

Student Number

2014 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

PM Thursday 1st August

Section I – Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		(A) 🔿	(B) •	(C) 🔿	(D) 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $(A) \bullet (B) \checkmark (C) \bigcirc (D) \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

Start →	1.	AO	вО	сO	DО
nere	2.	AO	ВО	CO	DO
	3.	AO	ВО	CO	DO
	4.	АO	вО	сO	DO
	5.	AO	ВΟ	сO	DO
	6.	AO	ВΟ	сO	DO
	7.	AO	ВΟ	сO	DO
	8.	AO	ВО	CO	DO
	9.	AO	ВО	сO	DO
	10.	АO	вО	сO	DО

BLANK PAGE

2014 YEAR 12 TRIAL HSC EXAMINATION

Mathematics Extension 2

Staff Involved:

- BHC
- VAB
- KJL*
- GDH*

Number of copies: 40

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks – 100

(Section I) Pages 2-6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- (Section II) Pages 7-15

90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

PM 1st AUGUST 2014

Section I — Multiple Choice

10 marks

Attempt Questions 1-10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. What is the eccentricity of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$?

2. The graph of a function y = f(x) is shown below.

Which of the following statements is true?

- (A) f(x) is not continuous at x = 2 and f(x) is not differentiable for -2 < x < 2
- (B) f(x) is not continuous at x = 2 and x = -2, and f(x) is not differentiable at x = 2and x = -2
- (C) f(x) is not continuous at x = 2, but f(x) is differentiable for all x
- (D) f(x) is not continuous at x = 2 and not differentiable at x = 2 and x = -2

3. The graph below shows a hyperbola, including the equations of the directrices and the coordinates of the foci.

DIAGRAM NOT TO SCALE

The equation of this hyperbola is:

(A) $\frac{x^2}{4} - \frac{y^2}{5} = 1$

(B)
$$\frac{x^2}{5} - \frac{y^2}{4} = 1$$

(C)
$$\frac{x^2}{16} - \frac{y^2}{25} = 1$$

(D)
$$\frac{x^2}{2} - \frac{y^2}{5} = 1$$

4. The polynomial $P(x) = x^4 + mx^2 + nx + 28$ has a double root at x = 2.

What are the values of *m* and *n*?

- (A) m = -11 and n = -12
- (B) m = -5 and n = -12
- (C) m = -11 and n = 12

(D)
$$m = -5 \text{ and } n = 12$$

5. Diagram A shows the complex number *z* represented in the Argand plane.

DIAGRAM A

DIAGRAM B

Diagram B shows:

- (A) z^2
- (B) 2*i*z
- (C) –2*z*
- (D) $2z^2$
- 6. Let α , β , γ be the roots of $2x^3 5x^2 + 2x 1 = 0$. The equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$ is best given by:
 - (A) $x^3 + 2x^2 + 25x 2 = 0$
 - (B) $x^3 2x^2 + 5x 2 = 0$
 - (C) $x^3 2x^2 + 25x 8 = 0$
 - (D) $-2x^3 + 5x^2 2x + 1 = 0$

- 7. How many distinct horizontal tangents can be drawn on the graph of $x^2 + y^2 + xy 5 = 0$?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) More than 2

8. $\int_{0}^{\frac{\pi}{4}} \tan^{3} x \, dx$ is equal in value to:

(A)
$$\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^3 x \, dx$$

(B) $\int_{0}^{\frac{\pi}{4}} \frac{\pi}{4} - \tan^3 x \, dx$
(C) $\int_{0}^{\frac{\pi}{4}} \tan x (\sec^2 x + 1) \, dx$

(D)
$$\int_{0}^{4} \left(\frac{1-\tan x}{1+\tan x}\right)^{3} dx$$

9. The value of
$$\int_{-2}^{-1} \sqrt{4 - x^2} \, dx + \int_{1}^{2} \sqrt{4 - x^2} \, dx$$
 is:
(A) $\frac{4\pi}{3} - \sqrt{3}$
(B) $\frac{2\pi}{3} - \sqrt{3}$
(C) $\frac{2\pi}{3} - 2\sqrt{3}$
(D) $\frac{8\pi}{3} - \sqrt{3}$

10. The statement
$$\int_{0}^{1} \frac{dx}{1+x^{n}} < \int_{0}^{1} \frac{dx}{1+x^{n+1}}$$
 is:

- (A) Always true
- (B) Always false
- (C) Only true for positive *n*
- (D) Only true for negative *n*

End of Section I

Section II

90 marks

Attempt Questions 11-16.

Allow about 2 hours 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Show relevant mathematical reasoning and/or calculations.

Que	stion	11 (15 marks) [Use a SEPARATE writing booklet]	Marks
(a)	(i)	Find the square root of the complex number $15 - 8i$.	2
	(ii)	Hence or otherwise, solve $z^2 + 6z - 6 + 8i = 0$.	1
(b)	(i)	Write the complex number $z = 1 + \sqrt{3}i$ in modulus-argument form.	1
	(ii)	For what values of <i>n</i> is $(1 + \sqrt{3}i)^n$ completely real?	
		Justify your answer with appropriate reasoning.	2

(c) The points *A* and *B* represent the complex numbers $z_1 = 2 - i$ and $z_2 = 8 + i$ respectively. Find all possible complex numbers z_3 , represented by *C* such that $\triangle ABC$ is **isosceles** and **right-angled** at *C*.

3

(d) On the Argand diagram, sketch the locus of z defined by
$$\arg\left(\frac{z-(3+3i)}{z-2}\right) = \frac{\pi}{3}$$
. 2

Question 12 (15 marks)

[Use a SEPARATE writing booklet]

(a) (i) Find real numbers *A*, *B* and *C*, such that
$$\frac{A}{x-2} + \frac{Bx+C}{x^2+4} = \frac{1}{(x-2)(x^2+4)}$$
 2

(ii) Hence, or otherwise, find
$$\int \frac{1}{(x-2)(x^2+4)} dx$$
 2

(b) Using the substitution
$$t = \tan \frac{\theta}{2}$$
 or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta + 2}$ 3

(c) By considering $y = x^2 - 4x + 3$, draw on separate diagrams sketches of:

(i)
$$y^2 = x^2 - 4x + 3$$
 2

(ii)
$$y = \frac{1}{x^2} - \frac{4}{x} + 3$$
 Hint: You may wish to consider this graph as $y = f\left(\frac{1}{x}\right)$ 3

(d) Let $I_n = \int x^n e^x dx$.

(i) Show that
$$I_n = x^n e^x - nI_{n-1}$$
.

(ii) Hence evaluate
$$I = \int_{1}^{2} x^2 e^x dx$$
 2

End of Question 12

Marks

Question 13 (15 marks)

[Use a SEPARATE writing booklet]

(a) The base of a solid is the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Its volume consists of semicircular cross sections.

Mr Lee initially believed that the volume of the solid would be the same regardless of whether the semicircular cross-sections were parallel to the *x*-axis or the *y*-axis.

Mr Lee was wrong.

By showing appropriate calculations, find the ratio of the volumes of the two solids. 4

- (b) Let f(x) = 5 and $g(x) = x + \frac{4}{x}$.
 - (i) On the same diagram, sketch y = f(x) and y = g(x).

Clearly label any points of intersection.

2

(ii) The region bounded by y = f(x) and y = g(x) is rotated about the line x = -1.

By using the method of cylindrical shells, find the volume of the solid generated. **3**

Question 13 continues on page 10

Question 13 continued

(c) In the triangle *ABC*, *D* is the foot of the altitude from *A*.

P is any point on *AD*. The circle drawn with diameter *AP* cuts *AC* at *R* and *AB* at *S*.

Prove that *BCRS* is a cyclic quadrilateral.

3

3

(d) The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 has asymptotes given by $y = \pm \frac{bx}{a}$.

Show that the product of the lengths of the perpendiculars from any point $P(a \sec \theta, b \tan \theta)$ on the hyperbola to its asymptotes is equal to $\frac{b^2}{e^2}$.

Question 14 (15 marks)

(a) The tangents at $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the hyperbola xy = 1 intersect at $T(x_0, y_0)$.

(i)	Show that the tangent at $P(x_1, y_1)$ has the equation $xy_1 + yx_1 = 2$	2
(ii)	Show that the chord of contact from <i>T</i> has the equation $xy_0 + yx_0 = 2$	2
(iii)	Show that x_1 and x_2 are the roots of the equation $y_0x^2 - 2x + x_0 = 0$	2
(iv)	Hence, or otherwise, show that the midpoint <i>R</i> of <i>PQ</i> has coordinates $\left(\frac{1}{y_0}, \frac{1}{x_0}\right)$.	2
(v)	Hence, or otherwise, show that as <i>T</i> moves on the hyperbola $xy = c^2$, $0 < c < 1$,	
	<i>R</i> moves on the hyperbola $xy = \frac{1}{c^2}$.	1

Question 14 continues on page 12

Question 14 continued

- (b) A particle is travelling in a straight line with speed v m/s. Its acceleration is given by the equation a = -kv. Initially it is at the origin travelling at a speed of U m/s.
 (i) Prove that a = v dv/dx
 (ii) Find an expression for the particle's velocity v in terms of its displacement x.
 - (ii) Find an expression for the particle's velocity *v* in terms of its displacement *x*.
 (iii) Find an expression for the particle's velocity *v* in terms of time *t*.
 - (iv) Hence, or otherwise, find its limiting displacement as $t \to \infty$ 1

Question 15 (15 marks)

A cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α, β, γ . (a) α, β, γ are in geometric progression and the middle root $\beta = -6$. It is also known that $\alpha\beta + \beta\gamma + \alpha\gamma = 156$. Find the equation of this cubic expressed in the form $x^3 + bx^2 + cx + d = 0$. 3 It is known that $x^3 - 6x^2 + 11x + a - 4 = 0$ has three distinct integer solutions. (b) Find the value of *a* and the three integer solutions. 3 (c) (i) Find all the fifth roots of 1 and plot them on the unit circle. 1 Let ω represent a non-real fifth root of 1, such that $0 < \arg \omega < \frac{\pi}{2}$. (ii) Show that the five roots of 1 can be represented as 1, ω , ω^2 , ω^3 , ω^4 1 (iii) Show that $(1 - \omega)(1 - \omega^2)(1 - \omega^3)(1 - \omega^4) = 5$ 2 (iv) Show that $(1 - \omega)(1 - \omega^4) = 2 - 2\cos\frac{2\pi}{5}$ 2 Hence, or otherwise, find the exact value of $\sin \frac{\pi}{5} \sin \frac{2\pi}{5}$ (v) 3

Question 16 (15 marks)

(a) When a certain polynomial P(x) is divided by (x-2) its remainder is -5. When P(x) is divided by (x-1) its remainder is -2.

Find the remainder when P(x) is divided by (x-1)(x-2). 2

(b) Let
$$f(x) = \frac{\sin x + 1}{3\sin x + 2}$$
.

(i) Prove that
$$f(x)$$
 is a decreasing function for $0 < x < \frac{\pi}{2}$.

(ii) Hence, or otherwise, prove that
$$\frac{(\sqrt{2}-1)\pi}{12} < \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin x + 1}{3\sin x + 2} dx < \frac{\pi}{28}$$
 3

(c) (i) By induction, show that for each positive integer *n* there are unique positive integers p_n and q_n such that $(1+\sqrt{2})^n = p_n + q_n\sqrt{2}$ **2**

(ii) Hence also show that
$$p_n^2 - 2q_n^2 = (-1)^n$$
 2

Question 16 continues on page 15

Marks

Question 16 continued

(d) The shaded area in the diagram is bounded by the curves $y = \sin x$, $y = \cos x$ and y = 1.

This area is rotated around the *y*-axis.

- (i) By differentiation or otherwise, show that $\sin^{-1} y + \cos^{-1} y = \frac{\pi}{2}$ 1
- (ii) By using the method of slicing discs, find the volume of the solid generated. 4

End of Question 16 End of Paper

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^{2} ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

$$\frac{2014 \text{ Buthar Extension 2 Trial HSC}}{(a)} (b)$$

$$\frac{1}{2014 \text{ Buthar Extension 2 Trial HSC}} (c)$$

$$\frac{1}{2014 \text{ Buthar Extension 2 Trial HSC}$$

(i) (i)
$$(a+bi)^2 = 15 \cdot 6i$$

 $a^2 \cdot b^2 = 15$
 $bab = -8 \Rightarrow b = -\frac{4}{a}$
 $i a^2 \cdot b^2 = 15$
 $a^{4} \cdot (5a^2 - 16 = 2)$
 $a^{4} \cdot (5a^2 - 16 = 2)$
 $(a^{5} \cdot (b)(a^{2} + 1) = 2)$
 $i a = \frac{4}{15a^2} - (6 = 2)$
 $(a^{5} \cdot (b)(a^{2} + 1) = 2)$
 $i a = \frac{4}{15a^2} - (6 = 2)$
 $(a^{5} \cdot (b)(a^{2} + 1) = 2)$
 $i a = \frac{4}{15a^2} - (6 = 2)$
 $(a^{5} \cdot (b)(a^{2} + 1) = 2)$
 $i a = \frac{4}{15a^2} - (6 = 2)$
 $(a^{5} \cdot (b)(a^{2} + 1) = 2)$
 $(a^{5} \cdot (a^{2} + 1) =$

$$\begin{array}{c} (1) & (2) & (1) & A(x^{1+q}) + (x-1)(bx(x)) \equiv 1 \\ & x = 2 : bA = 1 \quad (-1) \quad A = \frac{1}{2} \\ & x = 0 : 4A - 2C \equiv 1 \quad (-1) \quad \frac{1}{2} - 2C \equiv 1 \\ & (-1) \quad (-1) \quad$$

$$\begin{array}{c} (3) (4) \\ (1) \\ (2) (4) \\ (2$$

$$\frac{V_1}{V_2} = \frac{2\pi ab^2}{3} = \frac{6\pi ab^2}{6\pi a^2 b} = \frac{b}{a}$$

$$\frac{2\pi a^2 b}{3} = \frac{6\pi ab^2}{6\pi a^2 b} = \frac{b}{a}$$

$$\frac{2\pi a^2 b}{3} = \frac{6\pi ab}{6\pi a^2 b} = \frac{b}{a}$$
or Ratio $V_1 \cdot V_2 = b \cdot a$
or Ratio $V_2 \cdot V_1 = a \cdot b$

(c)
A
A
Abu
$$b_{z}^{1}a^{2}(e^{L_{z}})$$
 $e_{z}^{1}a^{1}+1=\frac{b_{z}^{1}a^{2}}{a^{1}}$
 $e_{z}^{2}(z) \frac{b_{z}^{1}}{a^{1}}$, $e_{z}^{2}(z) \frac{b_{z}^{1}}{a^{1}}$
 $e_{z}^{2}(z)$

(III) X & X 2 are X-coordinates of simultaneous egis involving xyo+yxo=2 \$ y=± :. エリ。+ 大呉 = 2 :x2y0+x0=2x - y, x2-2x+x0=0 $(iv) = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$. X coordinate of midpt Par is yo Uhe x= 1 1 40+ yx0=2 ... 1+ yx0=2 .: yx0 = 1 - y= 1 in conducte of midget la is to 1. R (1 , 1) (V) If T(20, yo) lies on my=c" the えっっここ Does R Lie on my = -? Jush: Does 1x1 =1?? Doen 1 = 22! Boen to = ? Yes! . R morenon hyperbole my= -2 $(b(i) \alpha = dy = dy \cdot dy = dy \cdot v = vdy$ (1) - kv = v = i = - k , V=-hx+C . whe x=0, V=U .U=C .: V=U-kx

四些三寸 :. + = - 1 MV + C When t=0, V= U $i = -\frac{h}{k} + c$ $i = \frac{h}{k}$... キニセム(ビ) iekt= v iv=ve-bt (iv) As & >00, V -> O (onumby kro) ASV->0, U-6x->0 ie U-nkx ie x -> Y i. As t-> oo, x -> Y () (a) hors: -6,-6-Now 36 + 36+365 = 156 : 36+36++36+2=156+ 9+95+952=395 9r2-30r +9=0 319-101+3=0 (31-1)(1-3)=0 : r= 3 or 3 :. Roos = -18,-6,-2 Sum = -26. Product = -216 1. x3+26x2+156x+216=0 (b) If y=x3-6x2+(1x+a-4, dy - 3x2-12x+11 =0 Shad phy x = 12± JAQ-132 = 12± JIZ (1.423, 7 =2±0.577 ... since positive cubic with 3 ditived (250,) indeger solvis, 2 stat \$ below x-axis. Thus x=2 must be integersets

l