Year 12
 Mathematics Extension 2
 HSC Trial Examination 2014

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- In questions 11 - 16, show all relevant reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1 - 10.
1 An object moving in a circular path of radius 4 metres travels 48 metres in 3 seconds.
The angular speed of the object is:
(A) $3 \mathrm{rad} / \mathrm{s}$
(B) $4 \mathrm{rad} / \mathrm{s}$
(C) $12 \mathrm{rad} / \mathrm{s}$
(D) $16 \mathrm{rad} / \mathrm{s}$

2 What is the gradient of the tangent to the circle $x^{2}-2 x+y^{2}=9$ at the point $(0,-3)$?
(A) $-\frac{1}{3}$
(B) $-\frac{11}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$

3 The number of ways that 6 items can be divided between 3 people so that each person receives 2 items is:
(A) 6
(B) 27
(C) 90
(D) 360

4 Which of the following is the expression for $\int \sin ^{3} x d x$?
(A) $\frac{1}{3} \cos ^{3} x-\cos x+C$
(B) $\frac{1}{3} \cos ^{3} x+\cos x+C$
(C) $\frac{1}{3} \sin ^{3} x-\sin x+C$
(D) $\frac{1}{3} \sin ^{3} x+\sin x+C$
$5 \quad$ A particle at B is attached to a string $A B$ that is fixed at A. The particle rotates in a horizontal circle with a radius of r. Let T be the tension in the string and $\angle B O A=\theta$.

Which of the following statements is correct?
(A) $T \cos \theta-m g=m a$
(B) $T \sin \theta=m r \omega^{2}$
(C) $T=-m g$
(D) $T-m g=m a$

6 The polynomial equation $3 x^{3}-2 x^{2}+x-7=0$ has roots α, β and γ. Which polynomial equation has roots $\frac{2}{\alpha}, \frac{2}{\beta}$ and $\frac{2}{\gamma}$?
(A) $3 x^{3}-4 x^{2}+4 x-56=0$
(B) $7 x^{3}-2 x^{2}+8 x-24=0$
(C) $x^{3}-2 x^{2}-27 x-49=0$
(D) $24 x^{3}-8 x^{2}+2 x-7=0$

7 The point $P\left(c p, \frac{c}{p}\right)$ lies on the rectangular hyperbola $x y=c^{2}$. The equation of the normal to the hyperbola at P is:
(A) $x+p q y=c(p+q)$
(B) $x+p^{2} y=2 c p$
(C) $p x-\frac{1}{p} y=c p^{2}\left(1-\frac{1}{p^{2}}\right)$
(D) $p y-c=p^{3}(x-c p)$

8 What is the eccentricity for the hyperbola $\frac{y^{2}}{225}-\frac{x^{2}}{64}=1$?
(A) $\frac{8}{17}$
(B) $\frac{15}{17}$
(C) $\frac{17}{15}$
(D) $\frac{17}{8}$

9 The Argand diagram below shows the complex number z.

Which Argand diagram best represents $i \bar{z}$?
(A)

(B)

(C)

(D)

10 The graph of $y=f(x)$ is drawn below.

Which of the following graphs represents the graph of $y=[f(x)]^{2}$?
(A)

(B)

(C)

(D)

Section II

90 Marks

Attempt Questions 11-16.
Allow about 2 hours and 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-16, your responses should include relevant mathematics reasoning and/ calculations.
Question 11 (15 MARKS) Use a SEPARATE writing booklet
(a) Let $w=\sqrt{3}+i$ and $z=3-\sqrt{3} i$.
(i) Find $w z \quad 1$
(ii) Express w in modulus-argument form.
(iii) Write w^{4} in simplest Cartesian form.
(b) (i) Find the values of A, B, C and D such that:

$$
\frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}
$$

(ii) Hence find $\int \frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}} d x$.
(c) Find all solutions to the equation $x^{4}-2 x^{3}+x^{2}-8 x-12=0$, given that $x=2 i$ is a root of the equation.
(d) Find $\int \frac{x d x}{x^{2}-3 x+4}$
(a) Using calculus, show that $x \geq \ln (1+x)$ for $x \geq-1$.
(b) Consider the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(i) Show that the point $P(4 \cos \theta, 3 \sin \theta)$ lies on the ellipse.
(ii) Calculate the eccentricity of the ellipse and hence find the foci and the directrices of the ellipse.
(iii) Find the equation of the tangent at $P(4 \cos \theta, 3 \sin \theta)$.
(iv) Find the equation of the normal at $P(4 \cos \theta, 3 \sin \theta)$.
(v) Show that the tangent at P cuts the positive directrix at

$$
M\left(\frac{16 \sqrt{7}}{7}, \frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}\right) .
$$

(vi) Hence show that $\angle P S M=90^{\circ}$, if S is the positive focus.
(a) Express $\frac{(1+i)^{2}}{(1-i \sqrt{3})^{2}}$ in the form $r \operatorname{cis} \theta$.
(b) The graph of $y=f(x)$ is shown below.

Sketch the following curves on separate half page diagrams.
(i) $\quad y=|f(x)|$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=\frac{d}{d x}[f(x)]$
(iv) $y^{2}=f(x)$
(c) Prove that cis $(\alpha+\beta)=\operatorname{cis} \alpha$ cis β
(d) Find the Cartesian equation of the following curve and sketch it on an Argand Diagram.

$$
|z+3+2 i|=|z-2+i|
$$

Question $1 \mathbf{1 4}$ (15 marks) Use a SEPARATE writing booklet
(a) (i) Let $I_{n}=\int x(\ln x)^{n} d x$ for $n=0,1,2,3, \ldots$

Show that $I_{n}=\frac{x^{2}}{2}(\ln x)^{n}-\frac{n}{2} I_{n-1}$ for $n \geq 1$
(ii) Hence, or otherwise, find $\int x(\ln x)^{2} d x$.
(b) If $T_{1}=8, T_{2}=20$ and $T_{n}=4 T_{n-1}-4 T_{n-2}$ for $n \geq 3$ prove by mathematical induction that:

$$
T_{n}=(n+3) 2^{n} \text { for } n \geq 1
$$

(c) Using the method of cylindrical shells, find the volume of the solid of revolution

3 formed when the area bounded by $y=\sin x$, the x-axis, between $x=0$ and $x=\pi$, is rotated about the y-axis.
(d)

A ladder reaches from the ground, over a wall 8 metres high, to the side of a building 1 metre behind the wall.
(i) By using similar triangles, show that $y=\frac{8}{x}$ and hence the length l of the ladder, where $l=l_{1}+l_{2}$, is given by:

$$
l=\sqrt{x^{2}+64}+\sqrt{1+\frac{64}{x^{2}}}
$$

(ii) Hence find the length of the shortest ladder which will satisfy the conditions described above.
(a) Use the substitution $u=e^{x}$ to find $\int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d x$.
(b) The point $P\left(c p, \frac{c}{p}\right)$ with $p>0$ lies on the rectangular hyperbola $x y=c^{2}$ with focus S. The point T divides the interval $P S$ in the ratio 1:2.

(i) Show that the coordinates of T are:

$$
T\left(\frac{2 c p+c \sqrt{2}}{3}, \frac{\frac{2 c}{p}+c \sqrt{2}}{3}\right)
$$

(ii) Show that the Cartesian equation of the locus of T can be written as: $4 c^{2}=(3 x-c \sqrt{2})(3 y-c \sqrt{2})$.
HINT: find an expression for $2 p$ in terms of x, and $\frac{2}{p}$ in terms of y.
(c)

The diameter $A B$ of a circle centre O is produced to $E . E C$ is a tangent touching the circle at C, and the perpendicular to $A E$ at E meets $A C$ produced at D.
$\angle B A C=\alpha$
Show that $\triangle C D E$ is isosceles.
(d) A particle P of mass 5 kg is attached by two chains, each of length 3 m , to two fixed points A and B, which lie on a vertical plane.
P revolves with constant angular velocity ω about $A B$. $A P$ makes an angle of θ with the vertical. The tension in $A P$ is T_{1} and the tension in $B P$ is T_{2} where $T_{1} \geq 0$ and $T_{2} \geq 0$.

(i) Resolve the forces on P in the horizontal and vertical directions
(ii) If the object is rotating in a circle of radius 1.5 m at $12 \mathrm{~m} / \mathrm{s}$, find the tension in both parts of the string. (Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Question 16 (15 marks) Use a SEPARATE writing booklet
(a) Find the first derivative of $y=\ln \left(\frac{\sqrt{x^{2}+1}}{\sqrt[3]{x^{3}+1}}\right)$
(b) (i) The displacement (from a fixed point) of a body moving in a straight line is given by x, and its velocity is v.
Show that $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=v \frac{d v}{d x}$.
(ii) A particle of mass one kg is moving in a straight line. It is initially at the origin and is travelling with velocity $\sqrt{3} \mathrm{~ms}^{-1}$. The particle is moving against a resisting force $v+v^{3}$, where v is the velocity.

A Briefly explain why the acceleration of the particle is given by

$$
\frac{d v}{d t}=-\left(v+v^{3}\right)
$$

B Show that the displacement x of the particle from the origin is given by

$$
x=\tan ^{-1}\left(\frac{\sqrt{3}-v}{1+v \sqrt{3}}\right) .
$$

C Show that the time t which has elapsed when the particle is travelling with velocity V is given by $t=\frac{1}{2} \log _{e}\left[\frac{3\left(1+V^{2}\right)}{4 V^{2}}\right]$

D Find V^{2} as a function of t.
E Hence find the limiting position of the particle as $t \rightarrow \infty$.

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Mathematics Extension 2

Section I Multiple-Choice Answer Sheet

1	$A \bigcirc$	$B \bigcirc$	CO
2	A \bigcirc	B \bigcirc	C
3	A \bigcirc	B \bigcirc	C
4	A \bigcirc	B \bigcirc	CO
5	A \bigcirc	$B \bigcirc$	C
6	A \bigcirc	$B \bigcirc$	C
7	A \bigcirc	$B \bigcirc$	C
8	A \bigcirc	B \bigcirc	CO
9	A \bigcirc	B \bigcirc	C
10	A \bigcirc	$B \bigcirc$	C

7	$\begin{aligned} & \hline x y=c \\ & y+x \frac{d y}{d x}=0 \\ & \frac{d y}{d x}=-\frac{y}{x} \\ & \frac{d y}{d x}=-\frac{c}{p} \div c p \\ & =-\frac{c}{c p^{2}} \\ & =-\frac{1}{p^{2}} \\ & \therefore \text { Gradient of Normal }=p^{2} \\ & y-y_{1}=m\left(x-x_{1}\right) \\ & y-\frac{c}{p}=p^{2}(x-c p) \\ & p y-c=p^{3}(x-c p) \\ & \hline \end{aligned}$		D
8	$\begin{aligned} & \frac{y^{2}}{225}-\frac{x^{2}}{64}=1, a^{2}=64 \text { and } b^{2}=225 \\ & a^{2}=b^{2}\left(e^{2}-1\right) \\ & 64=225 \times\left(e^{2}-1\right) \\ & e=\sqrt{\frac{64}{225}+1}=\sqrt{\frac{289}{225}}=\frac{17}{15} \end{aligned}$	1 Mark: C	
9	$\begin{aligned} z & =2+3 i \\ i \bar{z} & =i \overline{(2+3 i)} \\ & =i(2-3 i) \\ & =3+2 i \end{aligned}$		D
10	Graph (C)		C

QUESTION 11

a)	$w=\sqrt{3}+i$ and $z=3-\sqrt{3} i$. (i) $\begin{aligned} & w z \\ & =(\sqrt{3}+i)(3-\sqrt{3} i) \\ & =3 \sqrt{3}-3 i+3 i+\sqrt{3} \\ & =3 \sqrt{3}+\sqrt{3} \\ & =4 \sqrt{3} \end{aligned}$ (ii) $\begin{aligned} & r=\sqrt{(\sqrt{3})^{2}+1^{2}}=2 \\ & \tan \theta=\frac{1}{\sqrt{3}}, \quad \theta=\frac{\pi}{6} \\ & \therefore w=2 \operatorname{cis} \frac{\pi}{6} \end{aligned}$ (iii) $\begin{aligned} w^{4} & =\left(2 \operatorname{cis} \frac{\pi}{6}\right)^{4} \\ & =2^{4} \operatorname{cis} \frac{4 \pi}{6} \\ & =16 \operatorname{cis} \frac{2 \pi}{3} \\ & =16\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\ & =16\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right) \\ & =-8+8 \sqrt{3} i \end{aligned}$	2	Correct Answer 1 for correct r 1 for correct θ 1 -Evaluating Power 1 Answer in Cartesian form
b)	(i) $\frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}$ $\begin{array}{rlrl} 5 x^{3}-3 x^{2}+2 x-1 & \equiv A x\left(x^{2}+1\right)+B\left(x^{2}+1\right)+(C x+D) x^{2} \\ & \equiv A x^{3}+A x+B x^{2}+B+C x^{3}+D x^{2} \\ & & \\ (A+C) x^{3}=5 x^{3} & \therefore A+C=5 \\ (B+D) x^{2}=-3 x^{2} & \therefore B+D=-3 \\ A x=2 & \therefore A=2 & \therefore C=3 \\ B=-1 & \therefore D=-2 & \end{array}$ Hence, $A=2, B=-1, C=3, D=-2$. (ii) $\begin{gathered} \int \frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}} d x=\int\left(\frac{2}{x}-\frac{1}{x^{2}}+\frac{3 x-2}{x^{2}+1}\right) d x \\ =\int\left(\frac{2}{x}-\frac{1}{x^{2}}+\frac{3 x}{x^{2}+1}-\frac{2}{x^{2}+1}\right) d x \\ =2 \ln x+\frac{1}{x}+\frac{3}{2} \ln \left(x^{2}+1\right)-2 \tan ^{-1} x+c \end{gathered}$	2	2 - Correct A, B, C and D 1-3 correct 1 - Breakup of Integral 1 - Correct Answer
c)	$x^{4}-2 x^{3}+x^{2}-8 x-12$ Since $x=2 i$ is one root, $(x-2 i)(x+2 i)$ are factors as coeffs are real, so $\left(x^{2}+4\right)$ is a factor By division, $\begin{gathered} x^{4}-2 x^{3}+x^{2}-8 x-12=\left(x^{2}+4\right)\left(x^{2}-2 x-3\right) \\ =(x+2 i)(x-2 i)(x-3)(x+1) \end{gathered}$ \therefore Solution is $x= \pm 2 i,-1$ and 3	3	1 obtaining factor 1 -Correct division 1 all 4 roots

d)	$\begin{aligned} & \int \frac{x}{x^{2}-3 x+4} d x \\ & =\frac{1}{2} \int \frac{2 x-3}{x^{2}-3 x+4}+\frac{3}{2} \int \frac{1}{x^{2}-3 x+4} \\ & =\frac{1}{2} \ln \left(x^{2}-3 x+4\right)+\frac{3}{2} \int \frac{1}{\left(x-\frac{8}{2}\right)^{2}+\frac{7}{4}} \\ & =\frac{1}{2} \ln \left(x^{2}-3 x+4\right)+\frac{\frac{8}{2}}{\sqrt{\frac{7}{4}}} \tan ^{-1}\left(\frac{x-\frac{3}{2}}{\sqrt{\frac{7}{4}}}\right)+c \\ & \quad==\frac{1}{2} \ln \left(x^{2}-3 x+4\right)+\frac{3}{\sqrt{7}} \tan ^{-1}\left(\frac{2 x-3}{\sqrt{7}}\right)+c \end{aligned}$	1	Total marks - 3

QUESTION 12

\begin{tabular}{|c|c|c|c|c|}
\hline a) \& \begin{tabular}{l}
Let \(f(x)=x-\ln (1+x)\) and \(f^{\prime}(x)=1-\frac{1}{1+x}\) \\
Minimum occurs if \(f^{\prime}(x)=0\)
\[
\begin{aligned}
\& 1-\frac{1}{1+x}=0 \quad \frac{1+x}{1+x}-\frac{1}{1+x}=0 \\
\& \therefore 1+x-1=0 \quad \text { or } x=0 \quad(x \neq-1)
\end{aligned}
\] \\
Test \(f^{\prime \prime}(x)=\frac{1}{(1+x)^{2}}, f^{\prime \prime}(0)=1>0\) Minima \\
Therefore the least value of \(f(x)\) is at \(x=0\)
\[
\begin{aligned}
\& f(0)=0-\ln (1+0)=0 \text { hence } f(x) \geq 0 \\
\& f(x)=x-\ln (1+x) \geq 0 \\
\& \therefore x \geq \ln (1+x)
\end{aligned}
\]
\end{tabular} \& 3 M
answ

2 M
sign
prog

the \& | ks: Correct r. |
| :--- |
| ks: Makes cant ess towards lution. |
| ks: |
| k: Sets up nction and tly uses us. | \&

\hline b) \& | $\begin{aligned} & \text { (i) } \quad \frac{x^{2}}{16}+\frac{Y^{2}}{9}=1 \quad \mathrm{P}(4 \cos \theta, 3 \sin \theta) \\ & \frac{(4 \cos \theta)^{2}}{16}+\frac{(3 \sin \theta)^{2}}{9}=1 \\ & \frac{16 \cos ^{2} \theta}{16}+\frac{9 \sin ^{2} \theta}{9}=1 \\ & \cos ^{2} \theta+\sin ^{2} \theta=1 \\ & 1=1 \end{aligned}$ |
| :--- |
| \therefore P lies on the ellipse. |
| Directrices : $x= \pm \frac{a}{\varepsilon}$ $\begin{aligned} & x= \pm 4 \div \frac{\sqrt{7}}{4} \\ & x= \pm \frac{16}{\sqrt{7}}= \pm \frac{16 \sqrt{7}}{7} \end{aligned}$ | \& 3 \& | Working |
| :--- |
| 1 - eccentricity |
| 1 - foci |
| 1 - directrices | \&

\hline \& $$
\begin{aligned}
& \text { (iii) } \begin{array}{l}
\text { If } \frac{x^{2}}{16}+\frac{Y^{2}}{9}=1 \\
\frac{2 x}{16}+\frac{2 y}{9} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{2 x}{16} \div \frac{2 y}{9} \\
\frac{d y}{d x}=-\frac{2 x}{16} \times \frac{9}{2 y} \\
\frac{d y}{d x}=-\frac{9 x}{16 y} \\
\text { At } \mathrm{P}(4 \cos \theta, 3 \sin \theta) \quad \frac{d y}{d x}=-\frac{36 \cos \theta}{48 \sin \theta}=-\frac{3 \cos \theta}{4 \sin \theta} \\
\left.\quad y-y_{1}=m-x_{1}\right)
\end{array} \\
& \quad y-3 \sin \theta=-\frac{3 \cos \theta}{4 \sin \theta}(x-4 \cos \theta) \\
& \quad 4 y \sin \theta-12 \sin ^{2} \theta=-3 x \cos \theta+12 \cos ^{2} \theta \\
& \quad 3 x \cos \theta+4 y \sin \theta=12
\end{aligned}
$$ \& 2 \& 1 - gradient

$$
1 \text { - Equation }
$$ \&

\hline
\end{tabular}

(iv) Normal $\frac{d y}{d x}=\frac{4 \sin \theta}{3 \cos \theta}$ $\begin{gathered} y-y_{1}=m\left(x-x_{1}\right) \\ y-3 \sin \theta=\frac{4 \sin \theta}{3 \cos \theta}(x-4 \cos \theta) \\ 3 y \cos \theta-9 \sin \theta \cos \theta=4 x \sin \theta-16 \sin \theta \cos \theta \\ 4 x \sin \theta-3 y \cos \theta-7 \sin \theta \cos \theta=0 \end{gathered}$	2	1 - substitution 1 - answer
(v) $\begin{aligned} & \begin{array}{l} 3 x \cos \theta+4 y \sin \theta=12 \\ x=\frac{16 \sqrt{7}}{7} \\ \frac{48 \sqrt{7}}{7} \cos \theta+4 y \sin \theta=12 \\ 4 y \sin \theta=12-\frac{48 \sqrt{7}}{7} \cos \theta \\ y=\frac{12-\frac{48 \sqrt{7}}{7} \cos \theta}{4 \sin \theta} \\ y=\frac{84-48 \sqrt{7} \cos \theta}{28 \sin \theta}=\frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta} \\ \text { Therefore } M=\left(\frac{16 \sqrt{7}}{7}, \frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}\right) \end{array} . \end{aligned}$	2	$\begin{aligned} & 1 \text { - substitution } \\ & 1 \text {-working } \end{aligned}$
(vi) $\text { Gradient PS }=\frac{3 \sin \theta-0}{4 \cos \theta-\sqrt{7}}=\frac{3 \sin \theta}{4 \cos \theta-\sqrt{7}}$ $\begin{aligned} \text { Gradient MS }=\frac{\frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}-0}{\frac{16 \sqrt{7}}{7}-\sqrt{7}}=\frac{\frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}}{\frac{16 \sqrt{7}-7 \sqrt{7}}{7}} & =\frac{\frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}}{\frac{9 \sqrt{7}}{7}} \\ & =\frac{21-12 \sqrt{7} \cos \theta}{9 \sqrt{7} \sin \theta} \end{aligned}$ 1 $\begin{aligned} m(\mathrm{PS}) \cdot m(\mathrm{MS}) & =\frac{3 \sin \theta}{4 \cos \theta-\sqrt{7}} \cdot \frac{21-12 \sqrt{7} \cos \theta}{9 \sqrt{7} \sin \theta} \\ & =\frac{7-4 \sqrt{7} \cos \theta}{(4 \cos \theta-\sqrt{7}) \sqrt{7}} \\ & =\frac{7-4 \sqrt{7} \cos \theta}{4 \sqrt{7} \cos \theta-7} \\ & =\frac{7-4 \sqrt{7} \cos \theta}{-(7-4 \sqrt{7} \cos \theta)} \\ & =-1 \\ & \therefore M S \perp P S \text { and } \angle P S M=90^{\circ} \end{aligned}$	2	1-Both Gradients 1 - proving perpendicular

a)	$\begin{gathered} \frac{(1+i)^{2}}{(1-i \sqrt{3})^{2}} \\ (1+i): \quad r=\sqrt{2}, \theta=\frac{\pi}{4} \quad 1+i=\sqrt{2} \text { cis } \frac{\pi}{4} \\ (1-i \sqrt{3}): r=2, \theta=-\frac{\pi}{3} \text { so } 1-i \sqrt{3}=2 \text { cis }\left(-\frac{\pi}{3}\right) \\ \begin{aligned} \frac{(1+i)^{2}}{(1-i \sqrt{3})^{2}} & =\frac{\left(\sqrt{2} \operatorname{cis} \frac{\pi}{4}\right)^{2}}{\left(2 \operatorname{cis}\left(-\frac{\pi}{3}\right)\right)^{2}} \\ & =\frac{2 \operatorname{cis} \frac{\pi}{2}}{4 \operatorname{cis}\left(-\frac{2 \pi}{8}\right)} \\ & =\frac{1}{2} \operatorname{cis}\left(\frac{7 \pi}{6}\right) \\ & =\frac{1}{2} \operatorname{cis}\left(\frac{-5 \pi}{6}\right) \end{aligned} \end{gathered}$	1 1 1 1	2 marks for converting to mod-arg form 2 marks for any valid method of simplifying.
b)	(i) (ii)	2	Correct Graph 1- Shape of Graph 1-Accuracy of critical points

\begin{tabular}{|c|c|c|c|}
\hline \& (iii) \& 2 \& 1- Shape of Graph 1-Accuracy of critical points

\hline \& (iv) \& 2 \& 1- Shape of Graph 1 - Accuracy of critical points

\hline c) \& $$
\begin{aligned}
\text { cis } & (\alpha+\beta)=\text { cis } \alpha \text { cis } \beta \\
\text { LHS } & =\cos (\alpha+\beta)+i \sin (\alpha+\beta) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta) \\
\text { RHS } & =\text { cis } \alpha \operatorname{cis} \beta \\
& =(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta) \\
& =\cos \alpha \cos \beta+i \sin \beta \cos \alpha+i \sin \alpha \cos \beta-\sin \alpha \sin \beta \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta+i(\sin \alpha \cos \beta+\cos \alpha \sin \beta) \\
& =\text { LHS }
\end{aligned}
$$ \& 1

1 \& | LHS |
| :--- |
| RHS |

\hline
\end{tabular}

d)		1	1 - equation $1 \text { - Graph }$

QUESTION 14

a)	$\begin{aligned} I_{n} & =\int x(\ln x)^{n} d x \\ & =(\ln x)^{n} \frac{x^{2}}{2}-\int \frac{x^{2}}{2} \times \frac{n}{x}(\ln x)^{n-1} d x \\ & =(\ln x)^{n} \frac{x^{2}}{2}-\frac{n}{2} \int x(\ln x)^{n-1} d x \\ & =(\ln x)^{n} \frac{x^{2}}{2}-\frac{n}{2} I_{n-1} \text { for } n \geq 1 \end{aligned}$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Sets up the integration and shows some understanding.		y parts
	$I_{2}=\int x(\ln x)^{2} d x=\frac{x^{2}(\ln x)^{2}}{2}-\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+C \quad 1 \text { mark correct }$			
b)	Step 1: To prove the statement true for $n=1$ and $n=2$ $T_{1}=(1+3) 2^{1}=8$ $T_{2}=(2+3) 2^{2}=20$ Result is true for $n=1$ Result is true for $n=2$ Step 2: Assume the result true for $n=k, n=k-1$ $\mid T_{s}=(k+3) 2^{k} \quad, T_{k-1}=(k+2) 2^{k-1}$ To prove the result is true for, $\begin{aligned} T_{k+1} & =(n+4) 2^{k+1} \\ T_{k+1} & =4 T_{k}-4 T_{k-1} \\ & =4(k+3) 2^{k}-4(k+2) 2^{k-1} \\ & =4 k 2^{k}+12 \times 2^{k}-4 k 2^{k-1}-8 \times 2^{k-1} \\ & =4 k 2^{k}+12 \times 2^{k}-2 k 2^{k}-4 \times 2^{k} \\ & =2^{k+1}(2 k+6-k-2) \\ & =(k+4) 2^{k+1} \end{aligned}$ Result is true for $n=k+1$ if true for $n=k$ Step 3: Result true by principle of mathematical induction.	3 Marks: Correct answer. 2 Marks: Proves the result true for $n=1$ and attempts to use the result of $n=k$ to prove the result for $n=k+1$. 1 Mark: Proves the result true for $n=1$ and $n=2$.		
c)				
		1 1 1	Shell Method Integration by part Answer	

d) (i)	$\begin{aligned} & \frac{y}{8}=\frac{1}{x} \Rightarrow y=\frac{8}{x} \quad l_{1}^{2}=x^{2}+64 \rightarrow l_{1}=\sqrt{x^{2}+64} \\ & l_{2}^{2}=y^{2}+1 \rightarrow l_{2}=\sqrt{y^{2}+1} \\ & l=\sqrt{x^{2}+64}+\sqrt{y^{2}+1} \\ & l=\left(x^{2}+64\right)^{\frac{1}{2}}+\left(\frac{64}{x^{2}}+1\right)^{\frac{1}{2}} \\ & l=\left(x^{2}+64\right)^{\frac{1}{2}}+\left(1+64 x^{-2}\right)^{\frac{1}{2}} \end{aligned}$	1	Equations for l_{1} and l_{2} Equation for l
(ii)	$\begin{gathered} l^{\prime}=\frac{1}{2}(2 x)\left(x^{2}+64\right)^{-\frac{1}{2}}+\frac{1}{2}\left(-128 x^{-3}\right)\left(1+64 x^{-2}\right)^{-\frac{1}{2}} \\ l^{\prime}=\frac{2 x}{2 \sqrt{x^{2}+64}}-\frac{128}{2 x^{3} \sqrt{1+\frac{64}{x^{2}}}} \\ l^{\prime}=\frac{x}{\sqrt{x^{2}+64}}-\frac{64}{x^{3} \sqrt{\frac{x^{2}+64}{x^{2}}}} \\ l^{\prime}=\frac{x}{\sqrt{x^{2}+64}}-\frac{64}{x^{2} \sqrt{x^{2}+64}} \end{gathered}$	1	Correct derivative
	Stat pt: $\begin{gathered} l^{\prime}=\frac{x}{\sqrt{x^{2}+64}}-\frac{64}{x^{2} \sqrt{x^{2}+64}}=0 \\ \frac{x}{\sqrt{x^{2}+64}}=\frac{64}{x^{2} \sqrt{x^{2}+64}} \end{gathered}$		
	$\begin{gathered} x^{3}=\frac{64 \sqrt{x^{2}+64}}{\sqrt{x^{2}+64}} \\ x^{3}=64 \\ x=4 \end{gathered}$ When $x=1, l^{\prime}<0$ When $x=5, l^{\prime}>0$ $\begin{aligned} & \therefore \text { minimum when } x=4 \text { hence } y=2 \\ & \quad l_{1}=\sqrt{80}=4 \sqrt{5}, l_{2}=\sqrt{5} \\ & \therefore L=4 \sqrt{5}+\sqrt{5}=5 \sqrt{5} \approx 11.2 \text { metres } \end{aligned}$	1	Value of x and test Minimum length

QUESTION 15

a)	$\begin{aligned} u=e^{x} \text { or } d u & =e^{x} d x \text { or } d x=\frac{1}{u} d u \\ \int \frac{e^{x}+e^{2 x}}{1+e^{2 x}} d x & =\int \frac{u+u^{2}}{1+u^{2}} \times \frac{1}{u} d u \\ & =\int \frac{1+u}{1+u^{2}} d u \\ & =\int \frac{1}{1+u^{2}} d u+\int \frac{u}{1+u^{2}} d u \\ & =\tan ^{-1} u+\frac{1}{2} \ln \left(u^{2}+1\right)+C \\ & =\tan ^{-1} e^{x}+\frac{1}{2} \ln \left(e^{2 x}+1\right)+C \end{aligned}$	4 Marks: Correct answer. 3 Marks: Separates and integrates one part correctly. 2 Marks: Correctly expresses the integral in terms of u 1 Mark: Correctly finds $d x$ in terms of $d u$
$\begin{array}{\|l\|} \hline \text { b) } \\ \text { (i) } \end{array}$	$P\left(c p, \frac{c}{p}\right), S(c \sqrt{2}, c \sqrt{2})$ and $P T: T S=1: 2$ Coordinates of T $\begin{aligned} x & =\frac{m x_{2}+n x_{1}}{m+n} & y & =\frac{m y_{2}+n y_{1}}{m+n} \\ & =\frac{1 \times c \sqrt{2}+2 \times c p}{1+2} & & =\frac{1 \times c \sqrt{2}+2 \times \frac{c}{p}}{1+2} \\ & =\frac{c(\sqrt{2}+2 p)}{3} & & =\frac{c\left(\sqrt{2}+\frac{2}{p}\right)}{3} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds one of the coordinates or makes some progress towards the solution.
(ii)	To find the locus of T eliminate p from the above equations. $\begin{array}{ll} x=\frac{c(\sqrt{2}+2 p)}{3} & y=\frac{c\left(\sqrt{2}+\frac{2}{p}\right)}{3} \\ 3 x=c(\sqrt{2}+2 p) & \frac{3 y}{c}-\sqrt{2}=\frac{2}{p} \\ \frac{3 x}{c}-\sqrt{2}=2 p & \\ \left(\frac{3 x}{c}-\sqrt{2}\right) \times\left(\frac{3 y}{c}-\sqrt{2}\right)=2 p \times \frac{2}{p}=4 \\ (3 x-\sqrt{2} c)(3 y-\sqrt{2} c)=4 c^{2} \end{array}$	2 Marks: Correct answer. 1 Mark: Uses the coordinates of T and attempts to eliminate p.

c)	Let $\angle B A C=\theta$ $\angle A C B=90^{\circ}$ (angle in a semi-circle) $\angle B C D=90^{\circ}$ (adjacent angles on a straight line) $\angle B C E=\angle B A C$ (angle between a tangent and a chord equals the angle in the alternate segment) $\begin{aligned} & \therefore \angle B C E=\theta \\ & \therefore \angle E C D=90-\theta(\text { angle sum of } \angle B C D) \\ & \therefore \angle E D C=90-\theta(\text { (angle sum of } \triangle A E D) \\ & \therefore \angle E C D=\angle E D C=90-\theta \end{aligned}$ $\triangle E C D$ is isosceles (base angles of the triangle are equal)	3 ans 2 sig pro the 1 dia app cir	arks: Correct ver. arks: Makes ificant ress towards solution. ark: Draws the ram and ies a relevant e theorem.
d)			
	$\begin{gather*} T_{1} \cos \theta=m g+T_{2} \cos \theta \\ T_{1} \cos 30=(5)(10)+T_{2} \cos 30 \\ T_{1} \cdot \frac{\sqrt{3}}{2}=50+T_{2} \cdot \frac{\sqrt{3}}{2} \\ T_{1} \sqrt{3}=100+T_{2} \sqrt{3} \ldots \ldots \ldots \text { (1) } \tag{1} \end{gather*}$	(can be without numerical sub)	
	$\begin{gathered} m r \omega^{2}=T_{1} \sin \theta+T_{2} \sin \theta \\ 5 \times 1 \cdot 5 \times 8^{2}=T_{1} \sin 30+T_{2} \sin 30 \\ 480=\frac{T_{1}}{2}+\frac{T_{2}}{2} \\ 960=T_{1}+T_{2} \ldots \ldots \ldots(2) \end{gathered}$	1	(can be without numerical sub) Horizontal Equation

	From (2), $\begin{equation*} T_{1}=960-T_{2} \ldots \ldots \ldots \tag{3} \end{equation*}$ (3) in (1) $\begin{gathered} \left(960-T_{2}\right) \sqrt{3}=100+T_{2} \sqrt{3} \\ 960 \sqrt{3}-T_{2} \sqrt{3}=100+T_{2} \sqrt{3} \\ T_{2} 2 \sqrt{3}=960 \sqrt{3}-100 \\ T_{2}=\frac{960 \sqrt{3}-100}{2 \sqrt{3}}=451 \mathrm{~N} \\ T_{1}=960-T_{2} \\ T_{1}=960-451 \\ T_{1}=509 \end{gathered}$	1 1	Value for T_{2} Value for T_{1}

QUESTION 16

a)	$\begin{aligned} y & =\ln \left(\frac{\sqrt{x^{2}+1}}{\sqrt[3]{x^{3}+1}}\right) \\ y & =\ln \sqrt{x^{2}+1}-\ln \sqrt[3]{x^{3}+1} \\ y & =\ln \left(x^{2}+1\right)^{\frac{1}{2}}-\ln \left(x^{3}+1\right)^{\frac{1}{3}} \\ y & =\frac{1}{2} \ln \left(x^{2}+1\right)- \\ \frac{d y}{d x} & =\frac{1}{2} \frac{2 x}{2 x^{2}+1}-\frac{1}{3} \frac{3 x^{2}}{x^{3}+1} \\ & =\frac{x}{3}\left(x^{3}+1\right) \\ x^{2}+1 & \frac{x^{2}}{x^{5}+1} \end{aligned}$	1 1	Use of logarithmic rules Answer
$\begin{aligned} & \hline \text { b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} \frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\frac{d v}{d x} \times \frac{d}{d v}\left(\frac{1}{2} v^{2}\right) \\ & =v \frac{d v}{d x} \end{aligned}$		rk correctly establishes result
$\begin{aligned} & \hline \text { (ii) } \\ & \text { A } \end{aligned}$	Resistance force acts against the direction of motion, $\begin{aligned} & \therefore F=m \times a=1 \times a=-\left(v+v^{3}\right) \\ & a=-\left(v+v^{3}\right) \\ & \frac{d v}{d t}=-\left(v+v^{3}\right) \end{aligned}$		rk correct explanation
B	$\begin{aligned} & v \frac{d v}{d x}=-\left(v+v^{3}\right) \\ & \frac{d v}{d x}=-\left(1+v^{2}\right) \\ & \frac{d x}{d v}=\frac{-1}{1+v^{2}} \\ & x=-\tan ^{-1} v+c \\ & \text { when } x=0, v=\sqrt{3} \Rightarrow c=\tan ^{-1} \sqrt{3} \\ & \begin{aligned} \therefore x & =\tan ^{-1} \sqrt{3}-\tan ^{-1} v \\ \tan x & =\tan \left(\tan ^{-1} \sqrt{3}-\tan ^{-1} v\right) \\ & =\frac{\tan \left(\tan ^{-1} \sqrt{3}\right)-\tan \left(\tan ^{-1} v\right)}{1+\tan \left(\tan ^{-1} \sqrt{3}\right) \times \tan \left(\tan ^{-1} v\right)} \\ & =\frac{\sqrt{3}-v}{1+v \sqrt{3}} \\ \therefore x= & \tan ^{-1}\left(\frac{\sqrt{3}-v}{1+v \sqrt{3}}\right) \end{aligned} \end{aligned}$		ark some correct progress rds result $\frac{d x}{d v}=-\frac{1}{1+v^{2}}$ rk $x=\tan ^{-1} \sqrt{3}-\tan ^{-1} v$ rk correctly establishes result

C	$\begin{aligned} \frac{d v}{d t} & =-\left(v+v^{3}\right) \\ \frac{d t}{d v} & =-\frac{1}{v+v^{3}} \\ & =\frac{-1}{v\left(1+v^{2}\right)} \\ & =\frac{v}{1+v^{2}}-\frac{1}{v} \\ t & =\int_{\sqrt{3}}^{V} \frac{v}{1+v^{2}}-\frac{1}{v} d v \\ = & {\left[\frac{1}{2} \log _{e}\left(1+v^{2}\right)-\log _{e} v\right]_{\sqrt{3}}^{V} } \\ = & \frac{1}{2}\left[\log _{e}\left(1+v^{2}\right)-2 \log _{e} v\right]_{\sqrt{3}}^{V} \\ = & \frac{1}{2}\left[\log _{e} \frac{1+v^{2}}{v^{2}}\right]_{\sqrt{3}}^{V} \\ = & \frac{1}{2}\left[\log _{e}\left(\frac{1+V^{2}}{V^{2}}\right)-\log _{e}\left(\frac{4}{3}\right)\right] \\ = & \frac{1}{2} \log _{e}\left[\frac{3\left(1+V^{2}\right)}{4 V^{2}}\right] \end{aligned}$	1 mark $\frac{d t}{d v}=-1 \frac{1}{v+v^{3}}$ 1 mark correct partial fractions 1 mark correct integration 1 mark correct result
D	$\begin{aligned} & t=\frac{1}{2} \log _{e}\left[\frac{3\left(1+V^{2}\right)}{4 V^{2}}\right] \\ & e^{2 t}=\frac{3\left(1+V^{2}\right)}{4 V^{2}} \\ & 4 V^{2} e^{2 t}=3+3 V^{2} \\ & V^{2}\left(4 e^{2 t}-3\right)=3 \\ & V^{2}=\frac{3}{4 e^{2 t}-3} \end{aligned}$	1 mark $e^{2 t}=\frac{3\left(1+V^{2}\right)}{4 V^{2}}$ 1 mark correct result
E	$\begin{aligned} & \text { As } t \rightarrow \infty, v \rightarrow 0 \\ & \text { hence } x \rightarrow \tan ^{-1} \sqrt{3} \end{aligned}$	1 mark correct both parts

