

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

General Instructions

.

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- In questions 11 16, show all relevant reasoning and/or calculations

Total marks - 100

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks

Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1 - 10.

1 An object moving in a circular path of radius 4 metres travels 48 metres in 3 seconds.

The angular speed of the object is:

- (A) 3 rad/s
- (B) 4 rad/s
- (C) 12 rad/s
- (D) 16 rad/s
- **2** What is the gradient of the tangent to the circle $x^2 2x + y^2 = 9$ at the point (0, -3)?

(A)
$$-\frac{1}{3}$$

(B) $-\frac{11}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$

- **3** The number of ways that 6 items can be divided between 3 people so that each person receives 2 items is:
 - (A) 6
 - (B) 27
 - (C) 90
 - (D) 360

4 Which of the following is the expression for $\int \sin^3 x dx$?

$$(A) \quad \frac{1}{3}\cos^3 x - \cos x + C$$

$$(B) \quad \frac{1}{3}\cos^3 x + \cos x + C$$

$$(\mathsf{C}) \quad \frac{1}{3}\sin^3 x - \sin x + C$$

(D)
$$\frac{1}{3}\sin^3 x + \sin x + C$$

5 A particle at *B* is attached to a string *AB* that is fixed at *A*. The particle rotates in a horizontal circle with a radius of *r*. Let *T* be the tension in the string and $\angle BOA = \theta$.

Which of the following statements is correct?

- (A) $T\cos\theta mg = ma$
- (B) $T\sin\theta = mr\omega^2$
- (C) T = -mg
- (D) T mg = ma

6 The polynomial equation $3x^3 - 2x^2 + x - 7 = 0$ has roots α, β and γ . Which polynomial equation has roots $\frac{2}{\alpha}, \frac{2}{\beta}$ and $\frac{2}{\gamma}$?

- (A) $3x^3 4x^2 + 4x 56 = 0$
- (B) $7x^3 2x^2 + 8x 24 = 0$
- (C) $x^3 2x^2 27x 49 = 0$
- (D) $24x^3 8x^2 + 2x 7 = 0$
- 7 The point $P(cp, \frac{c}{p})$ lies on the rectangular hyperbola $xy = c^2$. The equation of the normal to the hyperbola at P is:
 - (A) x + pqy = c(p+q)
 - (B) $x + p^2 y = 2cp$
 - (C) $px \frac{1}{p}y = cp^2\left(1 \frac{1}{p^2}\right)$

(D)
$$py - c = p^3(x - cp)$$

What is the eccentricity for the hyperbola $\frac{y^2}{225} - \frac{x^2}{64} = 1$?

(A) $\frac{8}{17}$ (B) $\frac{15}{17}$ (C) $\frac{17}{15}$ (D) $\frac{17}{8}$

9 The Argand diagram below shows the complex number *z*.

Which Argand diagram best represents $i\bar{z}$?

10 The graph of y = f(x) is drawn below.

Which of the following graphs represents the graph of $y = [f(x)]^2$?

Section II

90 Marks Attempt Questions 11 - 16. Allow about 2 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11 - 16, your responses should include relevant mathematics reasoning and/ calculations.

Que	stion	11 (15 MARKS) Use a SEPARATE writing booklet	Marks
(a)	Let v	$w = \sqrt{3} + i$ and $z = 3 - \sqrt{3}i$.	
	(i)	Find <i>wz</i>	1
	(ii)	Express w in modulus-argument form.	2
	(iii)	Write w^4 in simplest Cartesian form.	2

(b) (i) Find the values of A, B, C and D such that:

$$\frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$$

2

3

(ii) Hence find
$$\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} dx$$
.

(c) Find all solutions to the equation $x^4 - 2x^3 + x^2 - 8x - 12 = 0$, given that x = 2i is a root of the equation.

(d) Find
$$\int \frac{x \, dx}{x^2 - 3x + 4}$$
 3

Que	stion	12 (15 marks) Use a SEPARATE writing booklet	Marks
(a)	Usin	g calculus, show that $x \ge \ln(1+x)$ for $x \ge -1$.	3
(b)	Cons	sider the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$	
	(i)	Show that the point $P(4 \cos \theta, 3 \sin \theta)$ lies on the ellipse.	1
	(ii)	Calculate the eccentricity of the ellipse and hence find the foci and the directrices of the ellipse.	3
	(iii)	Find the equation of the tangent at $P(4 \cos \theta, 3 \sin \theta)$.	2
	(iv)	Find the equation of the normal at $P(4 \cos \theta, 3 \sin \theta)$.	2
	(v)	Show that the tangent at <i>P</i> cuts the positive directrix at $M\left(\frac{16\sqrt{7}}{7}, \frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}\right)$.	2

(vi) Hence show that $\angle PSM = 90^{\circ}$, if S is the positive focus. **2**

Question 13 (15 marks) Use a SEPARATE writing booklet

- (a) Express $\frac{(1+i)^2}{(1-i\sqrt{3})^2}$ in the form $r \operatorname{cis} \theta$.
- (b) The graph of y = f(x) is shown below.

Sketch the following curves on separate half page diagrams.

(i)
$$y = |f(x)|$$
 1

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = \frac{d}{dx}[f(x)]$$
 2

$$(iv) \quad y^2 = f(x)$$

- (c) Prove that $cis (\alpha + \beta) = cis \alpha cis \beta$
- (d) Find the Cartesian equation of the following curve and sketch it on an Argand Diagram.

$$|z + 3 + 2i| = |z - 2 + i|$$

Marks

4

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) (i) Let
$$I_n = \int x(\ln x)^n dx$$
 for $n = 0, 1, 2, 3,...$
Show that $I_n = \frac{x^2}{2}(\ln x)^n - \frac{n}{2}I_{n-1}$ for $n \ge 1$

(II) Hence, or otherwise, find
$$\int x(\ln x)^2 dx$$
.

(b) If $T_1 = 8$, $T_2 = 20$ and $T_n = 4T_{n-1} - 4T_{n-2}$ for $n \ge 3$ prove by mathematical induction that:

$$T_n = (n+3)2^n$$
 for $n \ge 1$

(c) Using the method of cylindrical shells, find the volume of the solid of revolution **3** formed when the area bounded by y = sin x, the *x*-axis, between x = 0 and $x = \pi$, is rotated about the *y*-axis.

...

A ladder reaches from the ground, over a wall 8 metres high, to the side of a building 1 metre behind the wall.

(i) By using similar triangles, show that $y = \frac{8}{x}$ and hence the length l of the ladder, where $l = l_1 + l_2$, is given by:

$$l = \sqrt{x^2 + 64} + \sqrt{1 + \frac{64}{x^2}} \,.$$

(ii) Hence find the length of the shortest ladder which will satisfy the conditions described above.

2

Marks

Question 15 (15 marks) Use a SEPARATE writing booklet

- (a) Use the substitution $u = e^x$ to find $\int \frac{e^x + e^{2x}}{1 + e^{2x}} dx$.
- (b) The point $P\left(cp, \frac{c}{p}\right)$ with p > 0 lies on the rectangular hyperbola $xy = c^2$ with focus *S*. The point *T* divides the interval *PS* in the ratio 1:2.

(i) Show that the coordinates of *T* are: $T\left(\frac{2cp + c\sqrt{2}}{3}, \frac{\frac{2c}{p} + c\sqrt{2}}{3}\right)$

(ii) Show that the Cartesian equation of the locus of *T* can be written as: $4c^2 = (3x - c\sqrt{2})(3y - c\sqrt{2}).$ HINT: find an expression for 2p in terms of *x*, and $\frac{2}{p}$ in terms of *y*.

Marks

4

The diameter *AB* of a circle centre *O* is produced to *E*. *EC* is a tangent touching the circle at *C*, and the perpendicular to *AE* at *E* meets *AC* produced at *D*. $\angle BAC = \alpha$

3

2

2

Show that $\triangle CDE$ is isosceles.

(d) A particle *P* of mass 5kg is attached by two chains, each of length 3 m, to two fixed points *A* and *B*, which lie on a vertical plane.

P revolves with constant angular velocity ω about AB. AP makes an angle of θ with the vertical. The tension in AP is T_1 and the tension in BP is T_2 where $T_1 \ge 0$ and $T_2 \ge 0$.

- (i) Resolve the forces on *P* in the horizontal and vertical directions
- (ii) If the object is rotating in a circle of radius 1.5m at 12m/s, find the tension in both parts of the string. (Use $g = 10 \text{ m/s}^2$)

(C)

Question 16 (15 marks) Use a SEPARATE writing booklet

(a)
Find the first derivative of
$$y = \ln\left(\frac{\sqrt{x^2+1}}{\sqrt[3]{x^3+1}}\right)$$
 2

(b) (i) The displacement (from a fixed point) of a body moving in a straight line is given by x, and its velocity is v. Show that $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = v\frac{dv}{dx}$.

- (ii) A particle of mass one kg is moving in a straight line. It is initially at the origin and is travelling with velocity $\sqrt{3} ms^{-1}$. The particle is moving against a resisting force $v + v^3$, where v is the velocity.
 - A Briefly explain why the acceleration of the particle is given by $\frac{dv}{dt} = -(v+v^3).$
 - B Show that the displacement *x* of the particle from the origin is given by $x = \tan^{-1}\left(\frac{\sqrt{3}-v}{1+v\sqrt{3}}\right)$.
 - C Show that the time *t* which has elapsed when the particle is travelling with velocity *V* is given by $t = \frac{1}{2} \log_e \left[\frac{3(1+V^2)}{4V^2} \right]$
 - D Find V^2 as a function of t.
 - E Hence find the limiting position of the particle as $t \to \infty$.

End of Examination

Marks

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x , \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note
$$\ln x = \log_e x$$
, $x > 0$

Student Name:

2014 Year 12 Trial Examination

Mathematics Extension 2

Section I Multiple-Choice Answer Sheet

1	$A \bigcirc$	B 🔿	С 🔿	D 🔿
2	A 🔿	B 🔿	C 🔿	D 🔿
3	A 🔿	B 🔿	C 🔿	D 🔿
4	A 🔿	B 🔿	C 🔿	D 🔿
5	A 🔿	B 🔿	C 🔿	D 🔿
6	A 🔿	B 🔿	С 🔿	D 🔿
7	A 🔿	B 🔿	C 🔿	D 🔿
8	A 🔿	B 🔿	C 🔿	D 🔿
9	A 🔿	B 🔿	С 🔿	D 🔿
10	A 🔿	B 🔿	С 🔿	D 🔿

2014 Mathematics Extension 2 HSC Trial Examination Solutions

MUL	TIPLE CHOICE				-
1	$v = \frac{48}{3} = 16m/s$				
	v = rw				
	16 = 4w				
	$w = \frac{16}{4} = 4 \ rads \ /s$				
2	$x^2 - 2x + v^2 = 9$				
	Differentiate w.r.t x				
	$2x - 2 + 2y\frac{dy}{dx} = 0$	А	1		
	$\frac{dy}{dx} = \frac{1-x}{y}$				
	$\operatorname{At}(0,-3), \frac{dy}{dx} = -\frac{1}{3}$				
3	First person can select 2 out of	6 i.e. $\binom{6}{2}$ ways.			
	Second person can select 2 out	of 4 i.e. $\binom{4}{2}$ ways.			
	Final person can chose remaini	ng 2 in 1 way.		С	
	(6) (4)				
	Number of ways = $\binom{0}{2} \times \binom{4}{2}$	$\times 1 = 15 \times 6 \times 1 = 90$ ways			
4	$\int \sin^3 x dx = \int \sin x (\sin^2 x) dx$				
	$=\int \sin x(1-\cos^2 x)dx$	x			
	$=\int \sin x dx - \int \sin x dx$	os ² xdx	1 Mark: A		
	$= -\cos x + \frac{1}{3}\cos^3 x + \frac{1}{3}\cos^3$	$-C = \frac{1}{3}\cos^3 x - \cos x + C$			
5	Resolving the forces vertically	and horizontally at P			
	$T\cos\theta - mg = 0$		1 Marter P		
	$T\sin\theta = mr\omega^2$		I Walk. D		
	Statement (B) is correct.				
6	$x = \alpha, \beta, \gamma$ so $y = \frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}$.			В	
	$\therefore y = \frac{2}{x}$ and hence $x = \frac{2}{y}$				
	$3\left(\frac{2}{y}\right)^3 - 2\left(\frac{2}{y}\right)^2 + \left(\frac{2}{y}\right) - 7 = 0$	0			
	$\left(\frac{24}{3}\right) - \left(\frac{8}{3}\right) + \frac{2}{3} - 7 = 0$				
	$\frac{y^2}{24 - 8y + 2y^2 - 7y^3} = 0$				
	Required equation is : $7x^3 -$	$2x^2 + 8x - 24 = 0$			

2014 Mathematics Extension 2 HSC Trial Examination Solutions

7	$\begin{aligned} xy &= c \\ y + x \frac{dy}{dx} &= 0 \\ \frac{dy}{dx} &= -\frac{y}{x} \\ \frac{dy}{dx} &= -\frac{c}{p} \div cp \\ &= -\frac{c}{cp^2} \end{aligned}$		D	
	$= -\frac{1}{p^{2}}$ $\therefore \text{Gradient of Normal} = p^{2}$ $y - y_{1} = m(x - x_{1})$ $y - \frac{c}{p} = p^{2}(x - cp)$ $py - c = p^{3}(x - cp)$			
8	$\frac{y^2}{225} - \frac{x^2}{64} = 1, \ a^2 = 64 \ \text{and} \ b^2 = 225$ $a^2 = b^2(e^2 - 1)$ $64 = 225 \times (e^2 - 1)$ $e = \sqrt{\frac{64}{225} + 1} = \sqrt{\frac{289}{225}} = \frac{17}{15}$	1 Mark: C		
9	z = 2 + 3i $i\overline{z} = i(2 + 3i)$ = i(2 - 3i) = 3 + 2i		D	
10	Graph (C)		С	

QUES	TION 11	-	
a)	$w = \sqrt{3} + i \text{ and } z = 3 - \sqrt{3}i.$		
	(1) $WZ = (\sqrt{3} + i)(3 - \sqrt{3}i)$		
	$= (\sqrt{3} + i)(3 - \sqrt{3}i)$ = $3\sqrt{3} - 3i + 3i + \sqrt{3}$	1	Correct Answer
	$= 3\sqrt{3} + \sqrt{3}$		
	$=4\sqrt{3}$		
	(ii) $r = \sqrt{(\sqrt{3})^2 + 1^2} = 2$		1 for correct r
	$\tan \theta = \frac{1}{2}$ $\theta = \frac{\pi}{2}$	2	1 for correct Θ
	$\sqrt{3}$, 6		
	$\dots W = 2 \cos \frac{1}{6}$		
	(iii) $w^4 = \left(2 cis \frac{\pi}{2}\right)^4$		
	$= 2^4 \operatorname{cis} \frac{4\pi}{4\pi}$		
	$= 16 \operatorname{eig}^{2\pi}$	2	1 - Evaluating Power
	$-10 cts \frac{1}{3}$		
	$= 16\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$		1 Answer in Cartesian form
	$= 16\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)$		I Answei in Cartesian Ionn
	$= -8 + 8\sqrt{3}i$		
b)	(i)		
,	$\frac{5x^3 - 3x^2 + 2x - 1}{2x^2 + 2x - 1} = \frac{A}{2x^2 + 2x} + \frac{B}{2x^2 + 2x} + \frac{Cx + D}{2x^2 + 2x}$		
	$x^4 + x^2$ $x^1 x^2 + 1$		
	$5x^{3} - 3x^{2} + 2x - 1 \equiv Ax(x^{2} + 1) + B(x^{2} + 1) + (Cx + D)x^{2}$ $\equiv Ax^{3} + Ax + Bx^{2} + B + Cx^{3} + Dx^{2}$		
	$(4+C)x^3 = 5x^3$ $(4+C) = 5$,	2 - Correct A B C and D
	$(A + C)x^2 = -3x^2$ $(A + C - 3)^2$ $(B + D)x^2 = -3x^2$ $\therefore B + D = -3$	-	
	$Ax = 2$ $\therefore A = 2$ $\therefore C = 3$		1 – 3 correct
	$B = -1 \qquad \therefore D = -2$		
	Hence, $A = 2, B = -1, C = 3, D = -2$.		
	(ii)		
	$\int \frac{5x^3 - 3x^2 + 2x - 1}{4x} dx = \int \left(\frac{2}{x} - \frac{1}{x} + \frac{3x - 2}{4x}\right) dx$		
	$\int x^{4} + x^{2} \qquad \text{and} \qquad \int (x - x^{2} + x^{2} + 1)^{2n}$		
	$= \int \left(\frac{x}{x} - \frac{x}{x^2} + \frac{3x}{x^2 + 1} - \frac{x}{x^2 + 1}\right) dx$	2	1 – Breakup of Integral
	$= 2ln x + \frac{1}{r} + \frac{3}{r}ln(x^{2} + 1) - 2tan^{-1}x + c$		1 – Correct Answer
	x + 2		
	$x^4 - 2x^3 + x^2 - 8x - 12$		
ς)	Since $x = 2i$ is one root, $(x - 2i)(x + 2i)$ are factors as coeffs are real, so		1 obtaining factor
	$(x^2 + 4)$ is a factor	3	
	By division, $x^4 - 2x^3 + x^2 - 8x - 12 = (x^2 + 4)(x^2 - 2x - 3)$ = (x + 2i)(x - 2i)(x - 3)(x + 1)		1 – Correct division
	\therefore Solution is $x = \pm 2i, -1$ and 3		1 all 4 roots

d)	$\int \frac{x}{x^2 - 3x + 4} dx$ = $\frac{1}{2} \int \frac{2x - 3}{x^2 - 2x + 4} + \frac{3}{2} \int \frac{1}{x^2 - 2x + 4}$	1	Total marks - 3
	$= \frac{1}{2} \ln(x^2 - 3x + 4) + \frac{3}{2} \int \frac{1}{\left(x - \frac{8}{2}\right)^2 + \frac{7}{4}}$	1	
	$= \frac{1}{2}\ln(x^2 - 3x + 4) + \frac{\frac{s}{2}}{\sqrt{\frac{7}{4}}} \tan^{-1}\left(\frac{x - \frac{s}{2}}{\sqrt{\frac{7}{4}}}\right) + c$		
	$= = \frac{1}{2}\ln(x^2 - 3x + 4) + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{2x - 3}{\sqrt{7}}\right) + c$	1	

QUE	STION 12		
a)	Let $f(x) = x - \ln(1+x)$ and $f'(x) = 1 - \frac{1}{1+x}$	3 Ma answ	rks: Correct rer.
	Minimum occurs if $f'(x) = 0$		
	$1 - \frac{1}{1+x} = 0 \frac{1+x}{1+x} - \frac{1}{1+x} = 0$ $\therefore 1 + x - 1 = 0 \text{or } x = 0 (x \neq -1)$	2 Ma signi progr the s	rks: Makes ficant ress towards olution.
	Test $f''(x) = \frac{1}{(1+x)^2}$, $f''(0) = 1 > 0$ Minima Therefore the least value of $f(x)$ is at $x = 0$ $f(0) = 0 - \ln(1+0) = 0$ hence $f(x) \ge 0$ $f(x) = x - \ln(1+x) \ge 0$ $\therefore x \ge \ln(1+x)$	2 Ma 1 Ma the f corre calcu	rks: rk: Sets up unction and ctly uses lus.
b)	(i) $\frac{x^2}{16} + \frac{Y^2}{9} = 1$ $P(4\cos\theta, 3\sin\theta)$ $\frac{(4\cos\theta)^2}{16} + \frac{(3\sin\theta)^2}{9} = 1$ $\frac{16\cos^2\theta}{16} + \frac{9\sin^2\theta}{9} = 1$ $\cos^2\theta + \sin^2\theta = 1$ 1 = 1 \therefore P lies on the ellipse.	1	Working
	(ii) $b^2 = a^2(1 - e^2)$ $3^2 = 4^2(1 - e^2)$ $\frac{9}{16} = 1 - e^2$ $e^2 = 1 - \frac{9}{16}$ $e^2 = \frac{7}{16}$ $\sqrt{7}$	3	1 – eccentricity
	$e = \frac{1}{4}$ Foci = $(\pm ae, 0) = (\pm 4 \times \frac{\sqrt{7}}{4}, 0) = (\pm \sqrt{7}, 0)$		1 – foci
	Directrices : $x = \pm \frac{a}{e}$ $x = \pm 4 \div \frac{\sqrt{7}}{4}$ $x = \pm \frac{16}{\sqrt{7}} = \pm \frac{16\sqrt{7}}{7}$		1 – <u>directrices</u>
	(iii) If $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\frac{2x}{16} + \frac{2y}{9}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{2x}{16} \div \frac{2y}{9}$ $\frac{dy}{dx} = -\frac{9x}{16} \times \frac{9}{2y}$ $\frac{dy}{dx} = -\frac{9x}{16y}$ At P(4cos θ , 3 sin θ) $\frac{dy}{dx} = -\frac{36\cos\theta}{48\sin\theta} = -\frac{3\cos\theta}{4\sin\theta}$ $y - y_1 = m(x - x_1)$ $y - 3\sin\theta = -\frac{3\cos\theta}{4\sin\theta}(x - 4\cos\theta)$	2	1 – gradient
	$4y\sin\theta - 12\sin^2\theta = -3x\cos\theta + 12\cos^2\theta$ $3x\cos\theta + 4y\sin\theta = 12$		1 - Equation

(iv) Normal $\frac{dy}{dx} = \frac{4\sin\theta}{3\cos\theta}$ $y - y_1 = m(x - x_1)$ $y - 3\sin\theta = \frac{4\sin\theta}{3\cos\theta}(x - 4\cos\theta)$ $3y\cos\theta - 9\sin\theta\cos\theta = 4x\sin\theta - 16\sin\theta\cos\theta$ $4x\sin\theta - 3y\cos\theta - 7\sin\theta\cos\theta = 0$	2	1 – substitution 1 - answer
(v) $3x \cos \theta + 4y \sin \theta = 12$ $x = \frac{16\sqrt{7}}{7}$ $\frac{48\sqrt{7}}{7} \cos \theta + 4y \sin \theta = 12$ $4y \sin \theta = 12 - \frac{48\sqrt{7}}{7} \cos \theta$ $y = \frac{12 - \frac{48\sqrt{7}}{7} \cos \theta}{4\sin \theta}$ $y = \frac{84 - 48\sqrt{7} \cos \theta}{28 \sin \theta} = \frac{21 - 12\sqrt{7} \cos \theta}{7 \sin \theta}$ Therefore $M = \left(\frac{16\sqrt{7}}{7}, \frac{21 - 12\sqrt{7} \cos \theta}{7 \sin \theta}\right)$	2	1 – substitution 1 – working
(vi) Gradient PS = $\frac{3\sin\theta - 0}{4\cos\theta - \sqrt{7}} = \frac{3\sin\theta}{4\cos\theta - \sqrt{7}}$ Gradient MS = $\frac{\frac{21 - 12\sqrt{7}\cos\theta}{7\sin\theta} - 0}{\frac{16\sqrt{7} - \sqrt{7}}{7}} = \frac{\frac{21 - 12\sqrt{7}\cos\theta}{7\sin\theta}}{\frac{9\sqrt{7}}{7}} = \frac{\frac{21 - 12\sqrt{7}\cos\theta}{7}}{\frac{9\sqrt{7}}{7}}$ = $\frac{21 - 12\sqrt{7}\cos\theta}{9\sqrt{7}\sin\theta}$ $\frac{21 - 12\sqrt{7}\cos\theta}{9\sqrt{7}\sin\theta}$ $\frac{7 - 4\sqrt{7}\cos\theta}{(4\cos\theta - \sqrt{7})\sqrt{7}}$ = $\frac{7 - 4\sqrt{7}\cos\theta}{4\sqrt{7}\cos\theta - 7}$ = $\frac{7 - 4\sqrt{7}\cos\theta}{4\sqrt{7}\cos\theta}$ = -1 $\therefore MS \perp PS and \angle PSM = 90^{\circ}$	2	1 – Both Gradients 1 – proving perpendicular

QUE	STION 13	-	
a)	$\frac{(1+i)^2}{(1+i)^2}$		
	$(1-i\sqrt{3})$		
	$(1+i): r = \sqrt{2}, \theta = \frac{\pi}{4} 1+i = \sqrt{2} \operatorname{cis} \frac{\pi}{4}$	1	2 marks for converting to mod-arg form
	$(1-i\sqrt{3}): r = 2, \theta = -\frac{\pi}{3} \text{ so } 1-i\sqrt{3} = 2 \text{ cis } \left(-\frac{\pi}{3}\right)$	1	
	$\frac{(1+i)^2}{(1-i\sqrt{3})^2} = \frac{\left(\sqrt{2} \operatorname{cis} \frac{\pi}{4}\right)^2}{\left(2 \operatorname{cis} \left(-\frac{\pi}{3}\right)\right)^2}$	1	
	$= \frac{2 \operatorname{cis} \frac{\pi}{2}}{4 \operatorname{cis} \left(-\frac{2\pi}{3}\right)}$ $= \frac{1}{2} \operatorname{cis} \left(\frac{7\pi}{3}\right)$		2 marks for any valid method of simplifying.
	$= \frac{1}{2} \operatorname{cis} \left(\frac{-5\pi}{6} \right)$ $= \frac{1}{2} \operatorname{cis} \left(\frac{-5\pi}{6} \right)$	1	
b)	(i) y	1	Correct Graph
	(ii) y $-\frac{1}{8}$	2	 1- Shape of Graph 1 – Accuracy of critical points

2014 Mathematics Extension 2 HSC Trial Examination Solutions

d)	z+3+2i = z-2+i		
	$(x+3)^{2} + (y+2)^{2} = (x-2)^{2} + (y+1)^{2}$		
	$x^{2} + 6x + 9 + y^{2} + 4y + 4 = x^{2} - 4x + 4 + y^{2} + 2y + 1$		
	10x + 2y + 8 = 0	1	1 – equation
	5x + y + 4 = 0		
	y = -5x - 4		
	у		
		1	1 - Graph
	< 4 $> x$		
	-3		
	\-4		
	\downarrow		

QUE	STION 14		
a)	$I_n = \int x(\ln x)^n dx$ = $(\ln x)^n \frac{x^2}{2} - \int \frac{x^2}{2} \times \frac{n}{x} (\ln x)^{n-1} dx$ = $(\ln x)^n \frac{x^2}{2} - \frac{n}{2} \int x(\ln x)^{n-1} dx$ = $(\ln x)^n \frac{x^2}{2} - \frac{n}{2} I_{n-1}$ for $n \ge 1$	 3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Sets up the integration and shows some understanding. 	arts
	$I_2 = \int x(\ln x)^2 dx = \frac{x^2(\ln x)^2}{2} - \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C$	1 mark correct	
b)	Step 1: To prove the statement true for $n = 1$ and $n = 2$ $T_1 = (1+3)2^1 = 8$ $T_2 = (2+3)2^2 = 20$ Result is true for $n = 1$ Result is true for $n = 2$ Step 2: Assume the result true for $n = k$, $n = k - 1$ $ T_k = (k+3)2^k$, $T_{k-1} = (k+2)2^{k-1}$ To prove the result is true for, $T_{k+1} = (n+4)2^{k+1}$ $T_{k+1} = 4T_k - 4T_{k-1}$ $= 4(k+3)2^k - 4(k+2)2^{k-1}$ Using assumption in 2 $= 4k2^k + 12 \times 2^k - 4k2^{k-1} - 8 \times 2^{k-1}$ $= 4k2^k + 12 \times 2^k - 2k2^k - 4 \times 2^k$ $= 2^{k+1}(2k+6-k-2)$ $= (k+4)2^{k+1}$ Result is true for $n = k+1$ if true for $n = k$ Step 3: Result true by principle of mathematical induction.	3 Marks: Correct answer. 2 Marks: Proves the result true for n = 1 and attempts to use the result of n = k to prove the result for $n = k+1$. 1 Mark: Proves the result true for $n = 1$ and $n = 2$.	
c)	By shell Method $\lim \partial x \to 0 2\pi x \sin x \partial x$ $V = 2\pi \int_0^{\pi} x \sin x dx$ $let \ u = x \qquad v' = \sin x$ $u' = 1 \qquad v = -\cos x$	1 Shell Method	
	$I = uv - \int vu'$ = $2\pi [-x\cos x]_0^{\pi} - \int_0^{\pi} -\cos x dx$ = $2\pi [\pi + (\sin x)_0^{\pi}]$ = $2\pi^2$	 Integration by parts Answer 	

d)			
(i)	Building		
	J' m I ₂ m		
	8 m 2		
	$y \rightarrow 8$ $y \rightarrow 2$ $y \rightarrow 7$		
	$\frac{z}{8} = \frac{z}{x} \Rightarrow y = \frac{z}{x} l_1^2 = x^2 + 64 \Rightarrow l_1 = \sqrt{x^2 + 64}$		
	$l_{2} = y^{2} + 1 \rightarrow l_{2} = \sqrt{y^{2} + 1}$ $l = \sqrt{x^{2} + 64} + \sqrt{y^{2} + 1}$	1	Equations for l_1 and l_2
	$l = (x^{2} + 64)^{\frac{1}{2}} + \left(\frac{64}{x^{2}} + 1\right)^{\frac{1}{2}}$	1	Equation for <i>l</i>
	$l = (x^{2} + 64)^{\frac{1}{2}} + (1 + 64x^{-2})^{\frac{1}{2}}$	T	
(ii)	$l' = \frac{1}{2}(2x)(x^2 + 64)^{-\frac{1}{2}} + \frac{1}{2}(-128x^{-3})(1 + 64x^{-2})^{-\frac{1}{2}}$		
	$l' = \frac{2x}{\sqrt{2}} - \frac{128}{\sqrt{2}}$		
	$2\sqrt{x^2+64}$ $2x^3\sqrt{1+\frac{64}{x^2}}$		
	$l' = \frac{x}{64}$		
	$\sqrt{x^2+64}$ $x^3\sqrt{\frac{x^2+64}{x^2}}$		
	$l' = \frac{x}{\sqrt{2}} - \frac{64}{2\sqrt{2}}$	1	Correct derivative
	$\sqrt{x^2+64} \qquad x^2\sqrt{x^2+64}$		
	Stat \underline{pt} : x 64		
	$l' = \frac{1}{\sqrt{x^2 + 64}} - \frac{1}{x^2 \sqrt{x^2 + 64}} = 0$		
	$\frac{x}{64}$		
	$\sqrt{x^2 + 64} \qquad x^2\sqrt{x^2 + 64}$		
	$x^3 = \frac{64\sqrt{x^2 + 64}}{\sqrt{x^2 + 64}}$		
	$\sqrt{x^2 + 64}$ $x^3 = 64$		
	x = 4		
	When $x = 1, l' < 0$ When $x = 5, l' > 0$	1	Value of x and test
	$\therefore minimum when x = 4 hence y = 2$		
	$\iota_1 = \sqrt{80} = 4\sqrt{5}, \iota_2 = \sqrt{5}$ $\therefore L = 4\sqrt{5} + \sqrt{5} = 5\sqrt{5} \approx 11.2 \text{ metres}$		
		1	Minimum length

QUES	QUESTION 15					
a)	$u = e^{x} \text{ or } du = e^{x} dx \text{ or } dx = \frac{1}{u} du$ $\int \frac{e^{x} + e^{2x}}{1 + e^{2x}} dx = \int \frac{u + u^{2}}{1 + u^{2}} \times \frac{1}{u} du$ $= \int \frac{1 + u}{1 + u^{2}} du$ $= \int \frac{1 + u}{1 + u^{2}} du + \int \frac{u}{1 + u^{2}} du$ $= \int \frac{1}{1 + u^{2}} du + \int \frac{u}{1 + u^{2}} du$ $= \tan^{-1} u + \frac{1}{2} \ln(u^{2} + 1) + C$ $= \tan^{-1} e^{x} + \frac{1}{2} \ln(e^{2x} + 1) + C$	 4 Marks: Correct answer. 3 Marks: Separates and integrates one part correctly. 2 Marks: Correctly expresses the integral in terms of u 1 Mark: Correctly finds dx in terms of du 				
b) (i)	$P\left(cp, \frac{c}{p}\right), S(c\sqrt{2}, c\sqrt{2}) \text{ and } PT: TS = 1:2$ Coordinates of T $x = \frac{mx_2 + nx_1}{m+n} \qquad y = \frac{my_2 + ny_1}{m+n}$ $= \frac{1 \times c\sqrt{2} + 2 \times cp}{1+2} \qquad = \frac{1 \times c\sqrt{2} + 2 \times \frac{c}{p}}{1+2}$ $= \frac{c(\sqrt{2} + 2p)}{3} \qquad = \frac{c\left(\sqrt{2} + \frac{2}{p}\right)}{3}$	2 Marks: Correct answer. 1 Mark: Finds one of the coordinates or makes some progress towards the solution.				
(ii)	To find the locus of <i>T</i> eliminate <i>p</i> from the above equations. $x = \frac{c(\sqrt{2} + 2p)}{3} \qquad \qquad$	2 Marks: Correct answer. 1 Mark: Uses the coordinates of <i>T</i> and attempts to eliminate <i>p</i> .				

From (2), $T_1 = 960 - T_2 \dots \dots (3)$ (3) in (1)		
$(960 - T_2)\sqrt{3} = 100 + T_2\sqrt{3}$ $960\sqrt{3} - T_2\sqrt{3} = 100 + T_2\sqrt{3}$ $T_22\sqrt{3} = 960\sqrt{3} - 100$		
$T_2 = \frac{960\sqrt{3} - 100}{2\sqrt{3}} = 451 N$	1	Value for T_2
$T_{1} = 960 - T_{2}$ $T_{1} = 960 - 451$ $T_{1} = 509$	1	Value for T ₁

QUI	ESTION 16	-	
a) b) (i)	$y = \ln\left(\frac{\sqrt{x^{2}+1}}{\sqrt[3]{x^{3}+1}}\right)$ $y = \ln\sqrt{x^{2}+1} - \ln\sqrt[3]{x^{3}+1}$ $y = \ln(x^{2}+1)^{\frac{1}{2}} - \ln(x^{3}+1)^{\frac{1}{3}}$ $y = \frac{1}{2}\ln(x^{2}+1) - \frac{1}{3}\ln(x^{3}+1)$ $\frac{dy}{dx} = \frac{1}{2}\frac{2x}{x^{2}+1} - \frac{1}{3}\frac{3x^{2}}{x^{3}+1}$ $= \frac{x}{x^{2}+1} - \frac{x^{2}}{x^{3}+1}$ $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{dv}{dx} \times \frac{d}{dv}\left(\frac{1}{2}v^{2}\right)$ $= v\frac{dv}{dx}$	1 1 1 ma	Use of logarithmic rules Answer ark correctly establishes result
(ii) A	Resistance force acts against the direction of motion, $\therefore F = m \times a = 1 \times a = -(v + v^3)$ $a = -(v + v^3)$ $\frac{dv}{dt} = -(v + v^3)$	1 ma	ark correct explanation
B	$v \frac{dv}{dx} = -(v + v^3)$ $\frac{dv}{dx} = -(1 + v^2)$ $\frac{dx}{dv} = \frac{-1}{1 + v^2}$ $x = -\tan^{-1}v + c$ when $x = 0, v = \sqrt{3} \Rightarrow c = \tan^{-1}\sqrt{3}$ $\therefore x = \tan^{-1}\sqrt{3} - \tan^{-1}v$ $\tan x = \tan\left(\tan^{-1}\sqrt{3} - \tan^{-1}v\right)$ $= \frac{\tan\left(\tan^{-1}\sqrt{3}\right) - \tan\left(\tan^{-1}v\right)}{1 + \tan\left(\tan^{-1}\sqrt{3}\right) \times \tan\left(\tan^{-1}v\right)}$ $= \frac{\sqrt{3} - v}{1 + v\sqrt{3}}$ $\therefore x = \tan^{-1}\left(\frac{\sqrt{3} - v}{1 + v\sqrt{3}}\right)$	1 m towa 1 ma 1 ma	hark some correct progress and result $ark \frac{dx}{dv} = -\frac{1}{1+v^2}$ ark $x = \tan^{-1}\sqrt{3} - \tan^{-1}v$

С	$\frac{dv}{dv} = -(v+v^3)$	
	dt ()	
	$\frac{dt}{du} = -\frac{1}{u+u^3}$	1 mark $\frac{dt}{dt} = -1 \frac{1}{dt}$
	av = v + v -1	$\frac{1}{dv} = \frac{1}{v + v^3}$
	$=\frac{1}{v(1+v^2)}$	
	$=\frac{v}{1+v^2}-\frac{1}{v}$	1 mark correct partial fractions
	$t = \int_{\sqrt{3}}^{v} \frac{v}{1+v^2} - \frac{1}{v} dv$	
	$= \left[\frac{1}{2}\log_e\left(1+v^2\right) - \log_e v\right]_{\sqrt{3}}^{V}$	1 mark correct integration
	$=\frac{1}{2}\left[\log_{e}\left(1+v^{2}\right)-2\log_{e}v\right]_{\sqrt{3}}^{V}$	
	$=\frac{1}{2} \left[\log_{e} \frac{1+v^{2}}{v^{2}} \right]_{\sqrt{3}}^{V}$	
	$=\frac{1}{2}\left[\log_{e}\left(\frac{1+V^{2}}{V^{2}}\right)-\log_{e}\left(\frac{4}{3}\right)\right]$	
	$=\frac{1}{2}\log_e\left[\frac{3(1+V^2)}{4V^2}\right]$	1 mark correct result
D	$t = \frac{1}{2}\log_e\left[\frac{3(1+V^2)}{4V^2}\right]$	
	$e^{2t} = \frac{3(1+V^2)}{2}$	$3(1+V^2)$
	$4V^2$	1 mark $e^{2t} = \frac{1}{4V^2}$
	$4V^2 e^{2t} = 3 + 3V^2$	
	$V^2\left(4e^{2t}-3\right)=3$	
	$V^{2} - 3$	
	$v = \frac{1}{4e^{2t}-3}$	1 mark correct result
E	As $t \to \infty, v \to 0$	1 mark correct both parts
	hence $x \rightarrow \tan^{-1}\sqrt{3}$	