PENRITH HIGH SCHOOL

2013
HSC TRIAL EXAMINATION

Mathematics Extension 1

General Instructions:

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions $11-14$, show relevant mathematical reasoning and/or calculations

Total marks-70

SECTION I Pages 3-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

SECTION II Pages 6-9

60 marks

- Attempt Questions 11-14
- Allow about 1 hours 45 minutes for this section

This page is for use by teachers ONLY

Student Name:

\qquad Teacher Name:

Exam Outcomes

1. Use the relationship between functions, inverse functions and derivatives (Differential Calculus)
2. Study of simple harmonic and projectile motion (Motion)
3. Manipulate polynomial functions (Polynomials)
4. Applies angle and chord properties of the circle (Circle Geometry)
5. Problem solving (PS)

Paper Grid

Outcome	Mark	Qn-Num/Out-of	Mark
Differential Calculus	133	$\begin{array}{ll} 1 & 1 \end{array} 1$	/6
		$\begin{aligned} & 11-\mathrm{a} / 1 \\ & 11-\mathrm{e} / 3 \end{aligned}$	14
		$\begin{aligned} & 12-a / 1 \\ & 12-b / 5 \\ & 12-\mathrm{c} / 2 \\ & 12-\mathrm{e} / 4 \end{aligned}$	112
		$\begin{aligned} & 13-a / 2 \\ & 13-d / 7 \\ & \hline \end{aligned}$	19
		14-b/2	12
Motion	113	$\begin{aligned} & 14-a / 3 \\ & 14-c / 10 \\ & \hline \end{aligned}$	113
Polynomials	15	$\begin{aligned} & 2 / 1 \\ & 7 / 1 \end{aligned}$	12
		13-b/3	13
Circle Geometry	13	12-d/3	13
Problem Solving	116	$\begin{aligned} & 3 / 1 \\ & 5 / 1 \\ & \hline \end{aligned}$	12
		11-b/2 $11-\mathrm{c} / 2$ 11-d/2 11 -f/ 5	111
		$13-\mathrm{c} / 3$	13
Exam Total	170		\%

Section I

10 marks
 Attempt Questions 1-10
 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10
1)! A point P moves in the xy-plane such that $P(\tan \theta, \cot \theta)$ is its parametric presentation with the parameter θ, where θ is any real number. The locus of P then is
(A) Parabola
(B) Circle
(C) Hyperbola
(D) Straight Line
2)! Let $P(x)$ be a polynomial of degree $n>0$. Let $Q(x)$ be a polynomial of degree $m \leq n$ such that

$$
P(x)=(x-a)^{r} Q(x)+R(x)
$$

Then the degree of $R(x)$ is
(A) $n+m+r$
(B) $n-m-r$
(C) $n+m-r$
(D) $n-m+r$
3)! The sum of this infinite geometric series $\sqrt{2}-1+\frac{1}{\sqrt{2}}-\frac{1}{2}+\frac{1}{2 \sqrt{2}}-\ldots$ is closest to
(A) 0.5
(B) 1
(C) 1.5
(D) 2
4)! Let $T(x)$ be a function defined by $T(x)=[f(x) g(x)]^{n+1}$, where $f(x)$ and $g(x)$ are two real functions. Then $\frac{d T}{d x}$ is
(A) $\frac{d T}{d x}=(n+1)[f(x) g(x)]^{n} \frac{d f}{d x} \cdot \frac{d g}{d x}$
(B) $\frac{d T}{d x}=(n+1)[f(x) g(x)]^{n}\left[\frac{d f}{d x}+\frac{d g}{d x}\right]$
(C) $\frac{d T}{d x}=(n+1)[f(x) g(x)]^{n}\left[f \frac{d f}{d x}+g \frac{d g}{d x}\right]$
(D) $\frac{d T}{d x}=(n+1)[f(x) g(x)]^{n}\left[g \frac{d f}{d x}+f \frac{d g}{d x}\right]$
5)! The only set of inequalities that represents the shaded regions between the circle and the square below is

(A) $x^{2}+y^{2} \leq 1$ and $|x|+|y| \geq 1$
(B) $x^{2}+y^{2} \leq 1$ and $|x|-|y| \geq 1$
(C) $x^{2}+y^{2} \leq 1$ and $|x-y| \geq 1$
(D) $x^{2}+y^{2} \leq 1$ and $|x+y| \leq 1$
6)! \quad Consider the functions $f(x)=e^{x}$ and $g(x)=\ln x$. Let a be a real number such that $a>1$.

The only correct statement of the following is
(A) $f^{\prime}(a) \leq g^{\prime}(a)$
(B) $f^{\prime}(a) \geq g^{\prime}(a)$
(C) $f^{\prime}(a)<g^{\prime}(a)$
(D) $f^{\prime}(a)>g^{\prime}(a)$
7)! Let $f(x)$ be the cubic polynomial defined by $f(x)=(x-1)^{3}+x$. The point $(1,1)$ is
(A) a stationary point of $f(x)$
(B) a turning point of $f(x)$
(C) a horizontal point of inflexion of $f(x)$
(D) a non-horizontal point of inflexion of $f(x)$
8)! The only correct statement about the function $f(\theta)=\frac{2 \sin (\theta+45)}{5 \cos (45-\theta)}$ is that
(A) it is a constant function
(B) it varies as θ varies
(C) it has a maximum value 0.4
(D) it has a minimum value 0.4
9)! The domain and range for the function $y=2 \cos ^{-1}(x)$ is
(A) Domain: $-1 \leq x \leq 1$, Range: $0 \leq y \leq 2 \pi$
(B) Domain: $-1 \leq x \leq 1$, Range: $0 \leq y \leq \pi$
(C) Domain: $0 \leq x \leq 1$, Range: $0 \leq y \leq 2 \pi$
(D) Domain: $0 \leq x \leq 1$, Range: $0 \leq y \leq \pi$
10)! Consider $f(x)=\ln (x)-\ln (-x)$. Then $f(x)$ is
(A) An even function
(B) An odd function
(C) Undefined everywhere
(D) A relation which is not a function

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Start a NEW page

(a)! Find all exact values of the angle $\tan ^{-1}(-\sqrt{3})$ in radians divides the interval $A B$ externally in the ratio 5:2.
(c)! The perpendicular distance from the point $\left(x_{1}, y_{1}\right)$ to the line $y=x+3$ is $2 \sqrt{2}$ and to x -axis is 3 . Find the coordinates of the point $\left(x_{1}, y_{1}\right)$.
(d)! Find all possible solutions for the equation $\left(2 x^{2}-1\right)^{2}=\frac{\left(2 x^{2}-1\right)^{2}}{\left(2-4 x^{2}\right)}$.
(e)! Show that the first derivative of the function $2 x \sqrt{\sin x}$ may be given as $\frac{\cos x+2 \sin x}{\sqrt{\sin x}}$.
(f)! Consider the following functions

$$
f(x)=x^{2}+4 x-12 \text { and } g(x)=\frac{x+6}{2-x}
$$

(i) Solve the identity $f(x) \leq 0$ and indicate your solution on a number line.
(ii) Solve the identity $g(x) \leq 0$ and indicate your solution on a number line.
(iii) Find the simultaneous solution of the two inequalities $f(x) \leq 0$ and $g(x) \leq 0$.

Question 12 (15 marks) Start a NEW page
(a)! A circular plate is being expanded by heating. When the radius just reaches a value of 20 cm , it (the radius) is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{s}$. Find the rate of increase in the area at this moment in terms of π.
(b)! Consider the two exponential functions $y=e^{2 x}$ and $y=e^{x}+2$.
(i) Draw a neat sketch showing the graphs of $y=e^{2 x}$ and $y=e^{x}+2$ on the same diagram, showing any asymptotes and axes intercepts.
(ii) Show that the coordinates of the point of intersection of $y=e^{2 x}$ and $y=e^{x}+2$ is (ln2, 4).
(iii) Find the area bounded by the y-axis and the two curves $y=e^{2 x}$ and $y=e^{x}+2$. Give your final answer correct to 2 decimal places.
(c)! The size of the acute angle between the tangents drawn to the curve $y=\ln x$ at the

2 points where $x=1$ and $x=x_{1}$ is $\frac{\pi}{6}$. Find the exact value of x_{1}.
(d)!

$X Y$ is a diameter in the circle above. Given that $\angle X=35^{\circ}$ and $\angle Q=25^{\circ}$, find the size of $\angle Y P R$, giving reasons.
(e)! Let $y=\sin ^{-1}\left(1-x^{2}\right)$.
(i) By using the substitution $u=1-x^{2}$, or otherwise, show that $\frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$.
(ii) Hence show that $f^{\prime}(x)=0$ where $f(x)=2 \cos ^{-1}\left(\frac{x}{\sqrt{2}}\right)-\sin ^{-1}\left(1-x^{2}\right)$.
(iii) Hence or otherwise, show that $2 \cos ^{-1}\left(\frac{x}{\sqrt{2}}\right)-\sin ^{-1}\left(1-x^{2}\right)=\frac{\pi}{2}$.

Question 13 (15 marks) Start a NEW page
(a)! Evaluate $\int_{0}^{1} \sqrt{1-x^{2}} d x$ using the substitution $x=\sin \theta$.
(b)! (i) State the conditions that the quadratic expression $a x^{2}+b x+c$ is negative definite.
(ii) Show that the expression $\left(k^{2}+k\right) x^{2}-(2 k-6) x+2$, where $k \neq 0$,

1 can never be negative definite.
(iii) Find the range of values of k for which the expression is positive definite.
(c)! Prove by mathematical induction that

$$
2 \times 1!+5 \times 2!+10 \times 3!+\ldots+\left(n^{2}+1\right) \times n!=n \times(n+1)!\text { for all integers } n=1,2,3, \ldots
$$

(d)! A machine which initially costs $\$ 49000$ loses value at a rate proportional to the difference between its current value $\$ M$ and its final scrap value $\$ 1000$. After 2 years the value of the machine is $\$ 25000$.
(i) Explain why $\frac{d M}{d t}=-k(M-1000)$ for some constant $k>0$, and verify that $M=1000+A e^{-k t}, A$ constant, is a solution of this equation.
(ii) Find the exact values of A and k.
(iii) Find the value of the machine, and the time that has elapsed, when 2 the machine is losing value at a rate equal to one quarter of the initial rate at which it loses value.

Proceed to next page for question (14)

Question 14 (15 marks) Start a NEW page
(a)! A particle is moving with simple harmonic motion in a straight line.

It has amplitude of 10 metres and a period of 10 seconds.
(i) Prove that it would take the particle $\frac{5}{\pi} \cos ^{-1} \frac{3}{5}$ sec to travel from one of the extremities of its path to a point 4 metres away?
(ii) At what speed, correct to whole m / s, would the particle reach this position?

1

2
Newton's Method to obtain a better approximation of the root to 4 decimal places.
(c)! A projectile with initial velocity $U \mathrm{~ms}^{-1}$ at an angle of projection α, and acceleration downwards due to gravity, g, has been fired from the origin.
(i) At a time $t \geq 0$ seconds the projectile is at the point (x, y), prove that

$$
x=U t \cos \alpha \quad \text { and } \quad y=U t \sin \alpha-\frac{1}{2} g t^{2}
$$

(ii) Show that the equation of the path of a projectile is given by

$$
y=x \tan \alpha-\frac{g x^{2}}{2 U^{2}} \sec ^{2} \alpha
$$

Nicholas throws a small pebble from a fixed point O on level ground, with a velocity $U=7 \sqrt{10} \mathrm{~ms}^{-1}$ at an angle α, with the horizontal. Shortly afterwards, he throws another small pebble from the same point at the same speed but at a different angle to the horizontal β, where $\beta<\alpha$, as shown. The pebbles collided at a point $P(10,15)$. Consider the acceleration downwards due to gravity is $g=9.8 \mathrm{~ms}^{-1}$.

(iii) Show that the two possible initial angles of projection are
$\alpha=\tan ^{-1} 8$ and $\beta=\tan ^{-1} 2$
(iv) Show that the time elapsed between when the pebbles were thrown was $\frac{\sqrt{650}-\sqrt{50}}{7}$ seconds.

End of paper
[[End Of Qns]]

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec { }^{2} a x d x=\frac{1}{a} \tan ^{2} a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a \neq 0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

HSC - Trial Exal 2013
Mult. Choice Answers
sectoin (I)

1) C
2) D
3) B
4) D
5) B
6) A
7) D
8) A
9) A
10) C

$$
\begin{aligned}
& \frac{5 \times 1+-2 \times-5}{3} ; \frac{5 \times 3+-2 \times 6}{3} \\
& =\frac{15}{3}, \frac{3}{3} \\
& =(5,1)
\end{aligned}
$$

b) $x-y+3=0$
perp distames

$$
\begin{aligned}
& \left|\frac{-1 x_{1}-1 y_{1}+3}{\sqrt{2}}\right|=2 \sqrt{2} \\
& x \cdots y+3= \pm 4 \\
& y=3 \rightarrow \underset{\substack{\text { fiom distanie to } \\
x \text { axis is } 3}}{ } .
\end{aligned}
$$

when $x=4 \quad y=+3$
when $y=-3 \quad x=-10$.

$$
\begin{gathered}
\text { or } x=-2 \\
y=3 \quad x=-4 \\
\text { or } x=4 \\
(\pm 4,3),(-2,-3),(-10,-3)
\end{gathered}
$$

(C)

$$
\begin{aligned}
& \left(2 x^{2}-1\right)^{2}=\frac{\left(2 x^{2}-1\right)^{2}}{\left(2-4 x^{2}\right)} \\
& \left(2 x^{2}-1\right)^{2}\left(2-4 x^{2}\right)-\left(2 x^{2}-1\right)^{2}=0 \\
& \left(2 x^{2}-1\right)^{2}\left[2-4 x^{2}-1\right]=0 \\
& \left(2 x^{2}-1\right)^{2}\left[1-4 x^{2}\right]=0
\end{aligned}
$$

$$
\begin{array}{cc}
\left(2 x^{2} \cdots 1\right)=0 & \text { or }\left(1-4 x^{2}\right)=0 \\
x^{2}=\frac{1}{2} & (1-2 x)(1+2 x)=0 \\
x= \pm \frac{1}{\sqrt{2}} & x= \pm \frac{1}{2} .
\end{array}
$$

d) $\quad 2 x(\sin x)^{\frac{1}{2}} \quad \frac{\sin }{0 x}=v \frac{d v}{d x}+4 \frac{d s}{d x}$

$$
\begin{aligned}
& (\sin x)^{\frac{1}{2}} \cdot 2+2 x \cdot \frac{1}{2}(\sin x)^{-\frac{1}{2}} \cos x \\
& =2 \sqrt{\sin x}+\frac{x \cos x}{\sqrt{\sin x}}
\end{aligned}
$$

$$
=\frac{2 \sin x+x \cos x}{\sqrt{\sin x}}
$$

e)
(i)

$$
\begin{gathered}
x^{2}+4 x-12 \leq 0 \\
(x+6)(x-2) \leq 0
\end{gathered}
$$

indefined at $<=2$
$\therefore-6 \leqslant x \leqslant 2$

$$
\therefore-6 \leqslant x<2
$$

(ii)

$$
\begin{gathered}
\frac{x+6}{2 \cdots x} \leq 0 \\
(x+6)(2-x) \leq 0
\end{gathered}
$$

$$
\therefore \quad x \leqslant-6 \text { or } x>2 \text {. }
$$

(iii) Simultanews $x=-6$
(iv)

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x} \\
& f(x)=-\frac{x^{3}}{x}
\end{aligned}
$$

(2)

$$
\text { a) } \begin{aligned}
A & =\pi r^{2} \\
\frac{d A}{d r} & =2 \pi r \\
\frac{d r}{d t} & =0.01 \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} . \\
\frac{r=20}{\frac{d A}{d r}} & =2 \pi \times 20 \times 0.01 \\
& =0.4 \pi \mathrm{~cm}^{2} / \mathrm{mc}
\end{aligned}
$$

6) i)

$$
\begin{aligned}
& \text { ii) } \begin{array}{l}
e^{2 x}=e^{x}+2 \\
e^{2 x}-e^{x}-2=0 \\
\left(e^{x}\right)^{2}-e^{x}-2=0 \\
\left(e^{x}-2\right)\left(e^{x}+1\right)=0 \\
\therefore e^{x}=2+e^{x}=-1
\end{array} .=\text {. }
\end{aligned}
$$

$x=\ln 2 \quad$ No.estr.

$$
\begin{aligned}
y & =e^{2 \ln 2}=e^{\ln 2^{2}} \\
& =e^{\ln 4} \\
& =4 \quad \therefore(\ln 2,4)
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
& A=\int_{0}^{\ln 2}\left[e^{x}+2-e^{2 x}\right] d x \\
&=\left[e^{x}+2 x-\frac{e^{2 x}}{2}\right]_{0}^{\ln 2} \\
&=\left[e^{\ln 2}+2 \ln 2-\frac{e^{2 \ln 2}}{2}\right]-\left[e^{0}+0-\frac{e^{0}}{2}\right] \\
&=\left(2+2 \ln 2-\frac{4}{2}\right)-\left(1-\frac{1}{2}\right) \\
&=2 \ln 2-\frac{1}{2} \\
& \doteqdot 0.89(2 . \operatorname{sij}+(5)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \operatorname{Tam} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| . \\
& y=\ln x \quad \therefore \frac{d y}{d x}=\frac{1}{x}
\end{aligned}
$$

for $x=1, m_{1}=1$
for $x=x_{1}, m_{2}=\frac{1}{x_{1}}$.

$$
\begin{aligned}
\therefore \operatorname{Tan}\left(\frac{\pi}{6}\right) & =\left|\frac{1-\frac{1}{x_{1}}}{1+1 \cdot \frac{1}{x_{1}}}\right| \\
\frac{1}{\sqrt{3}} & =\left|\frac{\frac{x_{1}-1}{x_{1}}}{\frac{x_{1}+1}{x_{1}}}\right| \\
\frac{1}{\sqrt{3}} & =\left|\frac{x_{1}-1}{x_{1}+1}\right|
\end{aligned}
$$

$$
\therefore \frac{x_{1}-1}{x_{1}+1}=\frac{1}{\sqrt{3}} \text { ore } \frac{x_{1}-1}{x_{1}+1}=-\frac{1}{\sqrt{3}} \text {. }
$$

$$
\sqrt{3} x_{1}-\sqrt{3}=x_{1}+1 \quad \sqrt{3} x_{1}-\sqrt{3}=-x_{1}-1
$$

$$
\sqrt{3} x_{1}-x_{1}=\sqrt{3}+1
$$

$$
x_{1}=\frac{\sqrt{3}+1}{\sqrt{3}-1}
$$

$$
\begin{aligned}
& \sqrt{3} x_{1}+x_{1}=\sqrt{3}-1 \\
& \sqrt{3}-1
\end{aligned}
$$

$$
x_{1}=\frac{\sqrt{3}-1}{\sqrt{3}+1}
$$

$$
=2+\sqrt{3}
$$

$$
=2-\sqrt{3}
$$

12)

d) $\quad 1$

$$
\begin{aligned}
y & =\sin ^{-1}\left(1-x^{2}\right) \quad \text { ht } u=1-x^{2} \\
y & =\sin ^{-1}(u) \quad \frac{d u}{d x}=-2 x \\
\frac{d y}{d u} & =\frac{1}{\sqrt{1-u^{2}}} \\
& =\frac{1}{\sqrt{1-\left(1-x^{2}\right)^{2}}} \\
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\frac{1}{\sqrt{1-\left(1-2 x^{2}+x^{4}\right)}} \times-2 x \\
& =\frac{-2 x}{\sqrt{1-1+2 x^{2}-x^{4}}} \\
& =\frac{-2 x}{\sqrt{x^{2}\left(2-x^{2}\right)}} \\
& =\frac{-2 x}{x \sqrt{2-x^{2}}} \\
& =\frac{-2}{\sqrt{2-x^{2}}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(x) & =2 \cos ^{-1}\left(\frac{x}{\sqrt{2}}\right)-\sin ^{-1}\left(1-x^{2}\right) \\
f^{\prime}(x) & =2 \frac{-1}{\sqrt{(\sqrt{2})^{2}-x^{2}}}-\frac{-2}{\sqrt{2-x^{2}}} \\
& =\frac{-2}{\sqrt{2-x^{2}}}+\frac{2}{\sqrt{2-x^{2}}} \\
& =0
\end{aligned}
$$

iii) If $f(x)=0$ then $y=f(x)$ is a horizontal line.

$$
\text { ie, } \quad y=c
$$

sub any. x value to find $\frac{c}{c}$.

$$
\begin{aligned}
f(0) & =2 \cos ^{-1}\left(\frac{0}{\sqrt{2}}\right)-\sin ^{-1}\left(1-0^{2}\right) . \\
& =2 \cos ^{-1}(0)-\sin ^{-1}(1) \\
& =2 \times \frac{\pi}{2}-\frac{\pi}{2} \\
& =\frac{\pi}{2} \\
\therefore & f(x)=\frac{\pi}{2}
\end{aligned}
$$

Pis Ext1 2013
a) $\tan ^{-1}(-\sqrt{3})$

$$
=\pi-\frac{\pi}{3} \text { or } 2 \pi-\frac{\pi}{3}=\frac{2 \pi}{3} \text { or } \frac{5 \pi}{3}
$$

$$
\begin{aligned}
& \text { b) } \int_{0}^{1} \sqrt{1-x^{2}} d x \quad x=\sin \theta \\
& =\int \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta \\
& \frac{d x}{d \theta}=\cos \theta \\
& d x=\cos \theta d \theta \\
& =\int \sqrt{\cos ^{2} \theta} \cos \theta d \theta \\
& =\int \cos \theta \cdot \cos \theta d \theta=\int \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1+\cos 2 \theta d \theta \quad \begin{array}{l}
A s \\
x^{A}=0, \theta \\
\sin x=1, \theta=\frac{\pi}{2}
\end{array} \\
& \begin{array}{l}
=\frac{1}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{1}{2}\left(\left(\frac{\pi}{2}+\frac{\sin \pi}{2}\right)-0\right) \\
=\frac{1}{\pi_{0}} \times \pi-\pi
\end{array} \\
& =\frac{1}{2} \times \frac{\pi}{2}=\frac{\pi}{4}
\end{aligned}
$$

oto 2π.
$\frac{\pi}{1} / \sqrt{3} \quad \frac{S / A}{1 / C} \quad$ ot
$-\frac{\pi}{3}=\frac{2 \pi}{3}$ or $\frac{5 \pi}{3}$
C) i) $a x^{2}+b x+c$ neg def

$$
a<0, \Delta=b^{2}-4 a c<0
$$

(i) $a=k^{2}+k \quad b=6-2 k \quad c=2$

$$
\begin{aligned}
& \Delta=b^{2}-4 a c-3(6-2 k)^{2}-4 \times\left(k^{2}+k\right) \times 2 \\
& =36-24 k+4 k^{2}-8 k^{2}-8 k \\
& =-4 k^{2}-32 k+36 \\
& =-4\left(k^{2}+8 k-9\right) \\
& =-4(k+9)(k-1) \text { Salme }<0 \\
& \therefore \text { Solive }(k+9)(k-1)>0
\end{aligned}
$$

C (ii) cont.

$k>1$ or $k<-9$
Also $a=k^{2}+k<0$
$-1<k<0$

$$
k(k+1)<0
$$

Both (A) and (B) must hold - no scmuittoreous
Solution, \therefore Cannot be negative definite.
(iii) +ie def $a>0, \Delta<0$

$$
\begin{aligned}
& k(k+1)>0 \\
& \Delta<0
\end{aligned}\left\{\begin{array}{ll}
k>0 & \text { or } k<-1 \\
k>1 & \text { or } k<゙-9
\end{array}\right. \text { (from above) }
$$

Solve simultaneous by

$$
\therefore k>1 \text { or } k<-9
$$

d) $2 \times!+5 \times 2!+10 \times 3!1 \ldots+\left(n^{2}+1\right) \times n!=n(n+1)!(1$

Step Show statement the for $n=1$

$$
\begin{aligned}
& \text { LHS of }(1)=\left(1^{2}+1\right) \times 1!=2 \\
& \text { RHS of }(1)=1(1+1)!=2
\end{aligned} \quad \text { HS }=\text { RHS }
$$

\therefore Statement the for $n=1$
Step 2 Assume statement the for $n=k$, ie assume $2 \times 1!+5 \times 2!+\ldots+\left(k^{2}+1\right) \times k!=k(k+1)!$
Prove statement is the for $n=k+1$, ie prove

$$
\underbrace{2 \times 1!+5 \times 2!t}_{\left.=-\frac{1}{2}+1\right)((k+1)+1)!}+\left((k+1)^{2}+1\right) \times(k+1)!
$$

$$
\begin{aligned}
& =(k+1)!\left(k+k^{2}+2 k+2\right) \\
& =(k+1)!\left(k^{2}+3 k+2\right)!(k+2)(k+1)=(k+2)!(k+1)=(k+1)(k+1+1)! \\
& =(k+1)!(k+1)
\end{aligned}
$$

d) cont.
\therefore Statement twe for $n=k+1$
Stap 3 Herce, by mathematecal unduction statement tme for all positive integers $n \geqslant 1$.
$e)$

$$
\begin{aligned}
& \angle X=35^{\circ} \text { (gisen) } \\
& \angle P Q R=25^{\circ} \text { (guen) } \\
& \angle P R Q=35^{\circ}=\angle X \quad \text { (Angles in some } \\
& \therefore \angle R P Q=120^{\circ}\left(\angle \text { sum thangle } R P Q=180^{\circ}\right) \\
& \angle X P Y=90^{\circ} \quad(\angle \text { in seni cincle is nght angle) } \\
& \angle Y P R\left.=90^{\circ} \text { (adjacent, Supplementany to } \angle X P Y\right) \\
& \angle Y P R=\angle R P Q-\angle Y P Q \\
&=120^{\circ}-90^{\circ} \\
&=30^{\circ}
\end{aligned}
$$

$3 U^{-}$Irial 2013
Qn(14)
(a) $a=10 \mathrm{~m}, P=10 \mathrm{sec}$
$n=\frac{2 \pi}{p}=\frac{\pi}{5} \mathrm{rad} / \mathrm{sec}$
(i)

$$
x=10 \cos (n t+\alpha)
$$

$$
t=0, x=10 \mathrm{~m} \Longrightarrow
$$

$$
10=10 \cos \alpha \Longrightarrow \alpha=0
$$

$$
\Rightarrow x=10 \cos \frac{\pi}{5} t
$$

$$
\begin{equation*}
x=6 \mathrm{~m} \tag{1}
\end{equation*}
$$

$$
\Rightarrow 6=10 \cos \frac{\pi}{5} t
$$

$$
\begin{equation*}
\Rightarrow t=\frac{5}{\pi} \cos ^{-1} \frac{3}{2} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (ii) } x=-2 \pi \sin \frac{\pi}{5} t\left(\frac{1}{2}\right) \\
& \text { The speed }=|x| \\
& =2 \pi \sin \frac{\pi}{5} \cdot \frac{5}{\pi} \cos ^{-1} \frac{3}{5} \\
& =2 \pi \times \frac{4}{5} \\
& =\frac{8 \pi}{5} \approx \frac{5}{n} \text { mopenelta min } \pm \frac{5}{2}\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { b) } f(x)=-m x+\sin x \\
& =f^{\prime}(x)=\frac{1}{x}+\cos x \\
& x_{2}=x_{1}-\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\left(\frac{1}{2}\right) \\
& =0.5-\frac{\ln (0.5)+\sin (0.5}{2+\cos (0.5)} \\
& =0.5-\frac{-0.2137216}{2.87758} \\
& =0.5742712 \\
& \approx 0.5743
\end{align*}
$$

$$
\begin{aligned}
V^{2} & =n^{2}\left(a^{2}-x^{2}\right) \\
& =\frac{\pi^{2}}{25}(100-36) \\
& =\frac{64 \pi^{2}}{25}
\end{aligned}
$$

$V=\frac{8 \pi}{5} \approx 5 \mathrm{~m} / \mathrm{s}$
nupemalty for $\pm 5 \mathrm{mls}$
$\dot{Q}_{n}(14)$: Continued
[C] (1) $\ddot{x}=0$

$$
\dot{x}=c
$$

$$
\dot{x}=U \cos x
$$

$$
x=u t \cos \alpha+c
$$

$t=0, x=0 \Rightarrow c=0$
$\Rightarrow x=u t \cos \alpha . \cdots\left(\frac{1}{\xi}\right)$

$$
\bar{y}=g-(k)
$$

$$
\dot{y}=-g t+c
$$

$t=0, \dot{y}=U \sin \alpha$

$$
\begin{align*}
& \Rightarrow c=u \sin \alpha \\
& \Rightarrow y=u \sin \alpha-g t-(\xi) \\
& y=u t \sin \alpha-\frac{1}{2} g t^{2}+c \\
& t=0, y=u \Rightarrow c=0 \text { (}) \\
& \Rightarrow y=u t \sin \alpha-\frac{1}{2} g t^{i} \tag{1}
\end{align*}
$$

(ii) $t=\frac{x}{v \cos \alpha}$
sub.into y,

$$
\begin{align*}
& y=(x \sin \alpha) \frac{x}{\tan \alpha}-\frac{1}{2} g\left(\frac{\left(\frac{1}{x}\right)}{v \cos \alpha}\right)^{2} \tag{1}\\
& =x \tan \alpha-\frac{g x^{2}}{2 U^{2} \cos ^{2} \alpha} \\
& y=x \tan \alpha-\frac{g x^{2}}{2 U^{2} \sec ^{2} \alpha} \tag{}\\
& \frac{1}{2}
\end{align*}
$$

Qn(14): Continued
C- (ii)

$$
\begin{aligned}
& U=7 \sqrt{10} \mathrm{~m} / \mathrm{s} \\
& x=10 \mathrm{~m}, y=15 \mathrm{~m}
\end{aligned}
$$

substitute into the eying the path:

$$
\begin{aligned}
& y=10 \tan \alpha-\frac{9.8 \times 100}{2 \times 490} \sec ^{2} \alpha \\
& \tan ^{2} \alpha-10 \tan \alpha+16=0 \frac{1}{1} \\
& \tan \alpha=\frac{10 \pm \sqrt{100-4 \times 1 \times 16}}{2} \\
& =5 \pm 3 \\
& \tan \alpha=8 \text { or } \tan \beta=2
\end{aligned}
$$

C- iii) Let t_{1} \& t_{2} be the projection time of the 2 pebbles.

$$
\begin{aligned}
& t_{1}=\frac{x}{U \cos \alpha} \\
& t_{2}=\frac{x}{U \cos \beta}
\end{aligned}
$$

Time elapsed,

$$
\begin{aligned}
t_{1}-t_{2} & =\frac{x}{v \cos \alpha}-\frac{x}{v \cos \beta} \\
& =\frac{x}{v}(\sec \alpha-\sec \beta)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{10}{7 \sqrt{10}}(\sqrt{65}-\sqrt{5}) \\
& =\frac{\sqrt{650}-\sqrt{50}}{7}
\end{aligned}
$$

\qquad

