\qquad

Barker College

Mathematics

 Extension 2
2014

TRIAL
HIGHER SCHOOL CERTIFICATE

PM Thursday 1 $^{\text {st }}$ August

Section I - Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
(A) \bigcirc
(B)
(C) \bigcirc
(D) \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)
(B)
ζ
(C) \bigcirc
(D) \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.
(A)

(B)

(D) \bigcirc

Start

1.	$\mathrm{A} \bigcirc$	$\mathrm{B} \bigcirc$	CO	D \bigcirc
2.	A 0	B \bigcirc	CO	D
3.	A 0	B \bigcirc	CO	D
4.	A 0	B \bigcirc	CO	D
5.	AO	B \bigcirc	CO	D
6.	A 0	B \bigcirc	CO	D
7.	AO	B \bigcirc	CO	D
8.	A 0	B \bigcirc	CO	D
9.	AO	B \bigcirc	CO	D
10.	$\mathrm{A} \bigcirc$	B \bigcirc	CO	D

BLANK PAGE

2014
 YEAR 12
 TRIAL HSC EXAMINATION

Mathematics Extension 2

Staff Involved:
PM ${ }^{\text {st }}$ AUGUST 2014

- BHC
- VAB
- KJL*
- GDH*

Number of copies: 40

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I
Pages 2-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

Pages 7-15
90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Section I - Multiple Choice

10 marks

Attempt Questions 1-10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. What is the eccentricity of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$?
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) $\frac{\sqrt{5}}{3}$
(D) $\frac{3}{\sqrt{5}}$
2. The graph of a function $y=f(x)$ is shown below.

Which of the following statements is true?
(A) $\quad f(x)$ is not continuous at $x=2$ and $f(x)$ is not differentiable for $-2<x<2$
(B) $\quad f(x)$ is not continuous at $x=2$ and $x=-2$, and $f(x)$ is not differentiable at $x=2$ and $x=-2$
(C) $\quad f(x)$ is not continuous at $x=2$, but $f(x)$ is differentiable for all x
(D) $\quad f(x)$ is not continuous at $x=2$ and not differentiable at $x=2$ and $x=-2$

Section I continued

3. The graph below shows a hyperbola, including the equations of the directrices and the coordinates of the foci.

DIAGRAM NOT TO SCALE
The equation of this hyperbola is:
(A) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
(B) $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
(C) $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$
(D) $\frac{x^{2}}{2}-\frac{y^{2}}{5}=1$
4. The polynomial $P(x)=x^{4}+m x^{2}+n x+28$ has a double root at $x=2$.

What are the values of m and n ?
(A) $\quad m=-11$ and $n=-12$
(B) $\quad m=-5$ and $n=-12$
(C) $\quad m=-11$ and $n=12$
(D) $\quad m=-5$ and $n=12$

Section I continued

5. Diagram A shows the complex number z represented in the Argand plane.

DIAGRAM A

DIAGRAM B

Diagram B shows:
(A) z^{2}
(B) $2 i z$
(C) $-2 z$
(D) $\quad 2 z^{2}$
6. Let α, β, γ be the roots of $2 x^{3}-5 x^{2}+2 x-1=0$.

The equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$ is best given by:
(A) $x^{3}+2 x^{2}+25 x-2=0$
(B) $x^{3}-2 x^{2}+5 x-2=0$
(C) $x^{3}-2 x^{2}+25 x-8=0$
(D) $\quad-2 x^{3}+5 x^{2}-2 x+1=0$

Section I continued

7. How many distinct horizontal tangents can be drawn on the graph of $x^{2}+y^{2}+x y-5=0$?
(A) 0
(B) 1
(C) 2
(D) More than 2
8. $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$ is equal in value to:
(A) $\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan ^{3} x d x$
(B) $\int_{0}^{\frac{\pi}{4}} \frac{\pi}{4}-\tan ^{3} x d x$
(C) $\int_{0}^{\frac{\pi}{4}} \tan x\left(\sec ^{2} x+1\right) d x$
(D) $\int_{0}^{\frac{\pi}{4}}\left(\frac{1-\tan x}{1+\tan x}\right)^{3} d x$

Section I continued

9. The value of $\int_{-2}^{-1} \sqrt{4-x^{2}} d x+\int_{1}^{2} \sqrt{4-x^{2}} d x$ is:
(A) $\frac{4 \pi}{3}-\sqrt{3}$
(B) $\frac{2 \pi}{3}-\sqrt{3}$
(C) $\frac{2 \pi}{3}-2 \sqrt{3}$
(D) $\frac{8 \pi}{3}-\sqrt{3}$
10. The statement $\int_{0}^{1} \frac{d x}{1+x^{n}}<\int_{0}^{1} \frac{d x}{1+x^{n+1}}$ is:
(A) Always true
(B) Always false
(C) Only true for positive n
(D) Only true for negative n

Section II

90 marks

Attempt Questions 11-16.

Allow about 2 hours $\mathbf{4 5}$ minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Show relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
[Use a SEPARATE writing booklet]
Marks
(a) (i) Find the square root of the complex number $15-8 i$.
(ii) Hence or otherwise, solve $z^{2}+6 z-6+8 i=0$.
(b) (i) Write the complex number $z=1+\sqrt{3} i$ in modulus-argument form.
(ii) For what values of n is $(1+\sqrt{3} i)^{n}$ completely real?

Justify your answer with appropriate reasoning.
(c) The points A and B represent the complex numbers $z_{1}=2-i$ and $z_{2}=8+i$ respectively.

Find all possible complex numbers z_{3}, represented by C such that $\triangle A B C$ is isosceles and right-angled at C.
(d) On the Argand diagram, sketch the locus of z defined by $\arg \left(\frac{z-(3+3 i)}{z-2}\right)=\frac{\pi}{3}$.
(e) (i) Sketch $y=x\left(2^{x}\right)$, showing all key features.
(ii) For what values of k does $x\left(2^{x}\right)-k x=0$ have exactly 2 real roots?

End of Question 11

(a) (i) Find real numbers A, B and C, such that $\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}=\frac{1}{(x-2)\left(x^{2}+4\right)}$
(ii) Hence, or otherwise, find $\int \frac{1}{(x-2)\left(x^{2}+4\right)} d x$
(b) Using the substitution $t=\tan \frac{\theta}{2}$ or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sin \theta+2}$
(c) By considering $y=x^{2}-4 x+3$, draw on separate diagrams sketches of:
(i) $y^{2}=x^{2}-4 x+3$
(ii) $y=\frac{1}{x^{2}}-\frac{4}{x}+3 \quad$ Hint: You may wish to consider this graph as $y=f\left(\frac{1}{x}\right)$
(d) Let $I_{n}=\int x^{n} e^{x} d x$.
(i) Show that $I_{n}=x^{n} e^{x}-n I_{n-1}$.
(ii) Hence evaluate $I=\int_{1}^{2} x^{2} e^{x} d x$
(a) The base of a solid is the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Its volume consists of semicircular cross sections.
Mr Lee initially believed that the volume of the solid would be the same regardless of whether the semicircular cross-sections were parallel to the x-axis or the y-axis.

Mr Lee was wrong.

By showing appropriate calculations, find the ratio of the volumes of the two solids.
(b) Let $f(x)=5$ and $g(x)=x+\frac{4}{x}$.
(i) On the same diagram, sketch $y=f(x)$ and $y=g(x)$.

Clearly label any points of intersection.
(ii) The region bounded by $y=f(x)$ and $y=g(x)$ is rotated about the line $x=-1$.

By using the method of cylindrical shells, find the volume of the solid generated.
(c) In the triangle $A B C, D$ is the foot of the altitude from A.
P is any point on $A D$. The circle drawn with diameter $A P$ cuts $A C$ at R and $A B$ at S.

Prove that $B C R S$ is a cyclic quadrilateral.
(d) The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has asymptotes given by $y= \pm \frac{b x}{a}$.

Show that the product of the lengths of the perpendiculars from any point $P(a \sec \theta, b \tan \theta)$ on the hyperbola to its asymptotes is equal to $\frac{b^{2}}{e^{2}}$.

End of Question 13

(a) The tangents at $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on the hyperbola $x y=1$ intersect at $T\left(x_{0}, y_{0}\right)$.

(i) Show that the tangent at $P\left(x_{1}, y_{1}\right)$ has the equation $x y_{1}+y x_{1}=2$
(ii) Show that the chord of contact from T has the equation $x y_{0}+y x_{0}=2$
(iii) Show that x_{1} and x_{2} are the roots of the equation $y_{0} x^{2}-2 x+x_{0}=0$
(iv) Hence, or otherwise, show that the midpoint R of $P Q$ has coordinates $\left(\frac{1}{y_{0}}, \frac{1}{x_{0}}\right)$.
(v) Hence, or otherwise, show that as T moves on the hyperbola $x y=c^{2}, 0<c<1$, R moves on the hyperbola $x y=\frac{1}{c^{2}}$.

Question 14 continued

(b) A particle is travelling in a straight line with speed $v \mathrm{~m} / \mathrm{s}$.

Its acceleration is given by the equation $a=-k v$.
Initially it is at the origin travelling at a speed of $U \mathrm{~m} / \mathrm{s}$.
(i) Prove that $a=v \frac{d v}{d x} \quad 1$
(ii) Find an expression for the particle's velocity v in terms of its displacement x 2
(iii) Find an expression for the particle's velocity v in terms of time t. $\mathbf{2}$
(iv) Hence, or otherwise, find its limiting displacement as $t \rightarrow \infty \quad \mathbf{1}$

End of Question 14

(a) A cubic equation $x^{3}+b x^{2}+c x+d=0$ has roots α, β, γ.
α, β, γ are in geometric progression and the middle root $\beta=-6$.
It is also known that $\alpha \beta+\beta \gamma+\alpha \gamma=156$.
Find the equation of this cubic expressed in the form $x^{3}+b x^{2}+c x+d=0$.
(b) It is known that $x^{3}-6 x^{2}+11 x+a-4=0$ has three distinct integer solutions.

Find the value of a and the three integer solutions.
(c) (i) Find all the fifth roots of 1 and plot them on the unit circle.
(ii) Let ω represent a non-real fifth root of 1 , such that $0<\arg \omega<\frac{\pi}{2}$.

Show that the five roots of 1 can be represented as $1, \omega, \omega^{2}, \omega^{3}, \omega^{4}$
(iii) Show that $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)=5$
(iv) Show that $(1-\omega)\left(1-\omega^{4}\right)=2-2 \cos \frac{2 \pi}{5}$
(v) Hence, or otherwise, find the exact value of $\sin \frac{\pi}{5} \sin \frac{2 \pi}{5}$

End of Question 15

(a) When a certain polynomial $P(x)$ is divided by $(x-2)$ its remainder is -5 .

When $P(x)$ is divided by $(x-1)$ its remainder is -2 .
Find the remainder when $P(x)$ is divided by $(x-1)(x-2)$.
(b) Let $f(x)=\frac{\sin x+1}{3 \sin x+2}$.
(i) Prove that $f(x)$ is a decreasing function for $0<x<\frac{\pi}{2}$.
(ii) Hence, or otherwise, prove that $\frac{(\sqrt{2}-1) \pi}{12}<\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin x+1}{3 \sin x+2} d x<\frac{\pi}{28}$
(c) (i) By induction, show that for each positive integer n there are unique positive integers p_{n} and q_{n} such that $(1+\sqrt{2})^{n}=p_{n}+q_{n} \sqrt{2}$
(ii) Hence also show that $p_{n}{ }^{2}-2 q_{n}{ }^{2}=(-1)^{n}$
(d) The shaded area in the diagram is bounded by the curves $y=\sin x, y=\cos x$ and $y=1$. This area is rotated around the y-axis.

(i) By differentiation or otherwise, show that $\sin ^{-1} y+\cos ^{-1} y=\frac{\pi}{2}$
(ii) By using the method of slicing discs, find the volume of the solid generated.

End of Question 16
 End of Paper

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{a x} \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\sin \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x
\end{array}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

2019 Buther Getengion 2 Irial HSC
(1)
(1) 5ime $b>a$,

$$
\begin{aligned}
& a^{2}=b^{2}\left(1-c^{2}\right) \\
& \therefore 4=9\left(1-c^{2}\right) \\
& \therefore 1-e^{2}=\frac{4}{4} \\
& e^{2}=\frac{5}{9} \therefore e=\frac{\sqrt{5}}{3} \therefore C
\end{aligned}
$$

(6) Let $y=\frac{1}{x} \quad \therefore x=\frac{1}{y}$

For $x=04 x=1$

$$
x^{n}=x^{n+1}
$$

$$
\begin{aligned}
& \therefore \frac{2}{y^{3}}-\frac{5}{y^{2}}+\frac{2}{y}-1=0 \\
& \therefore 2-5 y+2 y^{2}-y^{3}=0 \\
& \therefore x^{3}-2 x^{2}+5 x-2=0 \quad \therefore B
\end{aligned}
$$

(7)
(2) b
(3)

$$
\begin{aligned}
& \text { 3e=3 } \\
& \frac{a}{e}=\frac{4}{3} \rightarrow \begin{array}{l}
3 a=4 e \\
e=\frac{3 a}{4}
\end{array} \\
& \therefore a+\frac{3 a}{4}=3 \\
& a^{2}=4-2-e=3 / 4 \\
& \left.a^{2}=2+e^{2}-1\right) \\
& \therefore b^{2}=4\left(\frac{a}{4}\right) \\
& b^{2}=4 \times \frac{5}{4}-5 \\
& \therefore \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 \therefore A
\end{aligned}
$$

$2 x+2 y \frac{d y}{2 x}+y+x \frac{d y}{2}=0$

$$
\frac{d y}{d x}=\frac{-(2 x+y)}{x y+x}=0 \text { for }
$$

$$
\therefore 2 x=-y(x \neq 0)
$$

$$
\text { harizatel tay } \therefore \int_{0}^{1} 1+x^{n} d x \int_{0}^{1} 1+e^{n} d x
$$

$$
\therefore x^{2}+4 x^{2}-2 x^{2}=5
$$

$$
\therefore \int_{0}^{0} \frac{1}{1+x^{x}} d x<\int_{-}^{1} \frac{1}{1+2^{n+1}} d x
$$

$$
3 x^{2}=5
$$

$$
x= \pm \sqrt{3}
$$

\therefore As sice aluwhy the
$\therefore A$ porut $\left(\sqrt{\frac{1}{3}},-2 \sqrt{\frac{5}{3}}\right)=\left(-\sqrt{5}, 2 \sqrt{\frac{5}{3}}\right)$ two withel horizelat teyct $\therefore C$
(8) Mbt sha $A=0$ due to od $f=$
$N O C=\operatorname{since} \tan ^{3} x=\tan x \tan ^{2} x=\tan x(\sec -1)$
Cant we how B woth...
$M\left(x-x--\int_{0}^{a} f(x) d x=\int_{0}^{x} f(a-x)^{d x} \cdot \operatorname{stx}^{5 x}=1\right.$
(4)
(5) D since z^{2} doutin the argumed and the 2 dowen the moderlues

$$
\begin{aligned}
& \therefore \quad 16+4 m+2 n+28=0 \\
& 4 m+2 n=-44 \\
& 2 m+n=-2 z \\
& P^{\prime}(2)=A(2)^{3}+2 m(2)+n=0 \\
& 32+\cos +\infty=0 \\
& 4 n+n=-32 \\
& \therefore 2 m=-10 \\
& m=-5 \\
& n=-12 \\
& \therefore B
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \text { (a) }(i)(a+b i)^{2}=15-8 i \\
& \therefore a^{2}-b^{2}=15 \\
& 24 b=-8 \Rightarrow b=-\frac{4}{a} \\
& \therefore a^{2}-\frac{16}{a}=15 \\
& a^{4}-15 a^{2}-16=0 \\
& \left(a^{2}-1 b\right)\left(a^{2}+1\right)=0 \\
& \therefore a^{2} \pm 4,4144 a \operatorname{anct} \\
& \therefore b=71 \\
& \therefore \sqrt{15-8 i}= \pm(4-i)
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
z & =\frac{-6 \pm \sqrt{36-4(-6+8})}{2} \\
& =\frac{-6 \pm \sqrt{36+4-32 i}}{2} \\
& =\frac{-6 \pm \sqrt{60-32 i}}{2} \\
& =\frac{-6 \pm 2 \sqrt{15-8 i}}{2} \\
& =-3 \pm \sqrt{15-8 i} \\
& =-3 \pm(4-i) \\
z & =1-i \quad r-7+i
\end{aligned}
$$

(b)
(i) $1 / 13 \quad 20, \frac{1}{3}$
(i) $2^{n} \cos \frac{n \pi}{3}$ real?

When $\frac{n \pi}{3}= \pm h \pi$ (h hater)

$$
\therefore n= \pm 3 k
$$

$$
\begin{aligned}
& \therefore n= \pm 3 n \\
& \therefore n+\operatorname{mop} \text { pe }+3
\end{aligned}
$$

(c)

$\mathrm{AC}_{1} \mathrm{BC}_{2}$ in a square
Mid ${ }^{2} A B=(5, O)$ wist of aton 3

$$
\begin{aligned}
& M \text { Lid }+A B=(5, o) \quad \therefore M_{c_{1} c_{2}}=-3 \\
& M_{A B}=\frac{2}{6}=\frac{1}{3} \therefore{ }^{2} \text { right } 1, \text { own } 3
\end{aligned}
$$

\therefore From $(5, \rho)$ go right 1 dow $3 \mathrm{fr}_{2}$ \& go left ir M $3 \mathrm{FCl}_{1}$
Thin is beeper Lieges bizet end othedry or lond are the pave low gt

$$
\begin{aligned}
& \text { the pave } C_{2}(6,-3) \cdot c_{1}(4,3) \\
& \therefore 2=6-3 i+4+3
\end{aligned}
$$

$\therefore C_{2}(6,-3) \cdot C_{1}(4,3)$
$\therefore 3_{3}=6-3 i+4+3$

$$
\begin{aligned}
& \frac{d y}{d x}=1\left(2^{2}\right)+\left(2^{2} L^{2}\right) x \\
&=2^{2}\left(1+x x^{2}\right) \Rightarrow-0 \text { fo } \operatorname{sta}^{2} p^{2} \\
& \therefore x+2=-1 \quad \therefore x=-\frac{1}{\ln 2}
\end{aligned}
$$

(ii) $x 2^{x}=k x$
(ii) $x^{2}=2 x$
phat erect when t h $y=$ han in tort $t=y=x^{2}$ at the erne.
$\operatorname{comecos}+\left(y-x 2^{2}+z=0\right.$
$\therefore 2^{0}(1+0)=1$
$\therefore k>0$ except $k=1$
(in)

$$
\begin{array}{r}
\text { (a) (i) } A\left(y^{2}+4\right)+(x-2)(B x+C) \equiv 1 \\
x=2: B A=1 \quad \therefore A=\frac{3}{8} \\
x=0: 4 A-2 C=1 \quad \therefore \frac{1}{2}-2 C=1 \\
\therefore 2 C=-\frac{1}{2} \\
C=-\frac{1}{4}
\end{array}
$$

$$
\operatorname{Cotf} x^{2}: A+B=0 \quad \therefore B=-\frac{1}{8}
$$

(i) $\int \frac{\frac{1}{8}}{x-2}+\frac{-\frac{1}{8} x-\frac{1}{4}}{x^{2}+4} d x$

$$
\begin{aligned}
& =\frac{1}{8} \int \frac{1}{x-2}-\frac{x+2}{x^{2}+4} d x \\
& =\frac{1}{8} \int \frac{1}{x-2}-\frac{x}{x^{2}+4}-\frac{2}{x^{2}+4} d x \\
& =\frac{1}{8} \int \frac{1}{x-2}-\frac{1}{16} \int \frac{2 x}{x^{2}+4}-\frac{1}{4} \int \frac{1}{x^{2}+4} \\
& =\frac{1}{8} \ln |x-2|-\frac{1}{16} \ln \left|x^{2}+4\right|-\frac{1}{4} \times \frac{1}{2} \tan ^{-1} \frac{x}{2}+c \\
& =\frac{1}{8} \ln |x-2|-\frac{1}{4} \ln \left|x^{2}+4\right|-\frac{1}{8} \tan ^{-1} x+c
\end{aligned}
$$

(ii) $f(1)$ and $f\left(\frac{1}{x}\right)$ are the some for
(c) $\int_{(2,-1)}^{y-2}(x-1)(x-3)$
(i) $y= \pm \sqrt{x^{2}-4 x+3}$
 $x= \pm 1$, and are reflections of each other i- the Dies $x= \pm 1$, albeit the reflection are stretched and squalled.

$$
\begin{aligned}
& \text { (d) } \\
& I_{n}=\int^{\frac{M}{n}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{n}=x e^{x}-n \int_{x}^{x-1} e^{x} d x \\
& I_{n}=x^{n} e^{x}-n I_{n-1} \\
& \begin{array}{l}
\frac{\Delta t}{d t}=\frac{1}{2} \sec ^{2} \theta=\frac{1}{2}\left(1+\tan ^{2} \frac{\theta}{2}\right)=\frac{1}{2}\left(1+t^{2}\right) \leqslant=3 \\
\therefore 2 d t=\left(1+t^{2}\right) d \theta
\end{array} \\
& \therefore \omega=\frac{2 \Delta t}{1+t^{2}} \\
& \theta=0: \theta=? \\
& \theta=\mathrm{r}_{2}: \theta=\tan -\frac{\pi}{4}=1 \\
& \therefore \int_{0}^{1} \frac{2 d t}{1+t^{2}} \times \frac{1}{\frac{2 t}{1+t^{2}}+2} \\
& =\int_{0}^{1} \frac{2 d t}{\partial t+2+v t^{2}}=\int_{0}^{1} \frac{\mu t}{t^{2}+t+1} \\
& =\int_{0}^{1} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}=\left[\frac{1}{\frac{\sqrt{1}}{2}} \tan ^{-1} \frac{\left(t+\frac{1}{2}\right)}{\sqrt{2}}\right]_{0}^{1} \\
& \text { (ii) } I_{2}=x^{2} e^{x}-2 I_{1} \\
& I_{1}=x e^{2}-I_{0} \\
& I_{0}=e^{x} \\
& \therefore I_{1}=x e^{x}-e^{x} \\
& \therefore I_{2}=x^{2} e^{x}-2 x e^{x}+1 e^{x}=e^{x}\left(x^{2}-2 x+2\right) \\
& \therefore I=\left[e^{x}\left(x^{2}-2 x+2\right)\right]_{1}^{2} \\
& =\left[\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)\right]_{0}^{1}=\frac{2}{\sqrt{3}}\left(\tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{\sqrt{3}}\right) \\
& =e^{2}(4-4+2)-e(1-2+2) \\
& =\frac{2}{\sqrt{3}}\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} \frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}} \times \frac{\pi}{6}=\frac{\pi}{3 \sqrt{3}}=2 e^{2}-e(x e-1)
\end{aligned}
$$

(3) (c)

 tapien y

$$
\begin{aligned}
& \therefore \Delta y_{1}=\frac{\pi y^{2} \Delta x}{2} \\
& v_{1}=2 \int_{0}^{a} \frac{\pi y^{2}}{2} \Delta x
\end{aligned}
$$

(ii)

$$
=\pi \int_{0}^{a} y^{2} d x
$$

Maw $\frac{y^{2}}{b^{2}}=1-\frac{y^{2}}{d^{2}}$

$$
=\pi \int_{0}^{a} b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)^{d x}
$$

$$
=\pi b^{2} \int_{0}^{4} 1-x^{2} d x
$$

$$
=\pi b^{2}\left[x-x^{3} y^{2}\right]_{0}^{a}
$$

$$
=\pi 1 b^{2}\left[a-\frac{a}{3}\right]=\frac{2 \pi a b^{2}}{3}
$$

V_{2} : Cins-rution proded to x-axis Brivest x

$$
\therefore \Delta v_{2}=\frac{\pi t_{2}^{2}}{2} \Delta y
$$

$$
v_{2}=2 \int_{0}^{2} \frac{\pi x^{2}}{2} d y
$$

$$
\begin{aligned}
& \therefore \Delta v=2 \pi(x+1)\left(5-x-\frac{5}{x}\right) \Delta s \\
& \therefore V=2 x \int_{1}^{4}(x+1)\left(5-x-\frac{4}{x}\right) d x \\
& V=2 \pi \int_{0}^{4} 5 x-x^{2}-4+5-x-\frac{4}{x} d x \\
& \operatorname{Mov} \frac{x^{2}}{d^{2}}=1-\frac{y^{2}}{b}=2 \pi\left[2 x^{2}-x^{3}+x-4 h x\right]_{1}^{4} \\
& \therefore x^{2}=a^{2}\left(1-y^{2}\right)=2 \pi\left[32-6 \frac{4}{3}+4-4 \cot \right. \\
& \begin{aligned}
&=2 \pi]_{4}^{4 x-x+1} 2 \\
&=2 \pi\left[2 x^{2}-x^{3}+x-4 \lambda x\right]_{1}^{4} \\
&=2 \pi\left[32-6 \frac{4}{3}+4-4 h+\right. \\
&\left.-2^{2}+\frac{1}{3}-1+0\right] \\
&=2 \pi[12-4 \alpha-4]=8 \pi(3.4+4) 4^{3}
\end{aligned} \\
& \begin{aligned}
&=2 \pi]_{4}^{4 x-x+1} 2 \\
&=2 \pi\left[2 x^{2}-x^{3}+x-4 \lambda x\right]_{1}^{4} \\
&=2 \pi\left[32-6 \frac{4}{3}+4-4 h+\right. \\
&\left.-2^{2}+\frac{1}{3}-1+0\right] \\
&=2 \pi[12-4 \alpha-4]=8 \pi(3.4+4) 4^{3}
\end{aligned} \\
& =2 \pi \int_{1}^{4} 4 x-x^{2}+1-\frac{4}{2} d
\end{aligned}
$$

$$
=\pi a^{2}\left[y-7 \frac{3}{3}\right]_{0}^{b}
$$

$$
=\pi \mathrm{c}^{2}[b-2]=\frac{2 \pi a^{2} b}{3}
$$

$$
\begin{aligned}
& \begin{array}{l}
\therefore \frac{V_{1}}{V_{2}}=\frac{\frac{2 \pi b^{2}}{3}}{2 \pi a^{2}}=\frac{6 \pi b^{2}}{6 \pi a^{2} b}=\frac{b}{a} \\
\text { ARtos } V_{1} v_{2}=b: 9
\end{array} \\
& \text { or Rato } V_{2} * V_{1}=a=L
\end{aligned}
$$

(c)

C
D
Join RS and RP

$$
\text { let } \angle A B D=\theta
$$

$\therefore \angle D A B=90-\theta($ angle sum $\triangle A B D)$
$\therefore \angle P R S=90-\theta$ (angles at circumference on same arc PS)
$\angle A R P=90^{\circ}$ (angle in semicircle since AP is diameter)

$$
\therefore \angle A R S=90-(90-\theta)=\theta(\text { subtraction })
$$

$\therefore B C R S$ cyclic quad (exterior angle $=$

\therefore Product $=$
$\frac{|b a \sec \theta-a b \tan \theta|}{\sqrt{b^{2}+(-a)^{2}}} \times \frac{|b a \sec \theta+a b \tan \theta|}{\sqrt{b^{2}+a^{2}}}$
(14)

$$
\therefore \angle A R S=\angle A B D
$$

$$
\begin{gathered}
\text { Now } b^{2}=a^{2}\left(e^{2}-1\right) \\
\therefore e^{2}-1=\frac{b^{2}}{a^{2}} \therefore e^{2}=\frac{b^{2}}{a^{2}}+1=\frac{b^{2}+a^{2}}{a^{2}} \\
\therefore \frac{1}{e^{2}}=\frac{a^{2}}{b^{2}+a^{2}} \\
\therefore \frac{b^{2} a^{2}}{b^{2}+a^{2}}=b^{2} \times \frac{1}{e^{2}}=\frac{b^{2}}{e^{2}}
\end{gathered}
$$

$$
\text { (i) } y=\frac{1}{x} \therefore \frac{d y}{d x}=-\frac{1}{x^{2}}
$$

At $x=x_{1}, y=-\frac{1}{x_{1}{ }^{2}}$

$$
\begin{aligned}
& \therefore y-y_{1}=-\frac{1}{x_{1}^{2}}\left(x-x_{1}\right) \\
& \therefore x_{1}^{2} y-x_{1}^{2} y_{1}=-x+x_{1}
\end{aligned}
$$

But $x_{1} y_{1}=1 \quad \therefore x_{1}^{2} y-x_{1}=-x+x_{1}$

$$
\begin{aligned}
& \therefore x_{1}^{2} y+x=2 x_{1} \quad\left(\div x_{1}\right) \\
& \therefore x_{1} y+\frac{x}{x_{1}}=2
\end{aligned}
$$

Now $\frac{1}{x_{1}}=y_{1}$

$$
\begin{aligned}
x_{1}+x y_{1} & =2 \\
\therefore x_{1} y+x & =2
\end{aligned}
$$

ie $x y_{1}+y x_{1}=2$
(i) Tangent at P parser through T
$\therefore F A C T: x_{0} y_{1}+y_{0} x_{1}=2$ i
Tangent at a has eq $=$

$$
x y_{2}+y x_{2}=2
$$

It parker through T

$$
\therefore \text { FACT: } x_{0} y_{2}+y_{0} x_{2}=2
$$

Consider the line $x y_{0}+y x_{0}=2$.
Dos at pan though $P\left(x_{1}, y_{1}\right)$?
ie. does $x_{1} y_{0}+y_{1} x_{0}=2$? YE J!
Does it pan through $Q\left(x_{2}, y_{2}\right)$? ie doe $x_{2} y_{0}+y_{2} x_{0}=2$?.
isince

$$
\begin{aligned}
& \text { since } \\
& x y_{0}+y x_{0}=2
\end{aligned}
$$

is a line that panes thong P and Q, the equation of P is
ie. chord of contact for T is $y_{0}+y_{0}+x_{0}=2=2$

of rimuotaneber ofny indery

$$
\begin{gathered}
x y_{0}+x_{0}=2 \quad y=\frac{1}{x} \\
\therefore x_{0}+\frac{x_{0}}{x}=2 \\
\therefore x_{0}+x_{0}=2 x \\
x_{0} x^{2}-2 x+x_{0}=0 \\
(14) x_{0}+x_{2}=\frac{2}{2}=\frac{1}{2}=\frac{40}{2}
\end{gathered}
$$

4. condtate of mat Pa is yo
(V)

$$
\begin{aligned}
& \frac{d t}{d v}=-\frac{1}{u v} \\
& \therefore t=-\frac{1}{v^{2}} A+c
\end{aligned}
$$

Whet $+a, v=\square$

$$
\begin{aligned}
& \therefore 0=\frac{-L v}{h}+c \therefore c=\frac{L}{k} \\
& \therefore+=\frac{1}{k}\left(\frac{y}{v}\right) \\
& \therefore e^{k h}=\frac{v}{v} \quad V=v e^{-h t}
\end{aligned}
$$

$(i v) A, 4 \rightarrow 0, y \rightarrow 0(\sin \rightarrow 2 y \mid x)$
$A V=D, \quad U-K x \rightarrow 0$

$$
\begin{aligned}
& y_{0}-x=\frac{1}{y_{0}}, \frac{1}{y_{0}} y_{0} y y_{0}=2 \quad \therefore 1+y x_{0}=2 \\
& \Rightarrow y x_{6}=1 \\
& \therefore y=\frac{1}{x}
\end{aligned}
$$

$=y \operatorname{costhan}$ of mptas an in

$$
A=A\left(\frac{1}{40}, \frac{1}{20}\right)
$$

(13)
(v) If T (x, y) Lien on $x y=c^{2}+\sin$

$$
\left.x_{o}\right)_{0}=c^{2}
$$

Jhs: Bet $\frac{1}{y_{0}}+\frac{1}{x_{0}}=\frac{1}{c^{2}}$?
Deve $\frac{1}{x_{0}^{2}}=L^{2}$?
Ten $\frac{1}{c^{2}}=\frac{4}{c^{2}} 7 e^{2}$.

$(b)(i) \quad a=\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}=\frac{d y}{d x} \cdot v=\frac{d y}{d x}$

$$
\begin{gathered}
(i) \quad-h v=v \frac{d}{d} \quad: \quad \frac{d y}{d x}=-h \\
\therefore v=-h x+c \quad \text { whe } x=0, v=0 \\
\therefore v=C \quad \because=0-h x
\end{gathered}
$$

(b) If $y=x^{3}-6 x^{2}+11 x+a-d$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-14+4=0 \quad 3=\frac{12 \pm \sqrt{14-1}+2}{6}=\frac{12 \sqrt{42}}{6} \\
& (1423
\end{aligned}
$$

 Then $x=2$ must k inderses

$$
\begin{aligned}
& \therefore p(2)=0 \\
& \therefore 8-24+22+a-4=0 \\
& \therefore a=-2 \\
& \therefore x^{3}-6 x^{2}+11 x-6=0 \\
& \therefore(x-2)\left(x^{2}-4 x+3\right)=0 \\
& \therefore(x-2)(x-1)(x-3)=0 \\
& \therefore a=-2 \text { (ntege when:1,2,3 }
\end{aligned}
$$

(c)
(i) $z^{5}=1$
$\therefore z^{5}=\cos (0+2 c \pi)$, in when
$\therefore z=0 \quad \frac{2 \omega \pi}{5}$
$\therefore z=1, \sin \frac{2 \pi}{5}, \cos \frac{4 \pi}{5}, \cos \frac{-2 \pi}{5}, \cos \frac{-4 \pi}{5}$
(iv)

$$
\begin{aligned}
L H & =1-\omega-\omega+\omega \\
& =1-(\omega+\omega)+1 \\
& =2-(\omega+\omega)
\end{aligned}
$$

No $\omega+\omega^{4}=\omega^{2} \frac{2 \pi}{5}+\omega_{j}-\frac{2 \pi}{5}$

$$
=\cos \frac{2 \pi}{5}+i \sin \frac{4 \pi}{5}
$$

$$
+\cos -\frac{5 \pi}{5}+i \sin -\frac{2 \pi}{5}
$$

$$
=200 \frac{2 \pi}{5}
$$

$$
\therefore L H)=2-2 \cos \frac{2 \pi}{5}
$$

(v) Similars, $\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)$

$$
\begin{aligned}
& =2-\left(\omega^{2}+\omega^{3}\right) \\
& =2-2 \cos \frac{41}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore\left(2-2 \cos \frac{\pi}{5}\right)\left(2-2 \cos \frac{4 \pi}{5}\right)=5 \\
& \therefore\left(1-\cos \frac{\pi}{5}\right)\left(1-\cos \frac{4 \pi}{5}\right)=\frac{5}{4}
\end{aligned}
$$

NaN $\cos 2 \theta=1-2 \sin ^{2} \theta$

$$
\begin{aligned}
& \therefore-\cos ^{2} \theta=2 \sin ^{2} \theta-1 \\
& \therefore 1-\cos 2 \theta=2 \sin ^{2} \theta
\end{aligned}
$$

(ii) $\omega=\omega \frac{2 \pi}{5}$

$$
\therefore\left(2 \sin ^{2} \frac{\pi}{7}\right)\left(2 \sin ^{2} \frac{2 \pi}{4}\right)=\frac{5}{4}
$$

$$
\begin{aligned}
\therefore \omega^{2} & =\omega \frac{4 \pi}{5} \\
\omega^{2} & =\omega \frac{6 \pi}{5}
\end{aligned}=\omega\left[-\left(2 \pi-\frac{\pi}{3}\right)\right]=\dot{\omega}\left(-\frac{4 \pi}{5}\right)
$$

(6)
$\therefore 5^{12}$ not of $1=1, \omega_{i} \omega_{t}^{2}, \omega^{2}, \omega^{4}$
(iii)

$$
\begin{aligned}
& z^{5}=1 \quad \because z^{5}-1=0 \\
& \therefore(z-1)\left(z^{4}+z^{4}+z^{2}+z+1\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sin ^{2} \frac{\pi}{5} \sin ^{2} \frac{2 \pi}{5}=\frac{5}{6} \\
& \therefore \sin \frac{\pi}{5} \sin \frac{2 \pi}{5}=\frac{\sqrt{5}}{4}\left(\begin{array}{l}
\tan 2+4 \\
\sin 24 \\
5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } P(2)=-5, P(1)=-2 \\
& P(x)=Q(x)(x-1)(x-2)+(a x+b)
\end{aligned}
$$

since remater it hear of divior of quab-dx

$$
\therefore(a)=-5=0+2 a+b \quad \therefore 2 a+b=-5
$$

$$
\begin{aligned}
& t+10 \\
& (z-1)(z-w)\left(z-w^{1}\right)\left(z-w^{3}\right)\left(z-w^{4}\right)=D \text {. } \\
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=-5=0+2 a+b \quad \therefore a+b=-2 \\
& P(0)=-2=0+0+b \quad \therefore
\end{aligned}
$$

sime he 5ines of 1 ve dofoud ingii)
$\therefore(z-1)\left(z^{4}+z^{2}+z^{2}+z+1\right)=(z-1)(z-\omega)\left(z-\omega^{2}\right)\left(z-w^{3}\right)\left(z-\omega^{2}\right)$

$$
\therefore z^{4}+z^{3}+z^{2}+z+1=(z-w)\left(z-w^{2}\right)\left(z-w^{3}\right)\left(z+w^{*}\right)
$$

$$
\begin{gathered}
\therefore a=-3 \\
b=1
\end{gathered}
$$

\therefore Remainder A_{1} $-3 x+1$

Lot $z=1 \therefore$
(b) (i) f

Area squened beturen 2 recturgher, widen $\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12}$
(d) (i) Let $x=\sin ^{-1} y+\cos ^{-1} y$

$$
\frac{d x}{d y}=\frac{1}{\sqrt{1-y^{2}}}-\frac{1}{1-y^{4}}=0
$$

how the sart value for -lsysl Sbeptate $y=1 \therefore x=\operatorname{sen}^{-1} 1+\mathrm{cos}^{-11}$

$$
\therefore \sin ^{-1} y+\cos ^{-1} y=\frac{\pi}{2}
$$

$$
=\frac{1}{1}+0=\frac{\pi}{2}
$$

$$
\therefore \quad \frac{(\sqrt{2}-1) \pi<}{12}<
$$

(c) (i) Let $n=1, L H S=1+\sqrt{2} \therefore P_{1}=1+a, \quad \therefore \quad T_{n=1} f=\frac{\pi_{2}^{2}}{2}$
 where $\mathrm{P}_{\mathrm{x}} \mathrm{cq}_{\mathrm{x}}$ ar wique istedyen

Pase : $L H S=(1+\sqrt{2})^{k}(1+\sqrt{2})=\left(P_{k}+q_{k} \sqrt{v}\right)(1+\sqrt{2})$

Shee P_{k} "t L_{k} are unipherthen,
So are $p_{k}+2 q_{k}$ \& $p_{k}+q_{k}$

$$
\begin{aligned}
& \therefore=p_{k+1}+q_{k+1}^{\sqrt{2}} \\
& =\frac{\pi^{3}}{2}-\frac{\pi^{3}}{4 \sqrt{2}}-\left[\pi^{2} \sqrt{2} \sqrt{2} \sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}-\frac{\pi^{3}}{4}+\frac{\pi}{4}+\frac{\pi^{3}}{4 \sqrt{2}} \\
& =\frac{\pi^{3}}{2}-m^{3}
\end{aligned}
$$

\therefore Tree on rathemotical Ind-ction
(ii) Now theve $p_{n}-q_{n} \sqrt{2}=(1-\sqrt{z})^{n}$, wht $p_{m}+q_{A}=\left(\frac{\pi}{4}-\frac{\pi}{\sqrt{2}}-2\right)$

 \therefore The is mathemaxied inde in 24

$$
\begin{aligned}
& \therefore \frac{\pi}{12}\left(\frac{1+\sqrt{2}}{3+2 / 2}\right)< \\
& \therefore \frac{\pi}{12} \frac{(1+\sqrt{2})(5-\sqrt{2})}{9-8}< \\
& \cdots<\frac{3 \pi}{34}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\cos x(3 \sin x+2)-3 \cos x(\sin x+0)}{\left(3^{\sin x+2}\right)^{2}} \\
& \begin{array}{r}
=\frac{-\cos x}{\left(3 \sin ^{2} x+2\right)^{2}} \text {, for } 0<x<\frac{\pi}{2}, \text { top ove, } \\
\therefore f^{\prime}(x)<0 \therefore \text { dencer }
\end{array} \\
& \left.\therefore f^{\prime}(\mathrm{c})-b \mathrm{~A} \text { decrean }+7\right)=(-1)^{n}=a \mathrm{MS} \\
& \left.\therefore L H S=\left(p_{n}-\sqrt{h} q_{m}\right) / p_{n}+\sqrt{l_{n}} q_{n}\right) \\
& =(t-\sqrt{n})^{n}(1+\sqrt{L})^{n} \\
& -(0-\sqrt{2})(1+\sqrt{2}))^{\prime}=(1-2)^{n}
\end{aligned}
$$

