

Student Number: _____

Trial HSC - Task 3 August 2013

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- Answer questions 1 10 on the multiple choice answer sheet provided.
- Answer questions 11 16 in the booklets provided.

Start each question in a new booklet.

- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I – Pages 3 – 6 10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – Pages 7 – 14 90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

Kambala – Mathematics Extension 2 – Trial HSC Task 3 – August 2013

BLANK PAGE

Section I

A.

10 Marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

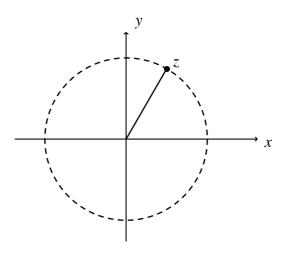
Use the multiple-choice answer sheet for Questions 1 – 10.

Let z = 3 + 2i and w = 2 - i. 1 What is the value of $\overline{z} + 3w$? 9-i C. 9-3i9 + iB.

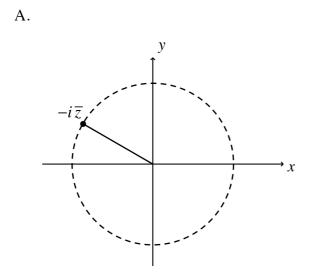
D.

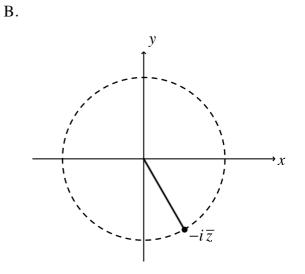
9 - 5i

- The equation $x^3 + 2xy y^3 2 = 0$ defines y implicitly as a function of x. 2 What is the value of $\frac{dy}{dx}$ at the point (1,1)?
 - C. $\frac{1}{5}$ 5 B. 1 D. -1 Α.

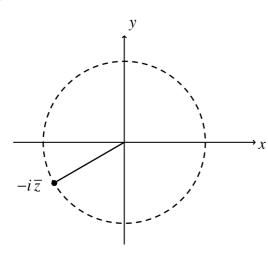

The equation $3x^3 + 2x^2 - 4x + 1 = 0$ has roots α , β and γ . 3 What is the value of $\frac{1}{\alpha^3 \beta^3 \gamma^3}$?

27 B. -27 C. $\frac{1}{27}$ D. $-\frac{1}{27}$ A.

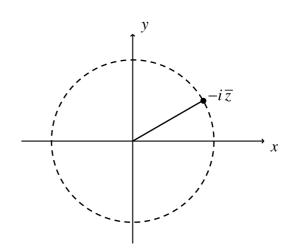

What is the eccentricity of the hyperbola $\frac{x^2}{6} - \frac{y^2}{10} = 1$? 4

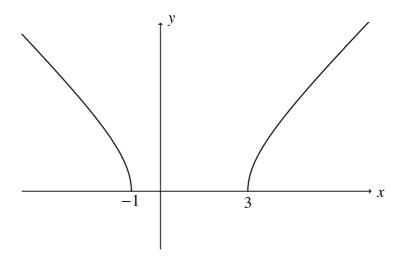

- A. $\frac{2\sqrt{10}}{5}$ B. $\frac{2\sqrt{6}}{3}$ C. $\frac{2\sqrt{3}}{3}$ D. $\frac{\sqrt{6}}{2}$
- 5 The polynomial P(x) = 0 has real coefficients. Three of the roots of P(x) are x = 4, x = 2 - i and x = 1 + i. What is the minimum degree of P(x)?
 - C. 5 3 Β. 4 D. 6 Α.

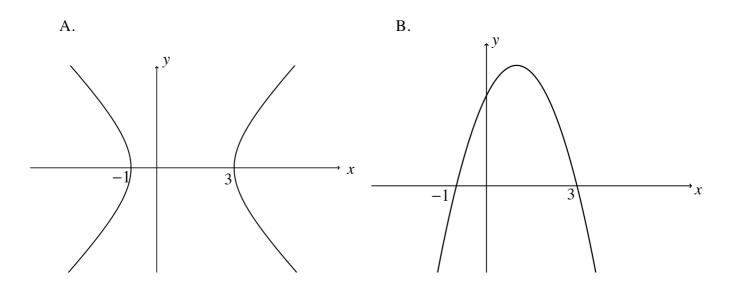
6 The complex number z is shown in the Argand diagram below.

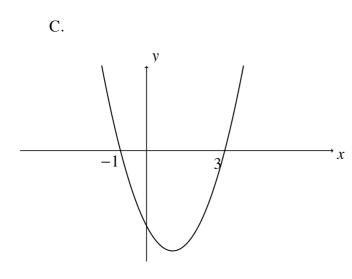


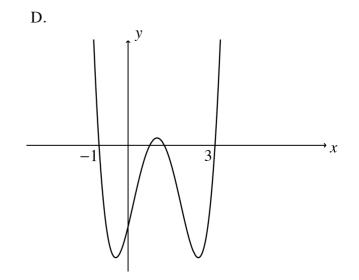
Which of the following best represents $-i\overline{z}$?






D.




7 The graph of $y = \sqrt{f(x)}$ is shown below.

A possible graph of the function y = f(x) is:

8 If ω is an imaginary cube root of unity, then $(1+\omega-\omega^2)^7$ is equal to:

A.
$$-128\omega^2$$
 B. $128\omega^2$ C. -128ω D. 128ω

9 Let
$$y = \cos^{-1} e^x$$
. An expression for $\frac{dy}{dx}$ is given by:
A. $-\tan y$ B. $-\cot y$ C. $-\csc y$ D. $-\sec y$

10 What are all the values of k for which the graph of $y = 2x^3 - 6x^2 + k$ will have three distinct x-intercepts?

A.
$$k > 0$$
 B. $k < 8$ C. $k = 0, 8$ D. $0 < k < 8$

End of Section I

Section II

60 Marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in the booklets provided. Start each question in a new booklet. In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{2\sqrt{3}+i}{\sqrt{3}-i}$$
 in the form $x + iy$, where x and y are real. 2

2

(b) Shade the region on the Argand diagram where the two inequalities

$$|z+1| \le 1$$
 and $|z-2i| \ge 2$

both hold.

(c) Given
$$z_1 = i\sqrt{2}$$
 and $z_2 = \frac{2}{1-i}$

(i)	Express z_1 and z_2 in modulus-argument form.	2

- (ii) If $z_1 = wz_2$, find w in modulus-argument form. 1
- (iii) On an Argand diagram, plot the points P, Q and R, where P represents z_1 , **2** Q represents z_2 and R represents $(z_1 + z_2)$.

(iv) Show that
$$\operatorname{Arg}(z_1 + z_2) = \frac{3\pi}{8}$$
 and hence find the exact value of $\tan \frac{3\pi}{8}$. 2

(d) Given that
$$2^{n+4} > (n+4)^2$$
 for all integral $n \ge 1$, show that $2^{3(a+2)} > 9(a+2)^2$. 2

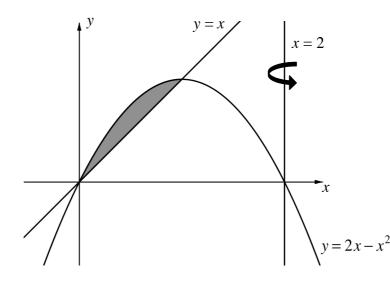
(e) Solve the equation
$$x^3 - 8x^2 - 5x + 84 = 0$$
, given that one of the roots is equal to the sum of the other two roots. 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{dx}{x^2 - 2x + 5}$$
. 2

(b) Find
$$\int \ln x \, dx$$
. 2

(c) Using the substitution
$$u = e^x$$
 and partial fractions, find $\int \frac{1}{e^x + 1} dx$. 3


- (d) Prove by the process of Mathematical Induction that $(1+x)^n nx 1$ is **3** divisible by x^2 for all integral $n \ge 2$.
- (e) Given that f(x) = |x-2| 2, sketch the graphs of the following showing the x- and y-intercepts. Use separate axes for each graph.
 - (i) y = f(x) 1

(ii)
$$y = [f(x)]^2$$
 2

(iii)
$$y = \ln[f(x)]$$
 2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The area between the two curves $y = 2x - x^2$ and y = x is rotated about the line x = 2.

Using the method of cylindrical shells, calculate the exact volume of the solid of revolution formed.

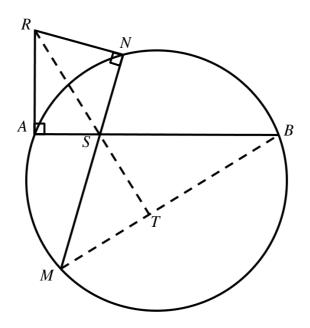
(b)	(i)	Find the centre and radius of the circle $x^2 + y^2 + 4x = 0$.	1

(ii) Show that the line y = mx + b will be a tangent to the circle if 2

$$4(mb+1) = b^2$$

(iii) *P* is a point whose coordinates are (k, 0). If *P* lies on the line y = mx + b and is exterior to the circle, find possible values for *k* if the two tangents from *P* to the circle are perpendicular.

2


(c) (i) Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. 1

(ii) Hence evaluate
$$\int_0^1 x^2 \sqrt{1-x} \, dx$$
. 3

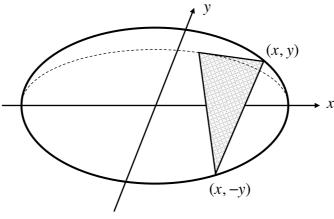
Question 13 continues on page 10

Question 13 (continued)

(d) AB and MN are chords of a circle that intersect at S. R is a point external to the circle such that RA is perpendicular to the chord AB and RN is perpendicular to the chord MN. The line RS is produced to T, a point lying on MB.

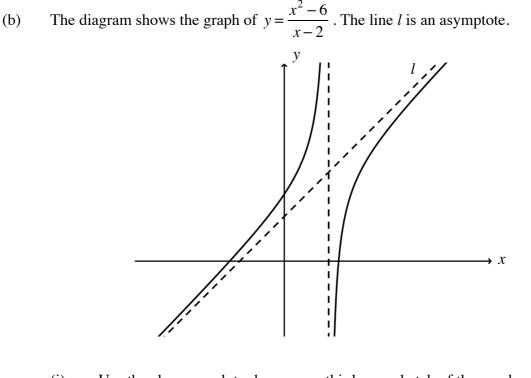
3

Copy or trace this diagram into your answer booklet.


Prove that *RT* is perpendicular to *MB*.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.


(a) The base of a certain solid is in the shape of an ellipse with equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Sections parallel to the y-axis are equilateral triangles, with one side sitting in the base

of the solid, as shown in the diagram below.

Find the exact volume of the shape.

(i) Use the above graph to draw a one-third page sketch of the graph $y = \frac{x-2}{x^2-6}$. 2

(ii) By writing $\frac{x^2-6}{x-2}$ in the form $mx+b+\frac{a}{x-2}$, find the equation 2 of the line *l*.

Question 14 continues on page 12

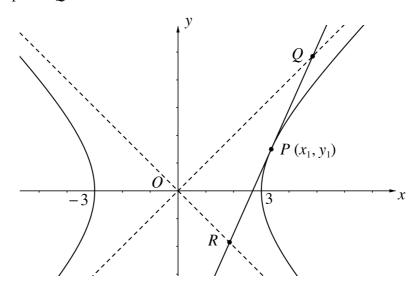
Question 14 (continued)

(c) (i) By considering the expansion of $(\cos\theta + i\sin\theta)^3$ and de Moivre's theorem, **1** show that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$.

(ii) Deduce that
$$8x^3 - 6x - 1 = 0$$
 has solutions $x = \cos\theta$, where $\cos 3\theta = \frac{1}{2}$. 2

(iii) Find the roots of
$$8x^3 - 6x - 1 = 0$$
 in the form $\cos\theta$. 2

(iv) Hence evaluate
$$\cos\left(\frac{\pi}{9}\right)\cos\left(\frac{2\pi}{9}\right)\cos\left(\frac{4\pi}{9}\right)$$
. 2


End of Question 14

(b)

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) The hyperbola with equation $x^2 - y^2 = 9$ is shown in the diagram below. The point

 $P(x_1, y_1)$ lies on the hyperbola. The tangent to the hyperbola at *P* intersects the asymptotes of the hyperbola at points *Q* and *R*.

(i)	Show that e, the eccentricity of the hyperbola, is equal to $\sqrt{2}$.	1
(ii)	Determine the coordinates of the foci, equations of the directrices and the equations of the asymptotes.	3
(iii)	Show that the equation of the tangent at <i>P</i> is	2
	$yy_1 = xx_1 - 9$	
(iv)	Prove that the area of triangle QOR is constant, where O is the origin.	3
	3	
The cu	bic function $y = x^3 - px + q$ has two turning points.	
(i)	Show that $p > 0$.	1
(ii)	The line $y = k$ intersects this cubic in three distinct points.	3
	Show that $q - \frac{2p}{3}\sqrt{\frac{p}{3}} < k < q + \frac{2p}{3}\sqrt{\frac{p}{3}}$.	
The of	whether $y^3 = y^2 = 2y + 5 = 0$ has mosts of β and γ . Find the equation where	2

(c) The equation $x^3 - x^2 - 3x + 5 = 0$ has roots α, β and γ . Find the equation whose 2 roots are $(2\alpha + \beta + \gamma), (\alpha + 2\beta + \gamma)$ and $(\alpha + \beta + 2\gamma)$.

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) $T_1, T_2, T_3, ...$ are terms of an arithmetic sequence with common difference d. All terms in the sequence are positive.

(i) Show that
$$\frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{\sqrt{T_n} - \sqrt{T_{n-1}}}{d}$$
 for $n = 2, 3, 4, ...$ 2

(ii) Hence or otherwise, show that

$$\frac{1}{\sqrt{T_1} + \sqrt{T_2}} + \frac{1}{\sqrt{T_2} + \sqrt{T_3}} + \dots + \frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{n-1}{\sqrt{T_1} + \sqrt{T_n}}$$

for $n = 2, 3, 4, \dots$

(b) The equations of two conics are
$$3x^2 + 4y^2 = 48$$
 and $3x^2 - y^2 = 3$.

- (i) Show that these two conics have the same pair of foci. 1
- (ii) The point $(4\cos\theta, 2\sqrt{3}\sin\theta)$ lies on the ellipse for all values of θ . 2 Find the four values of θ for which this point also lies on the other conic.

(c) (i) Show that
$$(1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-1}{2}} = x^2(1-x^2)^{\frac{n-3}{2}}$$
 1

(ii) Let
$$I_n = \int_0^1 (1 - x^2)^{\frac{n-1}{2}} dx$$
 where $n = 1, 2, 3, ...$ 3

Show that $nI_n = (n-1)I_{n-2}$ for n = 2, 3, 4, ...

(iii) Evaluate I_5 . 1

End of Paper

2

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), x > a > 0$$

NOTE: $\ln x = \log_e x, x > 0$

Kambala – Mathematics Extension 2 – Trial HSC Task 3 – August 2013

Student Number:

Mathematics Extension 2

Trial HSC Task 3 August 2013

Section I

Multiple-Choice Answer Sheet Circle the correct response

1.	А	В	С	D
2.	А	В	С	D
3.	А	В	С	D
4.	А	В	С	D
5.	А	В	С	D
6.	А	В	С	D
7.	А	В	С	D
8.	А	В	С	D
9.	А	В	С	D
10.	А	В	С	D

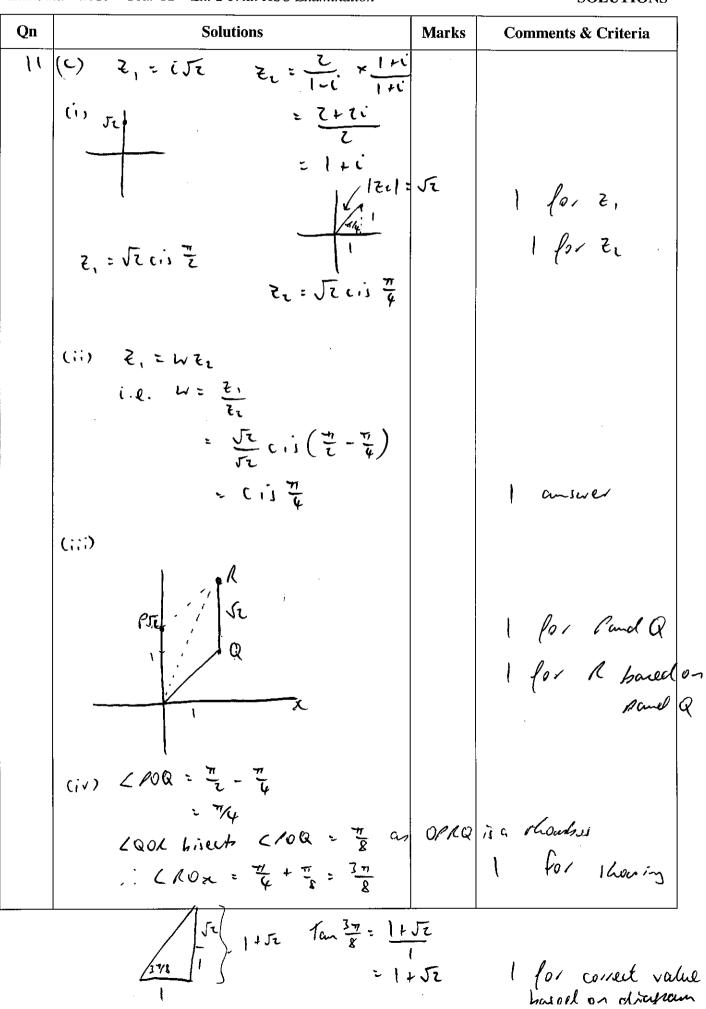
.....

:

Qn	Solutions	Marks	Comments & Criteria
L I	2=3+2i w=2-i		
	z=3-2i 3w=6-3i		
	= = + 3w = 3-2i + 6-3i = 9-5i		· .
	2 7-30	Đ	
۲.	x3 + 2xy - y3 - 2 = 0		
	3xi + 2y + 2xdy - Zyzdy = 0 dx dx - dx = 0		
	(Zx - Iye) dy Jxe-ly dx		
	$\frac{dy}{dx} = \frac{-3x^2 - 2y}{(2x - 3y^2)}$		
	AE (1,1)	-	
	$\frac{dy}{dx} = \frac{3-2}{2-3}$		
	· -5		
	2 5	A	
3.	$3x^{3}+2x^{2}-4x+1=0$		
	$d_{15} = -\frac{1}{3}$		
	$(2/3)^{1} = \frac{-1}{27}$		
		ß	
	2', 4'0'		
4.	$\frac{x^{2}}{6} - \frac{y^{2}}{10} = 1$ a ² = 6 b ² = 10		
	$b^{2} = a^{2}(e^{2} - 1)^{-1}$		
·	$10 = 6(e^{1} - 1)$		
L	10=6e-6 orer= 3/3 er= 10/6 e= 2.	Ty = 2	Л
	e = 4 = 456 = 256		3
	JG	ß	

Qn	Solutions	Marks	Comments & Criteria
5.	Noots x=4, x=2-i, x=1+i		
	As P(n) has real coefficients,		
	Complex 100% occur in conjugate,	la i s	
	. Other roots are x = C+i, x=	1- (
	Min degree of R(x) , 5.		C
6.	· Z		
	ž -iž ia vote	thoi	
	through Iz in	a clock	wire direction
٦.	Both A and Care possible,		
	but A is not a function (f	uils ve	head line text)
	f(x) must be c	C	
8	a is a root of unity		
	$10 \alpha 10/1 t_2 z^3 = 1$		
	i-e. z ³ -1 =0		
	Oker rook al and we		
	+ w + w = 0 (Sum y 100+)		
	$1+w - w^2$		
	$(1+w-w^{2})^{7} = (-7w^{2})^{7}$		
	= -128 w14		
	$= -128 w^{3} w^{2}$ = - 128 w ²		14

Qn	Solutions	Marks	Comments & Criteria
9.	$y = \cos^{-1} e^{x}$ $e^{x} = \cos y$ $\frac{dy}{dx} (-\sin y) = e^{x}$ $= \cos y$ $\frac{dy}{dx} = \cos y$ $-\sin x = \cos y$	в	
10.	$y = 2x^{3} - 6x^{3} + k$ $y' = 6x^{2} - 12x$ $= 6x(x-2) \therefore x = 0, 2$),	6ph
	i Grach i mar atx:0 i i Min		
	At $k = 0$ $0 = 0 - 0 + k$ k = 0 At $k = 2$ $0 = 16 - 24 + k$ k = 8 \therefore $2f$ k lies shewer 6 Kere we $3 - 100$	ond 8	
	0 L IC < 8	Ð	


Qn	Solutions	Marks	Comments & Criteria
11	$ \begin{array}{c} (\alpha) \\ \hline 2J\overline{3}+i \\ \hline J\overline{3}-i \end{array} \times \underbrace{J\overline{3}+i}_{J\overline{3}+i} \end{array} $		I coment conjugate
	$\frac{(255+i)(55+i)}{3+1}$		
	$= \frac{6 + 75i + 5i - 1}{4}$		
	$= \frac{5 + 355i}{4}$ = $\frac{5}{4} + \frac{253}{4}i$		1 signified annuel
(4)	Z+1 E1 Z-2i		1 dicproms
	z-(-1+0i)) E1 z-(c (incle ctr (-1,0), (incle Audius 1 unit) + 2i) 7 C+- (Naeli-s	1 dicproms (c) 1 regions (c) 2 varb Correct
	3		
		2	3 4

(y)

SOLUTIONS

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

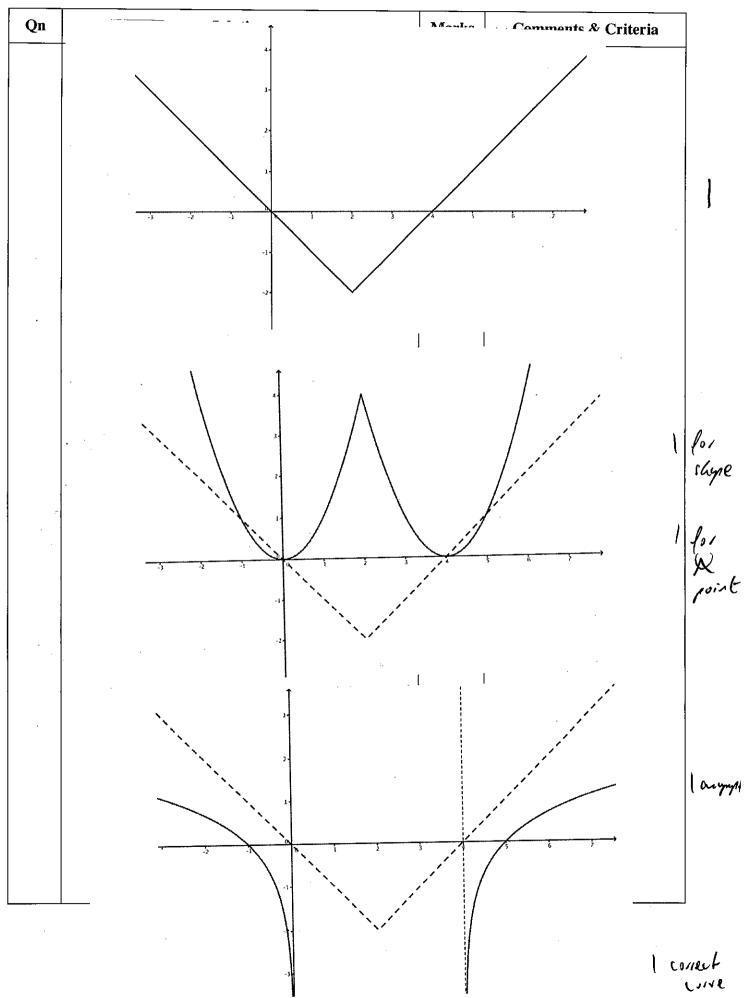
J

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

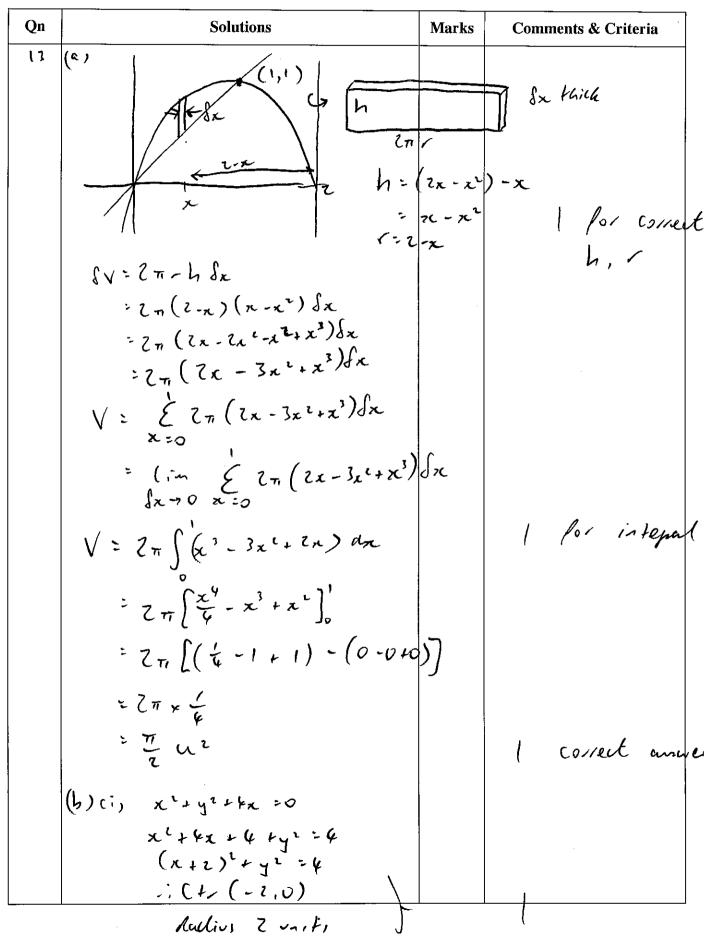
D

Qn	Solutions	Marks	Comments & Criteria
11	(d) 2"" > (1+4) " 171		
	To Show		
	2 ^{3(a+1)} > 9(9+2) ²		
	i.e. 2" > 3"(a+2)"		for signers
	2 Jurb > (Ja+2)2	·	
	Using reall siven		
	n+4= Ja+6 n= Ja+6	9(a+1) = 3 ^{4(a+1}	
	. Il you let n= Jarz	=] ¹⁽⁴⁾ = (34)	() for substitution
	Ken 23(4+2)'	an Te	
	$(e) X^{3} - 8x^{2} - 5x + 84 = 0$		
	(et 10010 le a, s, (a+s)		
	Sum of 100ts: d+1+(++)=	-(-8) 	
	2d+715=8 2+15=4		2 = (4 - 1)
		=	1 for som foroden
	Product \$\$ (\$ - 1) \$ - 84 (4 - 1) \$ (4 - 1 + 1) = -84		or nopen
	(41-12) x = -8421		
	108 152-415=21		
	12-4A-21=0		
	(1-7)(1+3)=0		
	: A: 703	.	

.: Not x = -3, 7, -3+7 c.e. x = -3, 4, 7


I correct rolar

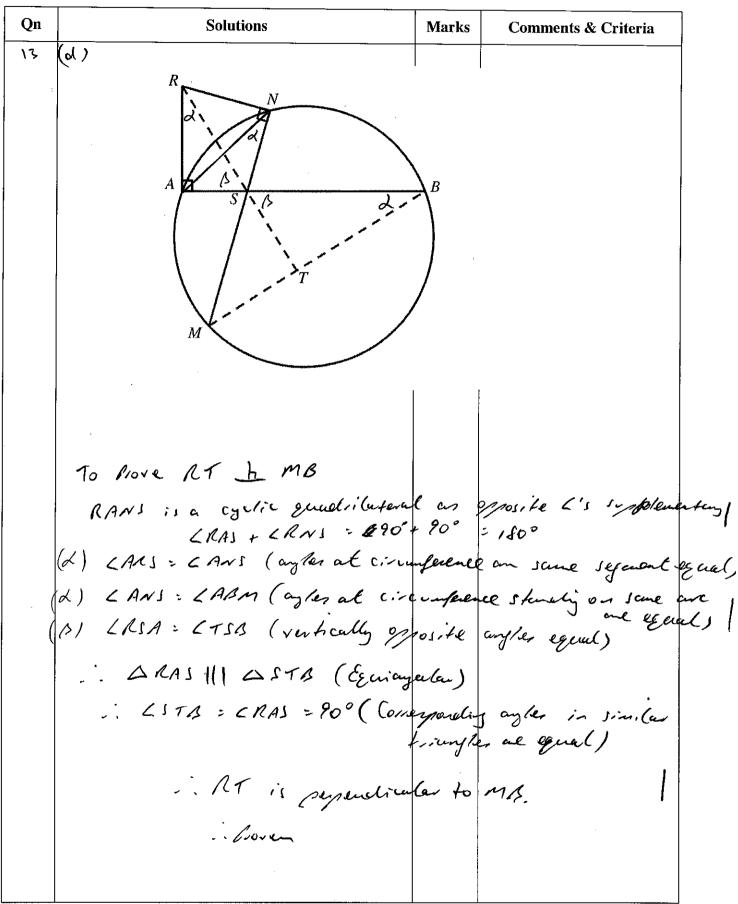
Qn	Solutions	Marks	Comments & Criteria
12	$(\alpha) \int \frac{dx}{x^2 - 2x + 5}$		1
	$= \int \frac{dx}{x^2 - ix + 1 + 4}$		
	$\int \frac{dx}{(x-1)^2 + 2^2}$		1 completing square
-	$= \int \frac{dx}{2^{2} + (x - 1)^{2}}$ = $\frac{1}{2} \tan^{-1} \left(\frac{x - 1}{2} \right) + C$		1 correct in trepal
	$(b) \int l_{nx} dx$ uslow		(contect in ing)
	$= \int \int dx dx u = \int dx dx$		= x 1 for pusts set-op
	$= \chi(n\chi - \int \frac{1}{\chi} r d\kappa$		
	$= x (nx - \int I \cdot dx$		
	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$		1 for correct answer
	$ \begin{array}{c} (c, \int \frac{1}{e^{x} r_{1}} dx & (e^{t} u \cdot e^{t}) \\ = 0 & du & du \\ = 0 & dx & e^{t} \end{array} $		
	$= \int \frac{1}{u+1} \cdot \frac{du}{u} \qquad dx = e^{x} dx$ $= \int \frac{1}{u(u+1)} du$		1 correct substitutes. ret up
	Now $\frac{1}{\alpha(n+1)} = \frac{A}{\alpha} + \frac{B}{n+1}$		
	l = A(u+i) + Au $(ef u=0 =7 A=1$		
	n=-1=7 1=-3 B=-1		1 Cor ruhar pruchons

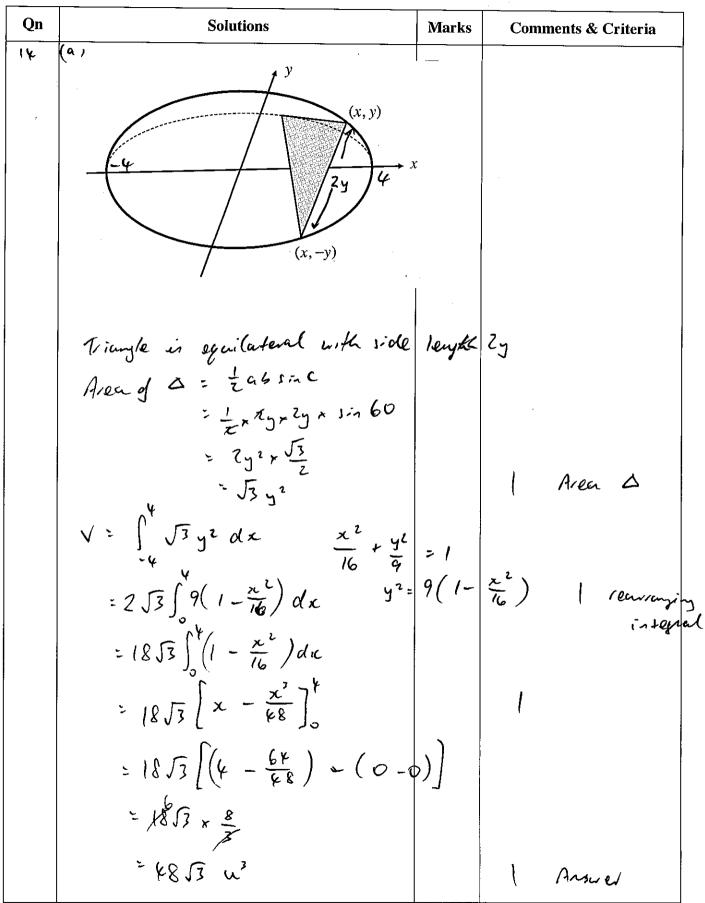

Qn	Solutions	Marks	Comments & Criteria	
	$\int \frac{1}{n(n+1)} dn$			
	$= \int \frac{1}{4} du - \int \frac{1}{u+1} du$			
	: (n(u) - (n(u+1) + C)			
	But u ex			
	$I = lne^{x} - (n(e^{x}+i)+i)$			
	$= x - (-(e^{x} + 1) + c)$		for answer	
(d)	To Rove (1+x) - nx - 1 is	dir	for x 2 for na2	
	Thou the for n=2			
	$(1+x)^{2}-2n-1$			
	- (+ Zx + x - Zx - 1			
	· x ²			
	= l.x ² .: Div by x ²			
	True for n=2.		1 10- 1=2	
	Assume true for n=k			
	i.e. $(1+x)^{n} - kx - 1 = P(x)$.xt ;	los some polynamical	Mr,
	ei.e. $(1+x)^{k} = P(x).x^{2} + lc$		(ϵ)	
	Prove the for n= k+1			
	i.e. Show (1+x)" - (1+x)x-	1 is	dir by x'	
	$(1+x)^{k+1} - (k+1)x - 1$			
	$= (1+x)(1+x)^{k} - kx - x - 1$			r
	$= (1+x) [P(x).x^{2}+kx+1]-k$	(-7[·	1 from (A)	fo/ 1.455fn
L	= $M(x).x^{2} + kx + V + M(x).x^{3} + Kx$	tx · A	e -kx -x -1	
	= M(x)x2+M(x).x3+ kx2	L.	Muth Include	xeny
	$= x^{2} \left[f(x) + f(x) x + k \right] Liv$	Lis di	v by x2. this is pour	en (or

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

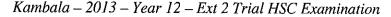
SOLUTIONS

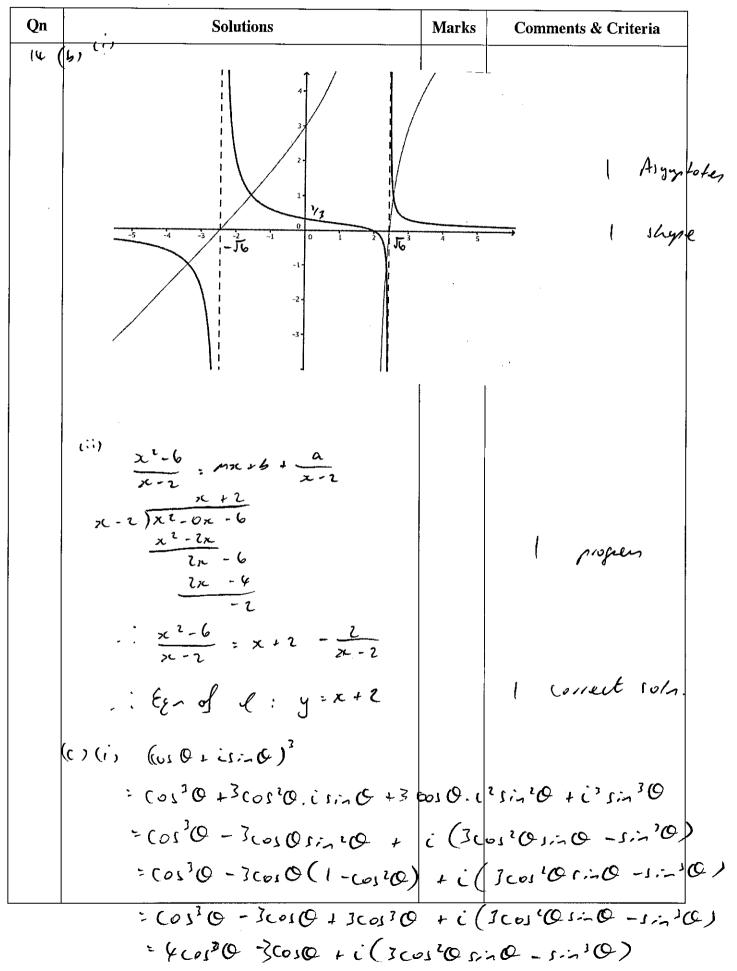
(9)


10


Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
	(b)(ii) $y = mx + b$ (x+2) ² + y ²	: 4	
	i.e. (x+2)" + (mx+6)" = 4		
	x 2+ 4x + 4 + m2x2+ 2mbx+b	2-4-	σ
	(m2+1)x2+(2-16+4)x+62	= 0	1 for guilet
	Tangent if \$ =0		
	i.e. $b^2 - 4ac = 0$		
	(2m6+4)2-4(m2+1)(62)	-0	
	4 m 2 b 2 + 16 mb + 16 - 4 m 2 b	-46 ²	-0
	16mb+16 = 462		
	4mb+4=62		
	$4(mb+1)=b^{2}$	un 1	ezice for distri-
	(iii) P(k,0)		0 - Sin. (
	y=mx+b		
	$\begin{array}{ccc} A \in P & 0 = mk + b \\ b = -mk \end{array}$		
	Sils into recult from (ii)		
	$4[m(-mk) + 1] = (-mk)^{2}$		
	$-4m^{2}k + 4 = m^{2}k^{2}$		
	$m^{2}k^{2} + 4m^{2}k - 4 = 0$		
	$(k^2+4k)m^2-4=0$		1 for proquers
	Two possible values of mit tange		
	i.e. M. m. = -1 => Moduc	E of 106	# =-1
	$\frac{-\psi}{ k ^2 + \psi k} = -1$		
	k"+4K =4		
	12+4×+4 =4+4		
	$(1,+2)^{-1} = s$ k+2 = 25 = 252		
	1 - 7 1 7 7 7 7 -	2 57	1 Dos le value


Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination


Qn	Solutions	Marks	Comments & Criteria
13	(c) (i) j ^a p(n) doc Leta u= x:	а-х Киа а-и	du 1 =>du = -dx
	o when x	•	n : D
	$= \int_{0}^{q} f(a-u) du$		
	= for f(a-x) dx as integr	al is	independent of runally
	(ii) $\int_{0}^{1} \pi^{2} \int_{1-re}^{1-re} dr$		
	$= \int_0^1 (1-x)^2 \int 1 - (1-x) dx$		
	$= \int_0^1 (1-x)^2 \int x dx$		
	$= \int_{0}^{1} (1 - 2x + x^{2}) \cdot x^{n} dx$		1 los conservent
	$= \int_{0}^{1} (x'^{2} - 7x''^{2} + x''^{2}) dx$		1 for rearraying integral
	$= \left[\frac{x^{1/2}}{3/2} - \frac{2x^{5/2}}{5/2} + \frac{x^{1/2}}{7/2} \right]_{0}^{1}$		
	$\left[\frac{2}{3}-\frac{4}{5}+\frac{2}{7}\right]-\left[0-\frac{1}{3}\right]$	0+0]	
	- 16/105		for annue
L			

(14)

Qn	Solutions	Marks	Comments & Criteria
	2 = cījo = 5		
	$z^2 = (ciic)^2$		
	2 1° c i 1 20		
	$2^3 = (0) 30 + (1) = 30$		
	Equating the parts		
	Cos JG : 4 cos 30 - Jeos 0		for thousing
	(ii) 8x3-6x-1=0		
	let x = coso		
	$i = \frac{1}{2} (\frac{1}{2} \cos^2 \theta - \frac{1}{2} \cos^2 \theta -$	Э	1
	2 cos 310 - 1 = 0		•
	2×2-1=0 ~	here c	01 30 - 1
	- COIO = x isas	01.	
	$\zeta_{2}^{2} = Q \xi_{2} z z z z$		
	$30 = cos^{-1}(\frac{1}{2})$		
	30 = = + 217 for	1=0	, ± 1, ± 2 etc
	$= \frac{\pi + 6\pi\pi}{3}$		
	$30 = \frac{\pi(6n+1)}{3}$		l
	$C = \frac{TI(6-+1)}{9}$		
	$Q = \frac{7}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$		l
	: John are costy cost	= =).coj((gm ~)

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
	(iv) $\cos \frac{5\pi}{9} = -\cos \frac{8\pi}{9}$		
	$\cos\frac{7\pi}{9} = -\cos\frac{2\pi}{9}$		
	$\cos \frac{\pi}{q}$ cos $\frac{5\pi}{q}$ cos $\frac{7\pi}{q}$		
	$= \cos \frac{\pi}{9} \left(-\cos \frac{\pi}{9} \right) \left(e - \cos \frac{\pi}{9} \right)$	(for equating
	= Coduct of root.		
	$= \frac{1}{8} = -\frac{(-1)}{8}$		
			Valute
	$\sum_{n=1}^{\infty} \left(\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{2\pi}{9} - \frac{1}{8} \right)$		
12	(a, (i) z ² - y ² = 9		
	$\frac{x^2}{9} - \frac{y^2}{9} = 1$	As o	
	$b^{1}=a^{1}(e^{1}-1)$		a:b
	$9 = 9(e^{2} - 1)$		A rectangular hypert.
	$l = e^{2} - ($ $e^{2} = 2$:	
	e : Je : A rectangulan h	yserbolo	, l
	(ii) q = 3, b = 3		
	Foc: $(tae, 0)$		1
	: (±357,0)		
	Directives: $x = \frac{t^{\alpha}}{t^{\alpha}} = \frac{t^{\alpha}}{t^{\alpha}}$	252	1
	Asgaptoter y: tx (as	e=Jz)
	$o_{y} = t \frac{b_{x}}{a}$		
	$=\pm\frac{7x}{3}$		1

Qn	Solutions	Marks	Comments & Criteria
15	(iii) $x^2 - y^2 = 9$		
	la - ly dy =0		
	dy in dx ig		
	ALD XI		
	$Atp, m_{\tau} = \frac{\chi_{1}}{g_{1}}$		
	E_{q} , $y - y_1 = m(x - x_1)$		
	$y-y_1 = \frac{x_1}{y_1}(x-x_1)$		
	y,y-y,2=x,x-x,2		
	44, = xx, - 8x, +y,2		
	$= \chi \chi_{1} - (\chi_{1}^{2} - \chi_{1}^{2})^{6}$		
	yy. = xx 9		$x_{-y_{-}}^{2} = 9$. $x_{+}^{2} - y_{+}^{2} = 9$
	(iv) AEQ y=x AER y	x	
	$x = \frac{9}{x_1 - y_1}$	x_{x}	9
	J,	1	1
	- y <u>y</u> - y - y	, + <u>7</u> ,	
	Area QOL : 26h = 2.		
	$OQ^{1} = \left(\frac{q}{r(r-y)}\right)^{1} + \left(\frac{q}{(x, -y)}\right)^{1}$		$e^{\lambda} = \left(\frac{\alpha}{x, +y, y}\right)^{L} + \left(\frac{-\alpha}{(x, -y)}\right)^{L}$
	$= \frac{162}{(x_1 - y_1)^2}$		$= \frac{16z}{(x, +y,)^2}$ $\mathcal{R} = 9\sqrt{z}$ $(x, +y,)$
	OQ = 95z	0.	R = 952
	x,-4,		$(x, \pm y)$

ι

Qn	Solutions	Marks	Comments & Criteria
	$\therefore A_{ieci} \triangle QOL$ $= \frac{1}{Z} \times \frac{9\sqrt{Z}}{X_{i} - y_{i}} \times \frac{9\sqrt{Z}}{X_{i} + y_{i}}$ $= \frac{81}{X_{i}^{2} - y_{i}^{2}}$ $= \frac{81}{9}$		
	$= 9u^{2} \qquad \therefore \qquad constant v$ $(b) \qquad y = x^{2} - px + 2$	rlue,	
	(i) $y' = 3x^2 - p$ = 0 when $3x^2 = p$		
	(ii) $A \in \mathbb{R} = \sqrt{\frac{p}{2}}$ AE	ry p #	
	$Y = \left(\frac{\sqrt{r}}{3}\right)^{2} - \rho \int_{-\frac{1}{3}}^{\frac{1}{3}} + 2$ $= \frac{\rho}{3} \int_{-\frac{1}{3}}^{\frac{1}{3}} - \rho \int_{-\frac{1}{3}}^{\frac{1}{3}} + 2$	· ·	$\frac{\sqrt{2}}{\sqrt{3}}^{3} + c \sqrt{\frac{2}{3}} + \frac{2}{\sqrt{2}}$ $\frac{c}{\sqrt{3}} \sqrt{\frac{2}{3}} + c \sqrt{\frac{2}{3}} + \frac{2}{\sqrt{3}}$
	$= -\frac{2}{3}\int_{-\frac{3}{2}}^{\frac{\alpha}{2}} + 2$ $= 2 - \frac{2}{3}\int_{-\frac{3}{2}}^{\frac{\alpha}{2}} \int_{-\frac{3}{2}}^{\frac{\alpha}{2}}$		$\frac{2r}{3}\int_{-\frac{3}{2}}^{\frac{3}{2}} + \frac{2}{3}\int_{-\frac{3}{2}}^{\frac{3}{2}} + \frac{2}{3}\int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{1}{3}$
	Min at (Ja Max at (-v		L L L
	For 3 intercepts, k $\frac{2}{2} - \frac{2}{3} \int_{-\frac{1}{3}}^{\frac{1}{3}} \leq 1c$		

. ~ Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
15	$(c) x^{7} - x^{2} - 3x + 5 = 0$		
	Roots 2. 1. 8		
	fin of 100ts & +3+8 = -(-1) = 1		
	Roots of ogn 2x+p+8, x+2,5+	8,2+	1+28
	Now 20+15+8 = 2+15+8 = 1+2	+2	
	. Root of new egn one I to	, 1+1	3 1 + 8
	x = 1 + d $= 7 d = x - 1 = 4 c$		
	$(x-1)^3 - (x-1)^2 - 3$	(x - 1)	+5 =0
	$x^{7} - Jx^{2} + Jx - 1 - x^{2} + 1$		$J_{X} + J + 5 = 0$
	x ³ - 4x + 2x + 6	= 0	-
16	(a) Tn = Tn., +d		
	(i) $\frac{1}{\int \overline{T_{n-1}} + \int \overline{T_n}} \times \frac{\int \overline{T_{n-1}} - \int \overline{T_n}}{\int \overline{T_{n-1}} + \int \overline{T_n}}$	No	chonalising Denom
	= JT, - JT_		
	T., - T.		
	$= \frac{\sqrt{T_{n-1}} - \sqrt{T_n}}{T_{n-1} - (T_{n-1} + \alpha \ell)}$		
	= JTn-1 - JTn - d		
	= JT_n - JT_n-1 an regid	ł	l
	d as regia		

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
16	(a)(ii) From(i)		
	$\frac{1}{\sqrt{T_1} + \sqrt{T_1}} = \frac{\sqrt{T_2} - \sqrt{T_1}}{\sqrt{d}}$		
	etr		
• ` •	$\frac{1}{\sqrt{T_1 + \sqrt{T_2}}} + \frac{1}{\sqrt{T_1 + \sqrt{T_3}}} + \frac{1}{\sqrt{T_{n-1}}}$	+ 55,	
	= JFL-JF, + JFJ-JFJ+ - ~ + JFJ d + d	- JF.,	
	$= \frac{1}{d} \left[\sqrt{T_2} - \sqrt{T_1} + \sqrt{T_3} - \sqrt{T_2} + \frac{1}{d} + \frac{1}{d} \right]$	JT	JE.,]
	$= \frac{\int \overline{T_{1}} - \int \overline{T_{1}}}{d} \times \frac{\int \overline{T_{1}} + \int \overline{T_{1}}}{\int \overline{T_{2}} + \int \overline{T_{1}}},$		
	$= \overline{T_{HV}} \frac{T_n - T_i}{d(J\overline{T_n} + J\overline{T_i})} $ Nor	Th=	$T_{i} \neq (n-i)d$ $U_{n} = \alpha + (n-i)d$
-	$\frac{(n-i)d}{d(\overline{T_n}+\sqrt{T_i})}$	*	$T_n - T_i = (n-i)d$
	$= \frac{n-1}{\sqrt{T_n} + \sqrt{T_n}}$		
1	$= \frac{n-1}{\sqrt{T_{r}} + \sqrt{T_{n}}} \sim regil$		

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

	- 2013 – Year 12 – Ext 2 Trial HSC Examination		SOLUTIONS
2n	Solutions	Marks	Comments & Criteria
, (6)]x1+ 4y2: k8 [x1-y2:]		
	$\frac{\chi^{2}}{16} + \frac{y^{2}}{12} = 1 \qquad \chi^{2} - \frac{y^{2}}{2} = 1$		
(is Foci: Hyperbol	C7	
	Chipse 62=ar(e - 1)	· . ·
	b':a 2 (1-e2)] = 1 (
,	$12 = 16(1 - e^{*})$ $e^{2} = 4$		
	12 = 16 - 16e ² e = .2		
	-4 = -16e2 ; pae	2	
	er: y Foci:	(tae, 0))
		(± 2.0)	
,	. Foci (tae, 0) al :	4 × ½	-2
	i.e. (±-2,0) *		,
	Same Foci		
((ii) (4cosQ, 2JIsinG) setis	l,e,	
	Jx 2 - y 2 - 3		
	3(1600,0) - 121,0 - 3		
	1600120 - 45: 20 = 1		
	160010 - 4(1-0010)=1		
	16 Los 0 - 4 + 4 Los 0 : 5		
	20 601 '00 = 5		
	$Co_1 co = \frac{1}{4}$		
	$\cos 0 = \pm \frac{1}{2}$.	1 .
	$\frac{1}{3} = \frac{1}{3} = \frac{1}$	-	
	$A \in O = \frac{\pi}{2} \left(\frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $	= (2	,3)
	by symmetry . Ats of in		, (7,3) (2,
			(-1.2) (-

Kambala - 2013 - Year 12 - Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
016	(b)(iii) Show intersect at right-angle,		· · · · · · · · · · · · · · · · · · ·
	i.e. show tangents interdect	at in	ht myle
	$M, M_2 = -1$		
	Inc + Ky2: KS		
	$6x + 8y \frac{dy}{dx} = 0$		
	$\frac{dy}{dx} = -\frac{bx}{8y}$		
	= - 3× (m.) 44		
	$3x^{2}-y^{2}=3$		
	bar - Zy dy 20 dx		
	dy bx dy ly dx ly J		
	At (2.3) $M_1 = \frac{b}{12} = \frac{-1}{2}$	m, m2 '	- J
	$AE(2,-1) M_{1} = \frac{-6}{-12} \frac{1}{2}$ $M_{2} = \frac{-6}{-12} \frac{1}{2}$	M, M2	~~ <i>1</i>
	$A(-2,3) m_{1} = \frac{6}{12} = \frac{7}{2}$ $M_{2} = -\frac{6}{7} = -2$	ers, erz	=-
	$A(-1,-3)$ $M_1 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $M_1 = \frac{-6}{-3} = 2$) - m	, m = - 1

23)

Kambala - 2013 - Year 12 - Ext 2 Trial HSC Examination

On Solutions Marks Comments & Criteria $\frac{1}{2} \left(\left(1 - x^{2} \right)^{\frac{n-1}{2}} - \left(1 - x^{2} \right)^{\frac{n-1}{2}} - x^{2} \left(1 - x^{2} \right)^{\frac{n-3}{2}} \right)^{\frac{n-3}{2}}$ 16 $hMS: (1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-3}{2}}$ $=\left(1-\chi^{2}\right)\frac{2-3}{2}\left(1-\left(1-\chi^{2}\right)\right)$ $= (1 - u^2)^{\frac{2-3}{2}} (1 - 1 + x^2)$ $: x^{2} (1 - x^{2})^{\frac{2-3}{2}}$ = A US : Shunn (ii) $I_{n} = \int_{-\infty}^{\infty} (1-x^{2})^{\frac{n}{2}} dx$ $= \left(\left| \left(1 - x^{2} \right)^{-\frac{1}{2}} dx \right| \right)$ u:(1-x)= $\frac{1}{2} \left[\left(1 - x^{2} \right)^{\frac{2}{2}} x \right]_{0}^{1} - \int_{0}^{1} (n - 1) \times \left(1 - x^{2} \right)^{\frac{2}{2}} \times \left(1 - x^{2} \right)^{\frac{2}{2}} \left(1 - x^{2} \right)^{\frac{2}{2}} \left(1 - x^{2} \right)^{\frac{2}{2}} \left(1 - x^{2} \right)^{\frac{2}{2}}$ $= \left[\left(\left[-1 \right]^{\frac{1}{2}} \right] - \left[\left(1 - 0 \right)^{\frac{1}{2}} \right] + \left(n - 1 \right) \int_{-\infty}^{\infty} x^{2} \left(\left[-x^{2} \right]^{\frac{1-3}{2}} dx \right] \right] + \left[\left(n - 1 \right) \int_{-\infty}^{\infty} x^{2} \left(\left[-x^{2} \right]^{\frac{1-3}{2}} dx \right] \right] + \left[\left(n - 1 \right) \int_{-\infty}^{\infty} x^{2} \left(\left[-x^{2} \right]^{\frac{1-3}{2}} dx \right] \right] \right]$ $= (n-1) \int_{-1}^{1} (1-x^{2})^{\frac{n-2}{2}} - (n-1) \int (1-x^{2})^{\frac{n-2}{2}} dx$ (I_{n}) $i = (n-i) \int_{0}^{1} (1-x^{2})^{\frac{n-2}{2}} - (n-i) = I_{n-1}$ n In = (n-1) In-2 an regiu

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
16	(c) $(:::)$		
	$n I_n: (n-1) I_{n-2}$		
	i.e. $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$		
	$I_5 = \frac{4}{5} \times I_3$		
	$I_3 \sim \frac{2}{3} I_1$		
	$Z_{1} = \int_{0}^{1} (1 - x^{2})^{\frac{1}{2}} dx$ $= \int_{0}^{1} (1 - x^{2})^{\circ} dx$		
	$= \int_0^1 (1-\kappa^2)^\circ d\kappa$		
	= f 1. dx		
	= [x]o'		
	÷ 1		
	$J_3 \sim \frac{2}{3}$		
	$\sum_{5} = \frac{4}{5} \times \frac{2}{3}$		
	: 8		
			,