sqrt{1-3c^2} dx \quad x = \sin \theta$$

$$= \int \cos \theta \cdot \cos \theta \, d\theta = \int \cos^2 \theta \, d\theta$$

$$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}1+\cos 2\theta \ d\theta$$

As

$$X=0$$
, $\theta=0$
 $S=X=1$, $\theta=\frac{\pi}{2}$

 $\frac{dx}{dA} = \cos \theta$

dx = CosddD

$$=\frac{1}{2}\left[\begin{array}{c} 0+\frac{\sin 2\theta}{2}\end{array}\right]^{\frac{\pi}{2}}_{0}=\frac{1}{2}\left(\left(\frac{\pi}{2}+\frac{\sin \pi}{2}\right)-0\right)$$

c) i)
$$a_{3}(^{2}+b_{3}x+c)$$
 reg def $a_{4}(c)$ $a_{5}(^{2}+b_{5}x+c)$ reg def

$$a < 0$$
, $\Delta = b^2 - 4ac < 0$

(ii)
$$a = k^2 + k$$
 $b = 6 - 2k$ $c = 2$

$$\Delta = b^2 - 4ac = (6 - 2k)^2 - 4x(k^2 + k) \times 2$$

dl'Cont. Statement true for n=k+1 (3) Step3 Hence, by mathematical induction statement true for all positive integers $n \ge 1$.

E) $\angle X=35^{\circ}$ (given) $\angle PRQ = 35^{\circ} = \angle X$ (Angles in Some $\angle RPQ = 120^{\circ}$ ($\angle Sum$ thengle $RPQ = 180^{\circ}$) $\angle XPY = 90^{\circ}$ ($\angle Sum$ thengle $RPQ = 180^{\circ}$) $\angle YPR = 90^{\circ}$ ($\angle Sum$ Senie aide is right angle) $\angle YPR = 2RPQ - \angle YPQ$ $= 120^{\circ} - 90^{\circ}$ $= 30^{\circ}$

$$\boxed{a = 10m, P = 10 sec}$$

$$N = \frac{2\pi}{p} = \frac{\pi}{5} \frac{rad/sec}{2}$$

(i)
$$x = 10 \text{ Cars}(nt+x)$$

$$t=0$$
) $x=10$ m \Rightarrow (x) $10=10$ Cood $\Rightarrow x=0$

$$\Rightarrow z = 10 cos Tt$$

$$\chi = 6 m \qquad (\frac{1}{2})$$

$$2 = 6 m$$

$$3 = 6 = 10 \cos 5 t$$

$$\Rightarrow t = \frac{5}{17} \cos^{-1} \frac{3}{2} (\frac{1}{2})$$

$$\frac{1}{\sqrt{1+\frac{1}{2}}} f(x) = \frac{1}{\sqrt{1+\frac{1}{2}}} f(x) = \frac{1}{\sqrt{1+\frac{1}{2}$$

$$\chi_{2} = \chi_{1} - \frac{f(\chi_{1})}{f(\chi_{1})}$$

$$= 0.5 - \frac{h(0.5) + \sin(0.5)}{2 + \cos(0.5)}$$

$$= 0.5 - \frac{-0.2|37216}{2.87758}$$

$$= 0.5742712$$

$$V = n^2 \left(\alpha^2 - \chi^2 \right)$$

$$V = \frac{8\pi}{5} \approx 5 \text{ m/s}$$

no penalty for ± 5 mls

. an 114): Continued Z= Utanz+C $t=0, \lambda=0 \Rightarrow \ell=0$ $\Rightarrow \chi = \text{Utcond} \cdot --(12)$ $\ddot{y} = g - (1)$ 9=-9t+C t=0, 9=USma => e=Using $y = U \operatorname{Sm} 2 - g t - (2)$ y = Utsind-tgt+C t=0, y=0=) (=0(日) => y = Ut sin 2 - £gti

Sub. into y, $y = (y)\sin \alpha + \frac{1}{2}y \left(\frac{1}{2}\right)^{2}$ $= x \tan \alpha - \frac{3x^{2}}{2y^{2}\cos^{2}\alpha}$ $y = x \tan \alpha - \frac{3x^{2}}{2y^{2}\cos^{2}\alpha}$ $y = x \tan \alpha - \frac{3x^{2}}{2y^{2}\cos^{2}\alpha}$

C-iii)
$$U=7\sqrt{10}$$
 m/s $x=10$ m/s $y=15$ m

Substitute into the egind the

tan 2 - 10 tan 2 + 16 = 0 1

$$tand = \frac{10 \pm \sqrt{100 - 4 \times 1 \times 16}}{2}$$

C-iV) Let t, & t, be the projection time of the 2 pebbles.

$$t_1 = \frac{x}{14000}$$

$$t_2 = \frac{x}{V G S F}$$

Time elapsed,

$$t_1 - t_2 = \frac{\chi}{V \cos \lambda} - \frac{\chi}{V \cos \beta}$$

$$=\frac{\chi}{V}(\sec \alpha - \sec \beta)$$

$$= \frac{10}{7\sqrt{10}} \left(\sqrt{65} - \sqrt{5} \right)$$

$$= \frac{\sqrt{650 - \sqrt{50}}}{7}$$