

2014 TRIAL HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 70

Section I: Pages 3-6

10 marks

- Attempt questions 1-10, using the answer sheet on page 13.
- Allow about 15 minutes for this section

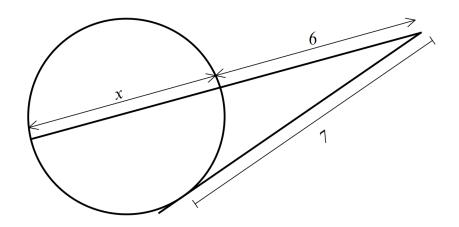
Section II: Pages 7-10 60 marks

- Attempt questions 11-14, using the booklets provided.
- Allow about 1 hours 45 minutes for this section

Question	1-10	11	12	13	14	Total	%
Marks	/10	/15	/15	/15	/15	/70	

Blank Page

Section I

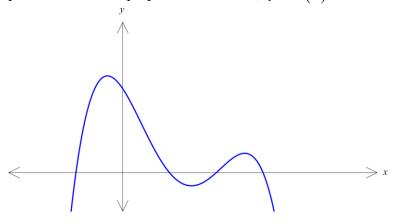

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1.



What is the value of x?

- (A)
- (B) $1\frac{1}{6}$
- (C) $2\frac{1}{6}$
- (D) $8\frac{1}{6}$
- What is the solution of $\frac{5}{1-x} < 3$?
 - (A) $x < -\frac{2}{3}, x > 1$
 - (B) $x < -\frac{2}{3}$
 - (C) x > 1
 - (D) $-\frac{2}{3} < x < 1$

- What is the value of $\lim_{x \to 0} \left(\frac{2x}{\sin 5x} \right) ?$
 - (A) $\frac{2}{\sin 5}$
 - (B) $\frac{2}{5}$
 - (C) $\frac{5}{2}$
 - (D) $\sin 3x$
- What are the co-ordinates of the point which divides the interval joining A(3, -2) and B(-5, 4) externally in the ratio of 5:3?
 - (A) $\left(0, \frac{1}{4}\right)$
 - (B) (15, -11)
 - (C) (-17, 13)
 - (D) $\left(-2, \frac{3}{2}\right)$
- 5. The inverse of the function $f(x) = e^{2x-1}$ is?
 - (A) $f^{-1}(x) = -e^{2x-1}$
 - (B) $f^{-1}(x) = \frac{e^{x+1}}{2}$
 - (C) $f^{-1}(x) = -\log_e(2x+1)$
 - (D) $f^{-1}(x) = \log_e \sqrt{x} + \frac{1}{2}$

6. The graph below shows a polynomial function, y = P(x).

Which of the following could be the equation of P(x)?

(A)
$$P(x) = (x+1)(x+2)(x+3)(x-1)$$

(B)
$$P(x) = -(x+1)(x+2)(x+3)(x-1)$$

(C)
$$P(x) = (x+1)(x-1)(x-2)(x-3)$$

(D)
$$P(x) = -(x+1)(x-1)(x-2)(x-3)$$

7. The co-efficient of x^2 in the expansion $(2x-3)^5$ is?

8. Using
$$u = \cos x$$
,

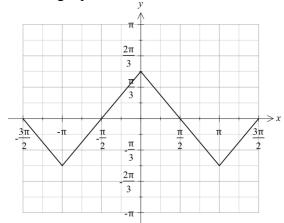
 $\int_{0}^{\frac{\pi}{3}} \sin^{3} x \cos^{4} x \, dx \text{ can be expressed in terms of } u \text{ as}$

$$(A) \qquad \int_{0}^{\frac{\pi}{3}} u^6 - u^4 du$$

(B)
$$\int_{1}^{1} u^6 - u^4 du$$

$$(C) \qquad \int_{\frac{1}{2}}^{1} u^4 - u^6 du$$

(D)
$$\int_{0}^{\frac{\sqrt{3}}{2}} u^4 - u^6 du$$


A particle is moving along the *x*-axis, initially moving to the left from the origin. Its velocity and acceleration are given by

$$v^2 = 2\log_e(3 + \cos x)$$
 and

$$\ddot{x} = \frac{-\sin x}{3 + \cos x}.$$

Which of the following describes the subsequent motion?

- (A) Moves only to the left, alternately speeding up and slowing down, without becoming stationary.
- (B) Moves only to the left, alternately slowing to a stop and speeding up.
- (C) Slowing to a stop, then heading to the right forever.
- (D) Oscillates between two points.
- **10.** Which of the following equations is shown in the sketch below?

- (A) $y = \cos^{-1}(\sin x)$
- (B) $y = \sin^{-1}(\cos x)$
- (C) $y = \sin^{-1}(x) + \sin(x)$
- (D) $y = \cos^{-1}(x) + \cos(x)$

Section II

60 marks

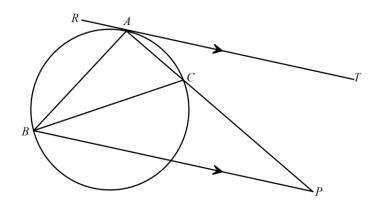
Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.


- Find the acute angle between the lines x-2y+3=0 and y=3x-1 at their point of intersection.
- **b)** Find $\int \frac{1}{25+9x^2} dx$.
- $\mathbf{c)} \qquad \qquad \text{Find} \qquad \frac{d}{dx} \sin^{-1} \left(2x^3 \right)$
- d) The polynomial $P(x) = x^3 3x^2 + kx + 12$ has 3 roots. It is known that two of the roots are of equal magnitude but opposite in sign. What is the value of k?
- Explain why Newton's method does not work for the root of the equation $x^3 3x + 6 = 0$ if the initial approximation is chosen to be x = 1. Use mathematics to support your answer.
- f) If $\cot^2 \theta \cot \theta = 1$, where $0 < \theta < \frac{\pi}{2}$,
 - (i) Show that $\cot \theta = \frac{1+\sqrt{5}}{2}$.
 - (ii) Hence, show that the exact value of $\cot 2\theta = \frac{1}{2}$.

End of Question 11

3

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) AT is a tangent and is parallel to BP. Prove that $\angle ABP = \angle ACB$.

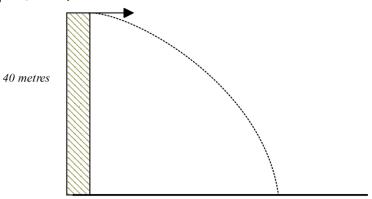
- A roast duck is taken out of the oven once it is cooked. A thermometer records the temperature of the duck to be $75^{\circ}C$. The roast duck is then allowed to cool in a room with a constant temperature of $23^{\circ}C$.
 - (i) Show that $T = 23 + Ae^{-kt}$ satisfies the differential equation $\frac{dT}{dt} = -k(T 23)$ where

T is the temperature of the duck in degrees Celsius, ${}^{0}C$, t is the time in minutes and k is a constant.

- (ii) Show that A = 52.
- (iii) Find the value of k (in exact form) if after 5 minutes the duck's temperature is $65^{\circ}C$.
- (iv) Bacteria start to develop rapidly in the duck after 8 minutes. What will be the duck's temperature when the bacteria start to develop? Answer to the nearest degree.
- Using the substitution $u = e^x$, find $\int \frac{e^x dx}{\sqrt{1 e^{2x}}}$
- d) (i) Find the domain and range of the function $f(x) = \sin^{-1}(2x)$.
 - (ii) Sketch the graph of the function $f(x) = \sin^{-1}(2x)$.
 - (iii) The region bounded by the graph $f(x) = \sin^{-1}(2x)$ and the x-axis between x = 0 and $x = \frac{1}{2}$ is rotated about the y-axis to form a solid. Find the exact volume of the solid.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.


- The speed v m/s of a particle moving in a straight line is given by $v^2 = 84 + 16x 4x^2$ where the displacement of the particle relative to a fixed point is x cm.
 - (i) Find an expression for the particle's acceleration in terms of x.
 - (ii) Hence show that the particle is moving in simple harmonic motion. 1
 - (iii) Find the period, amplitude and centre of motion. 2
- b) (i) The monic polynomial, P(x), has a root at x = 3, a double root at x = -1 and is of degree 4. If the polynomial passes through the point (1,0), find the equation of the polynomial P(x).
 - (ii) The polynomial Q(x) has equation $Q(x) = x^2 + 1$. 2 Show that $\frac{P(x)}{Q(x)}$ has a remainder of 4x + 8.
- A balloon has the shape of a right circular cylinder of radius r and length twice the radius, with a hemisphere at each end of radius r. The balloon is being filled at the rate of $10 \, cm^3 / s$. Find the rate of change of r when r = 8 centimetres
- d) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are the ends of a focal chord on the parabola $x^2 = 4ay$.
 - (i) Show that PQ has equation (p+q)x-2y-2apq=0.
 - (ii) Show that pq = -1 if PQ is a focal chord.
 - (iii) Show that the equation of the tangent at P is $y = px ap^2$.
 - (iv) Hence find the locus of the point of intersection of the tangents at the ends of the focal chord.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) Prove by Mathematical Induction that $\sum_{r=1}^{n} log_{e}\left(\frac{r+1}{r}\right) = log_{e}\left(n+1\right) \text{ for all positive integers, } n.$
- b) Find the general solutions for $2\cos x = \sqrt{3}\cot x$.
- An object is projected horizontally from the top edge of a vertical cliff 40 metres above sea level with a velocity of 40 m/s.

Take $g = 10 m / s^2$.

(i) Using the top edge of the cliff as the origin, prove that the parametric equations of the path of the object are:

$$x = 40t y = -5t^2 + 40$$

- (ii) Calculate when and where the object hits the water.
- (iii) Find the velocity and angle of the object the instant it hits the water. 2
- By considering $(1-x)^n \left(1+\frac{1}{x}\right)^n$, or otherwise, express $\binom{n}{2}\binom{n}{0} \binom{n}{3}\binom{n}{1} + ... + (-1)^n \binom{n}{n}\binom{n}{n-2}$ in simplest form.

End of Paper

1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Blank Page

Mathematics Extension 1:

Multiple Choice Answer Sheet

Student Number	
----------------	--

Completely fill the response oval representing the most correct answer.

1.	A _	В	C	D
2.	A	В	C	D
3.	A	В	c \bigcirc	D
4.	A	В	c 🔾	D
5.	A	B	c 🔾	D
6.	A	В	c 🔾	D
7.	A	В	c 🔾	D
8.	A	B	c 🔾	D
9.	A	B	c 🔾	D
10.	A	В	c 🔾	D

Blank Page

Mathematics Extension 1:

Multiple Choice Answer Sheet

Student Number ANSWERS

Completely fill the response oval representing the most correct answer.

1.	A	ь		D
2.	A	B	C _	D _
3.	A 🔘	В	C	D _
4.	A	В	C 🔵	D _
5.	A	В	c 🔾	D
6.	A	В	c 🔾	D •
7.	A	В	C 🔾	D
8.	A	В	C 🔵	D 💍
9.	A	В	c 🔾	D
10.	A	В	c \bigcirc	D _

DOIGHOUS TOL CYCLIS O	iid appendiffere tables		
Academic Year		Calendar Year	
Course		Name of task/exam	

Section I

$$\frac{2}{1-x} < 3$$

Critical pts:

$$\frac{5}{1-x} = 3$$

$$5 = 3(1-x)$$

$$5 = 3 - 3x$$

$$2 = -3x$$

$$x = -\frac{2}{3}$$

check
$$x=0$$

$$\frac{5}{1} \neq 3 \quad \text{false}$$

$$x < -\frac{2}{3}, x > 1$$

.: A

$$\frac{3}{3} \quad \lim_{x \to 0} \quad \frac{2x}{\sin 5x} = \frac{2}{5}$$

···B

Calendar Year

Name of task/exam

4 A (3, -2) B (-5, 4)

-5:3

(m12+nx, my2+ny, my2+ny)

=
$$\left(\frac{-5(-5)+3(3)}{-2}, \frac{-5(+)+3(-2)}{-2}\right)$$

= $\left(\frac{25+9}{-2}, \frac{-20-6}{-2}\right)$

= $\left(-17, 13\right)$

...

C

5 f: $f(x) = e^{2x-1}$
 f^{-1} : $x = e^{2y-1}$
 $hx + 1 = 2y$
 $y = \frac{1}{2}(\ln x + 1)$

...

...

 $f^{-1}(x) = \frac{1}{2}\ln x + \frac{1}{2}$

= $\ln x^{\frac{1}{2}} + \frac{1}{2}$

·, D

Page of

 $-6\sqrt{x} + \frac{1}{2}$

Dolations for Charits and appropriate	
Academic Year	Calendar Year
Course	Name of task/exam

$$\int_{0}^{\frac{\pi}{3}} \sin^{2}x \sin x \cos^{4}x dx$$

$$= \int_{1}^{\frac{\pi}{2}} (-)(1-u^{2})u^{4} du$$

$$= \int_{\frac{\pi}{2}}^{1} (u^{4}-u^{4}) du$$

$$= \int_{\frac{\pi}{2}}^{1} (u^{4}-u^{4}) du$$

$$\therefore C$$

$$q \quad V^{2} = 2 \ln (3 + \cos x)$$

$$for \quad stationary \quad V = 0$$

$$\therefore 0 = 2 \ln (3 + \cos x)$$

$$0 = \ln (3 + \cos x)$$

$$e^{\circ} = 3 + \cos x$$

$$1 = 3 + \cos x$$

$$-2 = \cos x$$

$$no \quad sol^{\circ}$$

$$\therefore does \quad not \quad stop$$

$$\therefore A$$

$$10 \quad 8$$

Page

of

du= -sink du

Sin X = /1- 1052x

Solutions for examis and assessment tasks		,
Academic Year	Calendar Year	
Course	Name of task/exam	

QIII

a)
$$m_1 = \frac{1}{2}$$
 $m_2 = 3$
 $tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$
 $= \left| \frac{1}{2} - 3 \right|$
 $= \left| \frac{1}{2} - \frac{3}{2} \right|$
 $= \left| -\frac{5}{2} \right|$
 $= \left| -1 \right|$
 $tan \theta = 1$
 $\therefore \theta = \sqrt[3]{4}$

b) $\int \frac{1}{25 + 9 \chi^2} d\chi$
 $= \frac{1}{15} tan^{-1} \frac{3\chi}{5} + C$
 $C = \frac{1}{\sqrt{1 - 4 \chi^6}} \times 6\chi^2$
 $= \frac{6\chi^2}{\sqrt{1 - 4 \chi^6}}$

d) $P(\chi) = \chi^3 - 3\chi^2 + k\chi + 12$

Let roots be $\chi - \chi$, β

sum of roots 1 at a time

B = 3

Name of task/exam

Sum of roots 2 at a time:

$$-\chi^2 + \chi \beta - \chi \beta = K$$

$$-\chi^2 = K$$

$$-(\chi^2) = K$$
Product of roots:
$$-\chi^2 \beta = -12$$

$$\chi^2 \beta = 12$$

$$\chi^2 \beta = 12$$

$$\chi^2 = 4$$

$$\therefore \chi = \pm 2$$

$$\therefore k = -(4)$$

$$k = -4$$

$$f'(\chi) = 3\chi^2 - 3$$
at $\chi = 1$

$$f'(\chi) = 3\chi^2 - 3$$
at $\chi = 1$

$$f'(\chi) = 3 - 3$$

$$= 0$$

$$\therefore \text{ at } \chi = 1 \text{ there is a }$$
Stationary point.

Since Newton's method finds where the tangent at a point crosses the

Since Newton's method finds where
the targent at a point crosses the
X-axis, this would not work
for the targent at X=1. It wouldn't
cross the X-axis as it would be
a horizontal targent.

... Newton's method would not
work at X=1. Page of

DOILLIONS TO CRAIMS and assessment				
Academic Year		Calendar Year		
Course		Name of task/exam		

$$f : \cot^{2} \theta - \cot \theta = 1$$

$$\cot^{2} \theta - \cot \theta = 1 = 0$$

$$\cot \theta = -\frac{1}{2} = 0$$

$$\cot \theta = \frac{1}{2} = \frac{1 + \sqrt{1 + 4}}{2}$$

$$= \frac{1 + \sqrt{1 + 4}}{2}$$

$$= \frac{1 + \sqrt{5}}{2}$$
Since $0 < \theta < \sqrt{2}$
in the first quadrant.

$$define definition are positive.$$

$$\cot \theta = 1 + \sqrt{5}$$

$$2$$

$$RTS$$

$$2$$

$$RTS$$

$$2$$

$$RTS$$

$$2$$

$$RTS$$

$$2$$

$$1 + \cot \theta = \frac{1}{2}$$

$$1 + \cot \theta = \frac{1}{2}$$

$$1 + \cot \theta = \frac{1}{2}$$

$$1 + \cot^{2} \theta = \frac{1}{2}$$

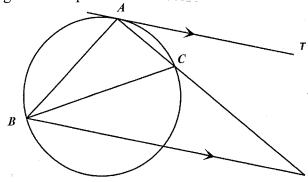
$$2 + \cot^{2} \theta = \frac{1}{2}$$

$$2 + \cot^{2} \theta = \frac{1}{2}$$

$$2 + \cot^{2} \theta = \frac{1}{2}$$

$$3 + \cot^{2} \theta = \frac{1}{2}$$

$$4 + \cot^{2} \theta = \frac{1}{2}$$


$$4$$

as cot
$$e = \frac{1+\sqrt{5}}{2}$$

 $tan e = \frac{2}{1+\sqrt{5}}$
(since $tan e = \frac{1}{1+\sqrt{5}}$)
 $tan e = \frac{2}{1+\sqrt{5}}$
 $= \frac{4}{(1+\sqrt{5})^2}$
 $= \frac{(1+\sqrt{5})^2 - 4}{(1+\sqrt{5})^2}$
 $= \frac{1+2\sqrt{5}+5-4}{(1+\sqrt{5})^2}$
 $= \frac{2+2\sqrt{5}}{4(1+\sqrt{5})}$
 $= \frac{2}{4}$
 $= \frac{2}{4}$
 $= \frac{2}{4}$
 $= \frac{2}{8}$
 $= \frac{2}{4}$
 $= \frac{2}{8}$
 $= \frac{2}{4}$
 $= \frac{2}{8}$
 $= \frac{2}{8}$

Page of

Solutions for exams a	III assessificate tasks		
Academic Year		Calendar Year	
Course		Name of task/exam	

AT is a tangent and is parallel to BP. Prove $\angle ABP = \angle ACB$.

Let < ABC = x

::<TAC=x (angle between a tangent and a chord equals the angle in the atternate segment).

<TAC = <CPB = x (alternate angles equal ATIBP)

Let < CBP = y.

· · · < ABF = x+y (adjacent angles) TACB = X+y (exterior angle of ACBP equals

Sum of 2 interior

b pposite angles).

- . < ABP = < ACB.

b. 1 T= 23 + Ae-kt dT = -k Ac-kt from (1) Ae-kt = T-23 $\frac{dT}{dt} = -k(T-23)$

i)
$$T = 23 + Ae^{-kt}$$

when $t = 0$, $T = 75$
 $75 = 23 + Ae^{\circ}$
 $A = 75 - 23$

$$t = 5, T = 65$$

$$65 = 23 + 52e$$

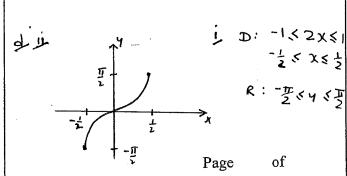
$$42 = 52e^{-5k}$$

$$\frac{42}{52} = e^{-5k}$$

$$\ln\left(\frac{42}{52}\right) = -5k$$

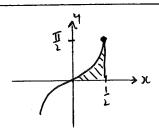
$$k = -\frac{1}{5} \ln \left(\frac{42}{52} \right).$$

$$T = ? t = 8$$


$$T = 23 + 52e^{-\left[-\frac{1}{5}\ln\left(\frac{42}{52}\right)\right]_{x}} 8$$

$$T = 60^{\circ}$$

$$S \int \frac{e^{x} dx}{\sqrt{1 - e^{2x}}} \qquad u = e^{x} dx$$


$$du = e^{x} dx$$

$$=\int \frac{du}{\sqrt{1-u^2}}$$

DOIGHOUR for evening a	a abbeed and a second a second and a second
Academic Year	Calendar Year
Course	Name of task/exam

ji ji

$$V = \frac{1}{2} \frac{1}{2} \frac{1}{2} - \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{1}{2$$

Now
$$y = \sin^{-1} 2x$$

 $\sin y = 2x$
 $3x = \frac{1}{2} \sin y$

$$V = \frac{\pi^2}{8} - \pi \int_{0}^{\pi} \left(\frac{1}{2} \sin y\right)^2 dy$$

$$= \frac{\pi^2}{8} - \frac{\pi}{4} \int_0^{\pi} \sin^2 y \, dy$$

$$= \frac{\pi}{8} - \frac{\pi}{4} \int_{0}^{\pi} \left(\frac{1}{2} - \frac{1}{2} \cos 2y \right) dy = \frac{1 - 2\sin^2 y}{2 \sin^2 y} = 1 - \cos 2y$$

$$= \frac{\pi^2}{8} - \frac{\pi}{4} \left[\frac{1}{2} y - \frac{\sin 2y}{4} \right]^{\frac{\pi}{2}}$$

$$= \frac{\pi^2}{8} - \frac{\pi}{4} \left[\left(\frac{\pi}{4} - 0 \right) - \left(0 - 0 \right) \right]$$

$$= \frac{\pi^2}{8} - \frac{\pi^2}{16}$$

$$= \frac{\pi^2}{16} \text{ units}^3$$

Q13

Q13

Q13

Q1
$$V^2 = 84 + 16x - 4x^2$$
 $\frac{1}{2}V^2 = 42 + 8x - 2x^2$
 $\frac{1}{2}V^2 = \frac{1}{2}(42 + 8x - 2x^2)$
 $a = 8 - 4x$
 $a = 8 - 4x$
 $a = 8 - 4x$

Which is of the form
 $a = -12(x - 12)$

Which is of the form
 $a = -12(x - 12)$

When $a = -12(x - 12)$

When $a = -12(x - 12)$
 $a = -12(x -$

$$\begin{array}{rcl}
\cdot & \text{amplitude} &= 5 \\
\text{Period} &= & 2\pi \\
&= & 2\pi \\
&= & 2
\end{array}$$

DOTATIONS TOT TITLES TO THE STATE OF THE STA				
Academic Year	Calendar Year			
Course	Name of task/exam			

$$P(x) = (x-3)(x+1)^{2}(x-h)$$

$$(1,0) \text{ satisfies}$$

$$0 = (1-3)(1+1)^{2}(1-h)$$

$$0 = (-2)(4)(1-h)$$

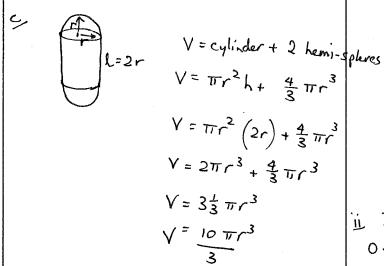
$$1-h=0$$

$$h=1.$$

$$P(x) = (x-3)(x-1)(x+1)^{2}$$

$$P(x) = x^{4}-2x^{3}-4x^{2}+2x+3$$

$$\frac{P(x)}{Q(x)} = \frac{x^{4}-2x^{3}-4x^{2}+2x+3}{x^{2}+1}$$


$$\frac{x^{2}-2x-5}{x^{4}+1}$$

$$\frac{x^{2}-2x-5}{x^{4}+1}$$

$$\frac{x^{4}-2x^{3}-4x^{2}+2x+3}{x^{4}+2x+3}$$

$$\frac{x^{4}-2x^{3}-5x^{2}+2x+3}{x^{4}+x^{2}+2x+3}$$

$$\frac{x^{4}-2x^{3}-5x^{2}+2x+3}{x^{4}+x^{$$

$$\frac{dV}{dr} = 10 \text{ Thr}^2$$

$$\frac{dV}{dt} = 10 \text{ cm}/\text{S}$$

$$\frac{dV}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$$

$$= \frac{1}{10 \text{ Tr}^2} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ Tr}^2} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}}$$

$$= \frac{1}{10 \text{ TeV}} \times \frac{100 \text{ TeV}}{100 \text{ TeV}} \times \frac{1$$

$$Q(2aq, aq^{2})$$

$$= \frac{aq^{2} - ap^{2}}{2aq - 2ap}$$

$$= \frac{a(q - p)(q + p)}{2a(q - p)}$$

$$= \frac{p + q}{2}$$

d x2 = 4 ay

P (2ap, ap2)

phres
$$\frac{eqn}{2}y - ap^2 = \frac{p+q}{2}(x-2ap)$$

$$2y - 2ap^2 = (p+q)x - (p+q)(2ap)$$

$$2y - 2ap^2 = (p+q)x - 2ap^2 - 2apq$$

$$(p+q)x - 2y - 2apq = 0$$
if If focal chord (o,a) satisfies
$$0 - 2a - 2apq = 0$$
Page of
$$2a = -2apq$$

$$PQ = -1$$

DOTULIONS TOT ONGINE W	IIG GDDGDDIIIGIIG III		,
Academic Year		Calendar Year	
Course		Name of task/exam	

iii
$$y = \frac{x^2}{4a}$$

$$\frac{dy}{4a} = \frac{2x}{4a} = \frac{x}{2a}$$

$$at P(2ap, ap^2)$$

$$m_{tag} = \frac{2ap}{2a} = P$$

$$\frac{eqn}{y - ap^2} = P(x - 2ap)$$
Similarly eqn targent at Q is
$$y - aq^2 = q(x - 2aq)$$
Solving simultaneously:
$$P(x - 2ap) + ap^2 = q(x - 2aq) + aq^2$$

$$Px - 2ap^2 + ap^2 = qx - 2aq^2 + aq^2$$

$$Px - qx = ap^2 - aq^2$$

$$x(pq) = a(p+q)$$

$$y = px - 2ap^2 + ap^2$$

$$= p[a(p+q)] - ap^2$$

$$= apq$$

$$= apq$$

$$x = apq$$

$$x$$

Q14

a RTP

$$\sum_{k=1}^{\infty} \ln \left(\frac{r+1}{r} \right) = \ln \left(n+1 \right)$$
Step 1: Prove true for $n=1$

LHS = $\ln 2$

RHS = $\ln (1+1) = \ln 2$.

... true for $n=1$

Step 2: Assume true for $n=k$

i.e. $\ln 2 + \ln \left(\frac{3}{2} \right) + ... + \ln \left(\frac{k+1}{k} \right) = \ln \left(\frac{k+1}{k+1} \right)$
Step 3: Prove true for $n=k+1$

i.e. $\ln 2 + \ln \left(\frac{3}{2} \right) + ... + \ln \left(\frac{k+1}{k} \right) + \ln \left(\frac{k+2}{k+1} \right) = \ln \left(\frac{k+2}{k+1} \right)$
LHS = $\ln 2 + \ln \left(\frac{3}{2} \right) + ... + \ln \left(\frac{k+1}{k} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+1}{k} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+1}{k} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+1}{k} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+1}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+1}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+1}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+1}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+1}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) - \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$
= $\ln \left(\frac{k+2}{k+1} \right) + \ln \left(\frac{k+2}{k+1} \right)$

Page of

DOTATIONS TOL CHAMIC WITE WESTERNING				
Academic Year	Calendar Year			
Course	Name of task/exam			

Course

Course

b.
$$2\cos x = \sqrt{3}\cot x$$
 $2\cos x = \sqrt{3}\cos x$
 $2\cos x = \sqrt{3}\cos x$
 $2\cos x = 0$
 $\sin x$
 $\cos x \left(2 - \frac{\sqrt{3}}{\sin x}\right) = 0$
 $\cos x \left(2 - \frac{\sqrt{3}}{\sin x}\right) = 0$
 $\therefore \cos x = 0$
 $2 = \frac{\sqrt{3}}{\sin x}$
 $\sin x = \frac{\sqrt{3}}{2}$
 $\therefore x = k \pi + \frac{\pi}{2}$, k integer and $x = k \pi + (-1)^k \frac{\pi}{3}$, k integer

 $x = k \pi + (-1)^k \frac{\pi}{3}$, k integer

 $x = k \pi + (-1)^k \frac{\pi}{3}$, k integer

 $x = k \pi + (-1)^k \frac{\pi}{3}$, k integer

 $x = k \pi + (-1)^k \frac{\pi}{3}$, k integer

 $x = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$
 $x = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$
 $x = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$
 $x = -\frac{1}{2} + c$

when $x = 0$ $y = -\frac{1}{2} + c$
 $x = -\frac{1}$

 $y = -5t^2 + 40$

Name of task/exam

$$\ddot{x} = 0$$

$$\dot{x} = \int 0 dt$$

$$\dot{x} = C_3$$
when $t = 0$

$$\dot{x} = 40$$

$$\dot{x} = 40$$

$$\dot{x} = 40 dt$$

$$\dot{x} = 40 t + C_4$$
when $t = 0$

$$\dot{x} = 60 t$$

$$\dot{x} = 60 t$$

$$\dot{x} = 40 t$$

of

Page

Dolations for order	
Academic Year	Calendar Year
Course	Name of task/exam

$$= \left[(1-x)^{n} (1+\frac{1}{x})^{n} \right]$$

$$= \left[(1-x)^{n} (1+\frac{1}{x})^{n} \right]$$

$$= \left[(1-x)^{n} (1+\frac{1}{x})^{n} \right]$$

$$= \left[(1-x)^{n} (-x)^{n} + ^{n} C_{1} (\frac{1}{x})^{n-1} (-x) + ^{n} C_{2} (\frac{1}{x})^{n-2} (-x)^{2} + \right]$$

$$= ^{n} C_{0} (\frac{1}{x})^{n} (-x)^{n} + ^{n} C_{1} (\frac{1}{x})^{n-1} (-x) + ^{n} C_{2} (\frac{1}{x})^{n-2} (-x)^{2} + + (-1)^{n} C_{1} (x)^{n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{-1} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{-n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{n} + ^{n} C_{2} x^{2} + ^{n} C_{3} x^{3} + + ^{n} C_{n} x^{n}$$

$$(1-x)^{n} (1+\frac{1}{x})^{n} = ^{n} C_{0} + ^{n} C_{1} x^{n} + ^{n} C_{2} x^{n} + ^{n} C_{2} x^{n} + ^{n} C_{1} x^{$$

Page of

Academic Year	Calendar Year	
Course	Name of task/exam	

$$\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+\binom{-1}{n}\binom{n}{n}\binom{n}{n}\binom{n}{n}=\binom{n}{\frac{n+2}{2}}\binom{-1}{\frac{n+2}{2}}$$

$$\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+\binom{-1}{n}\binom{n}{n}\binom{n}{n-2}=0.$$