KAMBALA

2013 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

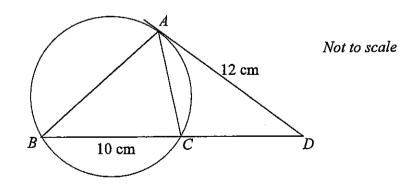
- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used.
- / Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in Question 11 14
- Write your student number and/or name at the top of every page

Total marks - 70 Section I - Pages 3 - 5 10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section Section II - Pages 6 - 9 60 marks Attempt Questions 11 - 14 Allow about 1 hour 45 minutes for this

This paper MUST NOT be removed from the examination room

section

STUDENT NUMBER/NAME:


Section 1

10 marks Attempt Questions 1-10 Allow 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 The remainder obtained when $P(x) = x^3 3x^2 5x + 6$ is divided by (x-3) will be:
 - (A) -34
 - (B) -9
 - (C) 6
 - (D) 21
- 2 Which of the following is an expression for $\frac{d}{dx}(2^x)$?
 - (A) $x2^{x-1}$
 - (B) 2^{x-1}
 - (C) 2^{x}
 - (D) $2^x \log_e 2$

ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D where BC = 10 cm and AD = 12 cm. What is the length of CD?

- (A) 6 cm
- (B) 7 cm
- (C) 8 cm
- (D) 9 cm

Marks

1

1

1

Marks

1

1

1

4 The equation $2x^3 + x^2 - 13x + 6 = 0$ has roots α , $\frac{1}{\alpha}$ and β . What is the value of β ? 1

- (A) 3
- (B) 2
- (C) -3
- (D) –6

5 Which of the following is an expression for $\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right)$?

- (A) $\frac{-x^2}{1+x^2}$ (B) $\frac{-1}{1+x^2}$ (C) $\frac{1}{1+x^2}$
- (D) $\frac{x^2}{1+x^2}$

6 Which of the following lines is a horizontal asymptote of the curve $y = \frac{e^x - 2}{e^x + 2}$?

- (A) y = -2
- $(B) \qquad y = -1$
- $(C) \qquad y=0$
- (D) y = 2

7 After t years the number N of individuals in a population is given by $N = 400 + 100e^{-0.1t}$. What is the difference between the initial population size and the limiting population size?

- (A) 100
- (B) 300
- (C) 400
- (D) 500

Student name / number

Marks

1

8 What is the derivative of $y = \cos^{-1}(\frac{1}{x})$ with respect to x?

(A)
$$\frac{-1}{\sqrt{x^2 - 1}}$$
 (C) $\frac{1}{\sqrt{x^2 - 1}}$
(B) $\frac{-1}{x\sqrt{x^2 - 1}}$ (D) $\frac{1}{x\sqrt{x^2 - 1}}$

9 Which of the following statements is FALSE.

(A)
$$\cos^{-1}(-\theta) = -\cos^{-1}\theta$$
. (B) $\sin^{-1}(-\theta) = -\sin^{-1}\theta$
(C) $\tan^{-1}(-\theta) = -\tan^{-1}\theta$ (D) $\cos^{-1}(-\theta) = \pi - \cos^{-1}\theta$

10 Which of the following is the domain of the function $y = \ln(x + \sqrt{x^2 + 1})$?

- (A) $\left\{x:x\leq -1,x\geq 1\right\}$
- (B) $\left\{x: -1 \le x \le 1\right\}$
- (C) $\{x: x \text{ is an element of the set of real numbers}\}$
- (D) $\left\{x:x\geq 1\right\}$

5

1

1

Section 2

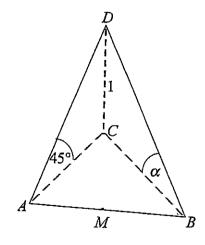
60 marks Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section

Attempt each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Ques	tion 11 (15 marks) Use a SEPARATE writing booklet.	
(a)	(i) Sketch the function $y = x^2 - 4 $.	1
	(ii) At what points is $y = x^2 - 4 $ not differentiable?	1
(b)	A(-1, 4) and $B(7, -2)$ are two points. Find the coordinates of the point P that divides the interval AB internally in the ratio 3 : 2.	2
(c)	Find correct to the nearest degree the acute angle θ between the lines $3x - 2y = 0$ and $x + 3y = 0$.	2
(d)	Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$.	3
(e)	Use the substitution $t = \tan \frac{x}{2}$ to show that $\frac{1 + \cos x + \sin x}{1 - \cos x + \sin x} = \cot \frac{x}{2}$.	3
(f)	$P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus $F(0, a)$.	
(i)	Use differentiation to show that the tangent to the parabola at P has gradient t and equation $tx - y - at^2 = 0$.	2
(ii) -	Show that the shortest distance between the focus and this tangent is $a\sqrt{1+t^2}$.	1

Marks

2


3

2

Question 12 (15 marks) Marks Use a SEPARATE writing booklet. (a) If $x + \frac{1}{x} = 3$, find the value of $x^2 + \frac{1}{x^2}$. Solve the inequality $\frac{2x-1}{x+2} > 1$. **(b)** Use the substitution u = 6 - x to find the exact value of $\int_{1}^{6} x \sqrt{6 - x} dx$. (c) 3 (d) Consider the statement: $S(n): 2^n - (-1)^n$ is divisible by 3, where n is a positive integer. Show that S(1) and S(2) are true. (i) 1

> Show that if S(k) is true for all positive integers k (ii) then S(k + 2) is also true.

(e)

CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is 45° . B is a point due East of C such that the angle of elevation of D from B is α . M is the midpoint of AB.

(i) Show that $AB = \csc \alpha$.

(ii) Show that $CM = \frac{1}{2} \csc \alpha$.

2

2

Question 13 (15 marks)

Use a SEPARATE writing booklet.

Consider the function $f(x) = \frac{e^x - e^{-x}}{e^x - e^{-x}}$. (a)

(i) Show that
$$f(-x) = -f(x)$$

(ii) Show that
$$f(x) = 1 - \frac{2}{e^{2x} + 1}$$
. 1

- Explain why f(x) < 1 for all values of x. (iiii)
- Consider the function $f(x) = \sin^{-1}(x-1)$. (b)
- (i) Find the domain of the function. 1 (ii) Sketch the graph of the curve y = f(x) showing the endpoints and the x intercept. 2 (iii) The region in the first quadrant bounded by the curve y = f(x) and the y axis 3 between the lines y=0 and $y=\frac{\pi}{2}$ is rotated through one complete revolution about the y axis. Find in simplest exact form the volume of the solid of revolution.

- (c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds its displacement from a fixed point O on the line is x metres, given by $x = 4\sqrt{2}\cos\left(\frac{\pi}{4}t - \frac{\pi}{4}\right)$, its velocity is $\nu \text{ ms}^{-1}$ and its acceleration is $\ddot{x} \text{ ms}^{-2}$.
 - (i) Find the amplitude and period of the motion. (ii) Find the initial position of the particle and determine if it is initially moving towards or away from O. (iii) Find the distance travelled by the particle in the first 3 seconds of its motion. 2

Marks

1

1

2 2

Marks

2

2

2

1

Question 14 (15 marks)

Use a SEPARATE writing booklet.

- (a) Consider the function $f(x) = 2 - \log_a x$.
- (i) Find the equation of the inverse function $f^{-1}(x)$. 1 (ii) Explain why the x coordinate X of the point of intersection P of the graphs 2 y = f(x) and $y = f^{-1}(x)$ satisfies the equation $e^{2-x} - X = 0$. 3
 - (iii) Use two applications of Newton's Method with an initial value of X = 1.5to find the value of X correct to two decimal places.
- A vertical building of height 60 metres stands on horizontal ground. A particle is (b) projected from a point O at the top of the building with speed $V = 20\sqrt{2}$ ms⁻¹ at an angle α above the horizontal. It moves in a vertical plane under gravity where the acceleration due to gravity is $g = 10 \text{ ms}^{-2}$ and hits the ground at a distance 120 metres from the foot of the building. At time t seconds its horizontal and vertical displacements from O are x metres and y metres respectively, given by $x = 20\sqrt{2} t \cos \alpha$ and $y = 20\sqrt{2} t \sin \alpha - 5t^2$. (Do NOT prove these results.)

(i) Show that
$$\alpha = \frac{\pi}{4}$$
 or $\alpha = \tan^{-1} \frac{1}{3}$.

(ii) If
$$\alpha = \tan^{-1}\frac{1}{3}$$
, find the exact time taken for the particle to hit the ground.

- (iii) If $\alpha = \frac{\pi}{4}$, find the exact speed of the particle after 6 seconds.
- The acceleration of a creature is given by $x = -\frac{1}{2}u^2e^{-x}$, where x is the (c) displacement from the origin, and u is the initial velocity at the origin. Given that u = 2m/sec:
 - Show that $v^2 = 4e^{-x}$. (i) 2 (ii) Explain why $v > 0_{s}$:

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

10	9	8	7	6	J	4	ယ	2	1	
										A
								:		в
										C
										đ

.

.

.

 \mathbf{b}

Qn	Solutions	Marks	Comments & Criteria
	Section 1		
1.	$P(x) = x^{3} - 3x^{2} - 5x + 6$ remainder = P(3) $P(3) = (3)^{3} - 3(3)^{2} - 5(3) + 6$		
	remainder = P(3)		
	$p(3) = (3)^3 - 3(3)^2 - 5(3) + 6$		
	=-9 B		
2.	$\frac{d}{dx}(2^{x})$		
	$\frac{d}{dx}(2^{x})$ $= \frac{d}{dx}(e^{\ln 2^{x}})$ $= \frac{d}{dx}(e^{x\ln 2})$		
	$=\frac{d}{dx}\left(e^{\chi\ln 2}\right)$		
	$= e^{\kappa \ln 2}$. $\ln 2$		
	$= 2^{n} \ln 2$ (D)		
3.	et CD = x		
	:. $(x+10) x = (12)^2$		
	$x^2 + 10x = 144$		
	$x^2 + 10x - 144 = 0$		
	(x + 18)(x - 8) = 0		
	x = -18, 8		
	but x is a length $:. \chi$: $:. \chi = 0 \text{ cm}$ (C)	>0	

ý

.

Qn	Solutions	Marks	Comments & Criteria
4.	$2x^3 + x^2 - 13x + 6 = 0$		
	$2x^3 + x^2 - 13x + 6 = 0$ roots are α , $\frac{1}{2}$, β		
	$(\mathcal{A})(\mathcal{A})(\beta) = -\frac{1}{2}$		
:	$\beta = -3$ C		
5.	$\frac{d}{dx}$ tan' $(\frac{1}{2})$		
	$=\frac{1}{1+(\frac{1}{x})^{2}}(-\frac{1}{x^{2}})$		
	$= \frac{-1}{\chi^2 + 1} (B)$		
6.	$y = \frac{e^{\chi} - 2}{e^{\chi} + 2}$		
	$\lim_{\chi \to -\infty} \frac{e^{\chi} - 2}{e^{\chi} + 2}$ $= \frac{0 - 2}{0 + 2}$		
	= 0 - 2 0+2		
	= -1 B		

Qn	Solutions	Marks	Comments & Criteria
٦.	$N = 400 + 100e^{-0.1t}$		
	$N = 400 + 100e^{-0.1t}$ at $t = 0$, $N = 400 + 100e^{\circ}$		
	= 400 + 100		
	= 500		
	- initial population is 500		
	lim N= 400 t-700		
	= 100 (A)		•
8.	$\frac{d}{dx}$ cos ⁻¹ ($\frac{1}{x}$)		
	$= \frac{-1}{\sqrt{1 - (\frac{1}{x})^2}} - x^{-2}$		
	$= \frac{+1}{\chi^2 \sqrt{\frac{\chi^2 - 1}{\chi^2}}}$ $= \frac{1}{\chi^2}$		
٩.	$(A)^{n\sqrt{n^2-1}}$		
	$(since cos^{-1}(-0) = cos^{-1}(0))$		
ι0.	Ċ		

.

Qn	Solutions	Marks	Comments & Criteria
	Section 2. i) $y = x^2 - 4 $ $y = x^2 - 4 $ y = (x+2)(x - 4)		
11a)	i) $y = x^2 - 4 $ x = (x+2)(x + 2)(x +	+2)	
	$\int y = x^2 - 4$	1	
	-12 Z Z	- 19-1	
	19		
	4 $y = x^2 - 4 $		
	-2 2 x		
(i)	not differentiable at $x=\pm 2$		
	A(-1,4) B(7,-2)		
	m:n = 3:2		
	$P = \left(\frac{mx_2 + nx_1}{mtn}, \frac{my_2 + ny_1}{mtn}\right)$		
	$= \left(\frac{(3)(7) + (2)(-1)}{3+2}, \frac{(3)(-2) + (2)(-1)}{3+2} \right)$	(2)(4)	
	$= \begin{pmatrix} 2 & 1 - 2 \\ -6 & +8 \\ -5 & -6 & +8 \end{pmatrix}$		-
	$P = \left(\frac{19}{3}, \frac{2}{5}\right)$		

Qn	Solutions	Marks	Comments & Criteria
110)	3x - 2y = 0 $x + 3y = 0m_1 = \frac{3}{2} m_2 = -\frac{1}{3}$		
	3x - 2y = 0 $x + 3y = 0m_1 = \frac{3}{2} m_2 = -\frac{1}{3}\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	$=\frac{3}{2}+\frac{1}{3}$		
	$1+(\frac{3}{3})(-\frac{1}{3})$ = $\frac{11}{6}$		
	1-2		
	$=\frac{1}{2}$		
	$3 = \tan^{-1}\left(\frac{1!}{3}\right)$		
	.:0=75° (to nearest degr	ee)	

Qn	Solutions	Marks	Comments & Criteria
11 d)	$\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$		
	$= \left[5 \ln^{-1} \frac{x}{2} \right]_{\sqrt{2}}^{\sqrt{3}}$		
	$=\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$		
	$= \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$		
	$=\frac{1}{3}-\frac{1}{4}$		
	- T 12		
(1e)	$\frac{ +\cos x + \sin x }{ -\cos x + \sin x } = \cot \frac{x}{2}$		
	let $t = \tan \frac{\pi}{2}$		
	:. LHS: 1+ cosx+sinx 1- cosx+sinx		
	$= 1 + \frac{1-t^{2}}{1+t^{2}} + \frac{2t}{1+t^{2}}$		
	$1 - \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2}$		

Qn	Solutions	Marks	Comments & Criteria
11e) c+d	$= \frac{1+t^2+1-t^2+2t}{1+t^2}$		
	$\frac{1+t^2-1+t^2+2t}{1+t^2}$		
	$= \frac{2t+2}{1+t^2}$ $\frac{2t^2+2t}{2}$		
	$= 2(t+1), \frac{1+t^{2}}{1+t^{2}}, \frac{1+t^{2}}{2t(t+1)}$		
	$= \frac{2}{2t}, t^2 \neq -1$		
	$= \frac{1}{t}$ $= \cot \frac{\pi}{2}$		
	- RHS		

Qn	Solutions	Marks	Comments & Criteria
11f)	$P(2at, at^2)$ $x^2 = 4ay$		
i)	$y = \frac{\pi^2}{4\alpha}$		
	$y' = \frac{2\pi}{4\alpha}$		
	$= \frac{\pi}{2\alpha}$		
	at P, $y' = \frac{2at}{za}$	2	
	= t as required		
	$eqn:y-at^2=t(x-2at)$		
	$y - at^2 = xt - 2at^2$		
	$\therefore tx - y - at^2 = 0$		
	as required		
	$F(0, \alpha)$		
	$d = \left \frac{a x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right $		
	$= \left \frac{0 + (-1)(a) + (-at^{2})}{\sqrt{t^{2} + (-1)^{2}}} \right $		
	$= \left -\frac{\alpha \left(1+t^{2} \right)}{\sqrt{1+t^{2}}} \right $		
י -	- A VI++2 as realled		

= a VI+tz as required

Qn	Solutions	Marks	Comments & Criteria
120)	$\chi + \frac{1}{\chi} = 3$		
	$x + \frac{1}{x} = 3$ $(x + \frac{1}{x})^{2}$ $= x^{2} + 2 + \frac{1}{x^{2}}$ $= (x + \frac{1}{x})^{2} - 2$ $= (3)^{2} - 2$ $= 7$ $\frac{2x - 1}{x + 2} > 1 , x \neq -2$ $(2x - 1)(x + 2) > (x + 2)^{2}$ $2x^{2} + 3x - 2 > x^{2} + 4x + 4$ $x^{2} - x - 6 > 0$ $(x - 3)(x + 2) > 0$ $\frac{1}{x + 2} = \frac{1}{x^{2}} + \frac{1}{x^{2}} $		

Qn	Solutions	Marks	Comments & Criteria
	Solutions $\int_{1}^{6} x \sqrt{6-x} dx$ $u = 6 - x$ When $x = 1$, $u = 5$ When $x = 6$, $u = 0$ $du = -1$ $dx = -du$ $\int_{5}^{0} (6 - u) \cdot \sqrt{u} \cdot - du$ $= \int_{0}^{5} (6u^{\frac{1}{2}} - u^{\frac{3}{2}}) du$ $= \left[\frac{2.6u^{\frac{3}{2}}}{3} - \frac{2u^{\frac{5}{2}}}{5}\right]_{0}^{5}$ $= \left[4\sqrt{u^{3}} - \frac{2}{5}\sqrt{u^{5}}\right]_{0}^{5}$ $= (4\sqrt{125} - \frac{2}{5}\sqrt{3125}) = 0$ $= 20\sqrt{5} - \frac{2}{5} \times 25\sqrt{5}$	Marks	Comments & Criteria
	-		

Qn	Solutions	Marks	Comments & Criteria
12d)	$S(n): 2^n - (-1)^n$ divisible by 3		
	$5(n): 2^n - (-1)^n$ divisible by 3 $35(0): 2^1 - (-1)^1$		
	= 2 +1		
	= 3, divisible by 3		
	$5(2): 2^{2} - (-1)^{2}$		
	= 4 - 1		
	= 3, divisible by 3		
	:. s(1), s(2) are true		
īī)	If S(k) is true, then		
	$2^{k} - (-1)^{k} = 3M$ for		
	some integer M		
	RTP: S(k+2) is true		
	$S(k+2) = 2^{k+2} - (-1)^{k+2}$		
	$= 2^{2} \cdot 2^{k} - (-1)^{k} (-1)^{2}$		
	$= (3m + (-1)^{k})2^{2} - (-1)^{k}$		
	$= 12m + 4(-1)^{k} - (-1)^{k}$		
	$= 12M + 3(-1)^{k}$		
	$= 3(4M + (-1)^{h}),$		
	divisible by 3	•	
	.' true for s(k+2)		

Qn	Solutions	Marks	Comments & Criteria
12d)	If $S(1)$ and $S(2)$ are		
/	true and s(k+z) is true		
	whenever s(k) is true,		
	then, by the Principle of	-	
	Mathematical Induction,		
	the statement is true for		
	all positive integers n.		
he)	In AABC:		
(i)	Ac = 1	-	
	$BC = \omega f \alpha$ $\angle ACB = 90$		
:	$\frac{2}{4} (AB)^2 = 1 + \cot^2 \alpha (by Python)$		Theorem)
	$= (AB) = 11 \text{ where } (19 \text{ pg/mG})$ $= (0 \text{ sec}^2)$	guras	
	: AB = cosec ~ as required		
ii)	A unique circle can be		
	drawn through A, B and	С.	
	LACB = 90°, : AB is a dian	neter	
	of this circle, with centre Mc and MB are radii.	M.	
	$mc = mB = \pm cosec \propto$		
	as required.		

Qn	Solutions	Marks	Comments & Criteria
13a)	$f(x) = e^{\chi} - e^{-\chi}$ $\overline{e^{\chi} + e^{-\chi}}$		
i)	$f(-x) = e^{-x} - e^{x}$		
	e-x tex		
	$-f(n) = -(e^{x}-e^{-n})$		
	extern		
	$=\frac{e^{-\lambda}-e^{\lambda}}{e^{-\lambda}+e^{\lambda}}=f(-\lambda)$		
	$f(-\pi) = -f(\pi)$		
	as required		
rtp RTP	$f(x) = 1 - \frac{2}{e^{2x} + 1}$ LHS: $\frac{e^{2} - e^{-x}}{e^{2x} + e^{-x}}$		
	$\frac{c}{e^{x}+e^{-x}}$		
	$= \frac{e^{2x} - 1}{e^{2x} + 1} (\text{multiply by } \frac{e^{x}}{e^{x}})$		
	$= e^{2x} + 1 - 2$ $e^{2x} + 1$		
	$= 1 - \frac{2}{e^{2x} + 1}$		
	= RHS		

Qn	Solutions	Marks	Comments & Criteria
13a) 111)	$\frac{2}{C^{2} + 1}$ is positive for all		
	values of x		
	$f(x) = 1 - \frac{2}{e^{2x} + 1}$ will		
	have a maximum value		
	of $1 = f(x) < 1$		
136)	$f(x) = \sin^{-1}(x-1)$		
j.)	Domain: {x:-1 <x-1<1} .: {x:0<x<2}< th=""><th></th><th>· .</th></x<2}<></x-1<1} 		· .
īi) T	19 (2,芝)		
	1 2 72		
íii)	$V = \pi \int_{0}^{\frac{\pi}{2}} (1 + \sin y)^2 dy$		
	$=\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ 1 + 2\sin y + \frac{1}{2} \left(1 - \cos 2y \right) \right\}$	{dy	
	$= \pi \left[1 \frac{1}{2} y - 2 \cos y - \frac{1}{4} \sin 2 y \right]_{2}^{\frac{1}{2}}$		
	-π {(³ π/4 - 0 - 0) - (0 - 2 - 0	7}	······································
	$= # (\frac{34}{4} + 2) un ds^{3}$		

Qn	Solutions	Marks	Comments & Criteria
	x=452 cos(葉t-葉)		
り	amplitude = 4J2 metres		
	$\begin{array}{r} \text{amplitude} = 7\sqrt{2} \text{ metres} \\ \text{period} = \frac{2\pi}{4} \\ \overline{4} \end{array}$		
5.3	= 8 seconds		
n)	$at t = 0, x = 452\cos(0 - \frac{4}{4})$		
	x= (452)(tz)		
	x= 4 m to the right of (>.	
	x= dx at=-452.)	
	· ~ サ52 sin(辛t-芒)		
	at $t=0$, $\dot{\chi} = -\pi\sqrt{2}\sin(0)$	一世)	
	$\therefore \dot{\chi} = -7T\sqrt{2} - \frac{1}{\sqrt{2}}$	4/	
	= + >0		
	particle moving away		
	from O.		

Qn	Solutions	Marks	Comments & Criteria
14a)	$f(x) = 2 - \log_e x$		
i)	$y = 2 - \log_e x$		
	i loge $x = 2 - y$		
	$x = e^{2-y}$		
	:. $f^{-1}(x) = e^{2-x}$		
	The graphs of f(x) and f'	n)	
	are reflections in the		
	line y= x, so any points of		
	intersection of these		
	graphs must lie on the		
	line y=x. If the		
	graphs intersect at a point where $x = X$, then		
	$f(X) = f^{-1}(X) = \mathcal{X}$		
	(x) = f(x) = x		
	$\therefore e^{2-\chi} - \chi = 0$ as required	1	

İ

Qn	Solutions	Marks	Comments & Criteria
14c)	Let $g(x) = e^{2-x} - x$		
iii)	Let $g(x) = e^{2-x} - x$: $g'(x) = -e^{2-x} - 1$		
	$\chi - g(\chi) = \chi (e^{2-\chi} + 1) + e^{2\chi}$ $g'(\chi) = \frac{1}{e^{2-\chi} + 1}$	- x	
	$\frac{g'(x)}{e^{2-x}} + 1$		
	$= e^{2-\pi}(\pi + 1)$		
	$e^{2-\chi} + 1$		
	$= e^{2-\pi} (\pi + 1)$		
	$= \frac{e^{2-\varkappa}(\chi+1)}{e^{2-\varkappa}\left(1+\frac{1}{e^{2-\varkappa}}\right)}$		
	$= \frac{x+1}{1+(e^{2-x})^{-1}}$		
	$\frac{-\chi+1}{1+e^{\chi-2}}$		
	for X = 1.5, X - $g(z) = \frac{2.5}{g'(x)}$ $\frac{1}{1+e^{-0.5}}$		
	≑ 1.56		
	for $X = 1.56, X - g(n) = \frac{2.56}{g^{1}(n)}$ $g^{1}(n)$ $1 + e^{-0.56}$	44	
	÷ 1.56		
	: X = 1.56 (to 2 dec. pl.)		

Qn	Solutions	Marks	Comments & Criteria
14b)	V=2052 g=10		
	-		
	x = 20JZtcosd		
	$y = 2052 t sin \alpha - 5t^2$		
り	When $x = 120, y = -60$		
	$\frac{1}{2052\cos x}$		
	:- 2052 (120 2052 (052) Sind - 5 (120 2052 (052)	usa 2	= -60
	$120 \tan \alpha - 90 \sec^2 \alpha = -60$		
	4 tan $\alpha - 3(1 + \tan^2 \alpha) = -2$		
	$(3\tan\alpha - 1)(\tan\alpha - 1) = 0$		
	$\pm \tan d = \frac{1}{3}, 1$		
:5	$d = \tan^{-1}(\frac{1}{3}), \pm as$ require tan $d = \frac{1}{3}$, $\sqrt{10}$	red	
iD	- 'h \\		
	:- cos x = 3 3		
	t = 120		
	2052 005 2		
	$= t = 120 \sqrt{10}$		
	2052.3		١
	$t = 2\sqrt{5}$ seconds		

Qn	Solutions	Marks	Comments & Criteria
146) 111)	2=T 4		
	$\dot{x} = 20$ $\dot{y} = 20\sqrt{2} \sin(\pi) - 10t$		
	$\dot{x} = 20$ $\dot{y} = 20\sqrt{2} \sin(\pi) - 10t$ $\dot{y} = 20\sqrt{2} \cdot 1 - 10t$ $\sqrt{2}$		
	$\dot{y} = 20 - 10t$		
	$at t=6, \dot{x}=20$		
	at $t=6$, $\dot{x}=20$ at $t=6$, $\dot{y}=20-10(6)$		
	-: ý = -40		
	$\frac{20}{\sqrt{40}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{40}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{40}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{40}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{40}} \frac{1}{\sqrt{2}} 1$		
	V = 400 + 1600		
	$V^2 = 2000$ $V = \sqrt{2000}$		
	$V = 20J5 ms^{-1}$		
-			

Qn	Solutions	Marks	Comments & Criteria
14c)	$\ddot{\chi} = -\frac{1}{2}u^2 e^{-\chi}$		
i)	at $t=0$, $u=2$		
	$: \dot{n} = -\frac{1}{2}(2)^2 e^{-n}$		
	$\dot{x} = -2e^{-x}$		
	but $\dot{x} = \frac{d}{dx}(\frac{1}{2}v^2)$		
	$\frac{1}{2}v^{2} = +2e^{-x} + c$		
	$\sqrt{2} = 4e^{-x} + 2c$		
	when $t=0$, $x=0$, $v=2$		
	$4 = 4e^{\circ} + 2c$		
	2c = 0		· · · · · ·
	$: v^2 = 4e^{-x}$		
ii)	$4e^{-x}$ > o for all x		
	$\therefore v^2 > 0$ for all π		
(at $t=0$, $V=2$ and V remains		
	positive.		