

2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 2 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 70 Marks

Section I - 10 Marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - 60 Marks

- Attempt Questions 11 14
- Allow about 1 hour 45 minutes for this section

Examiner: J. Chen

R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. If (7, b) divides (3, -4) and (9, -7) internally in the ratio a: 1, find the values of a and b.

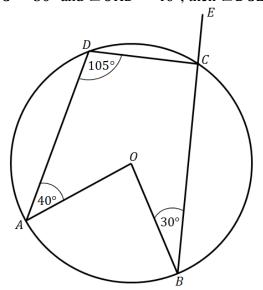
(A)
$$a = \frac{1}{2}$$
, $b = -\frac{23}{3}$

(B)
$$a = 2$$
, $b = -\frac{23}{3}$

(C)
$$a = \frac{1}{2}$$
, $b = -6$

(D)
$$a = 2$$
, $b = -6$

2. In the diagram below, O is the centre of the circle ABCD. BCE is a straight line. If $\angle ADC = 105^{\circ}$, $\angle OBC = 30^{\circ}$ and $\angle OAD = 40^{\circ}$, then $\angle DCE =$



$$(A)75^{\circ}$$

$$(B)80^{\circ}$$

$$(C)85^{\circ}$$

$$(D)90^{\circ}$$

- **3.** $\alpha 3\beta$ is a 3-digit number, where α and β are integers from 1 to 9 inclusive. Find the probability that the 3-digit number is divisible by 5.
 - $(A)\frac{1}{10}$
 - $(B)\frac{9}{50}$
 - $(C)^{\frac{1}{9}}$
 - $(D)^{\frac{1}{5}}$
- **4.** Let b > 1 and c > 1. If $a = \log_c \sqrt{b}$, then $a^{-1} =$
 - $(A)\log_b c^2$
 - (B) $2 \log_c b$
 - (C) $\log_c \frac{1}{\sqrt{b}}$
 - $(D) log_{\frac{1}{c}} \frac{1}{\sqrt{b}}$
- 5.

$$\frac{d}{dx}(x\sin^{-1}x) =$$

- (A) $\sin^{-1} x \frac{x}{\sqrt{1-x^2}}$
- (B) $\sin^{-1} x + \frac{x}{\sqrt{1-x^2}}$
- (C) $\cos^{-1} x + \frac{x}{\sqrt{1-x^2}}$
- (D) $\cos^{-1} x \frac{x}{\sqrt{1-x^2}}$

- **6.** It is given that α and β are roots of the equation $x^2 + 1 = 6x$, then $\alpha \beta =$
 - $(A) 4\sqrt{2}$
 - (B) $4\sqrt{2}$
 - (C) $\pm 4\sqrt{2}$
 - (D)32
- 7. If ${}^{n}P_{2} = 56$, then
 - (A)n = -7
 - (B) n = 8
 - $(\mathbf{C})\,n=11$
 - (D) n = 112
- **8.** The minimum value of $\frac{1}{\sin^2 x 2}$ is
 - $(A)-\frac{1}{2}$
 - (B) 1
 - $(\mathbf{C}) \frac{1}{3}$
 - (D)0

9.

$$\int \frac{1}{\sqrt{25-4x^2}} dx =$$

- $(A)^{\frac{1}{4}}\sin^{-1}\left(\frac{5x}{2}\right) + C$
- $(B)^{\frac{1}{4}}\sin^{-1}\left(\frac{2x}{5}\right) + C$
- $(C)\frac{1}{2}\sin^{-1}\left(\frac{5x}{2}\right) + C$
- $(D)^{\frac{1}{2}}\sin^{-1}\left(\frac{2x}{5}\right) + C$

10. The coefficient of x^{2n} in the binomial expansion of $(1+x)^{4n}$ is

- $(A)\frac{4n!}{2n!2n!}$
- (B) $\frac{(4n)!}{2(n!)^2}$
- $(C)\frac{(4n)!}{(2n)!}$
- (D) None of the above

End of Section A

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a NEW writing booklet. Extra pages are available

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW Writing Booklet

- (a) Determine the acute angle, between the line x 3y + 2 = 0 and the line BC where B is (-1, -1) and C is (1, 3).
- (b) Evaluate $\lim_{x \to 0} \frac{3x}{2 \sin 4x}$
- (c) Solve for x, $\frac{(x-2)}{(x-1)(x-3)} \ge 0$
- (d) Write down a general solution to the equation $\cos 2x = -\frac{1}{2}$. Leave your answer in terms of π .
- (e) (i) Express $12 \cos x 5 \sin x$ in the form $A \cos(x + \alpha)$ where A is positive and $0^{\circ} \le \alpha \le 180^{\circ}$, correct α to the nearest minute.
 - (ii) Hence find the maximum value of $12 \cos x 5 \sin x$ and the smallest positive value of x for which this maximum occurs.
- (f) Calculate the number of different arrangements which can be made using all the letters of the word BANANA.

Question 11 continues on page 7

- (g)
 - (i) Differentiate $\cot x$ with respect to x.

1

(ii) Hence differentiate $x \cot x$ with respect to x.

1

(iii) Hence find

1

 $\int x \csc^2 x \cdot dx$

End of Question 11

Question 12 (15 Marks) Start a NEW Writing Booklet

(a) Express $\sin 2\theta$ and $\cos 2\theta$ in terms of $t = \tan \theta$ to show that

2

$$\frac{1 + \sin 2\theta - \cos 2\theta}{1 + \sin 2\theta + \cos 2\theta} = \tan \theta$$

- (b) In the expansion of $(1 + 2x)^n (1 x)^2$, the coefficient of x^2 is 9. Find the coefficient of x in the expansion.
- (c) If the roots of $x^3 6x^2 + 3x + k = 0$ are consecutive terms of an arithmetic series, find k.
- (d) Evaluate $\int_{0}^{\frac{3}{4}} x \sqrt{1-x} \, dx$

using the substitution u = 1 - x, express your answer in simplest exact form.

(e)
(i) Prove by the Principle of Mathematical Induction that 3

$$1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = (n-1) \times 2^{n+1} + 2$$

for all positive integers n.

(ii) Using the result of (i), simplify 2

$$\sum_{r=1}^{n} (r+1) \times 2^r$$

(f) Brian is to celebrate his 16th birthday by having a dinner with 11 other family members. At this dinner, Brian will sit at the head of a non-circular table. In how many ways can everyone be seated?

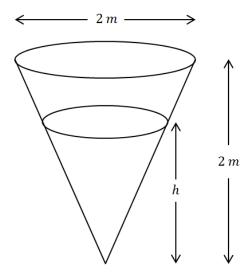
End of Question 12

Question 13 (15 Marks) Start a NEW Writing Booklet

- (a) A particle moves up and down so that its vertical displacement, x from a point 0, is given by $x = 10 + 8 \sin 2t + 6 \cos 2t$ where x is in metres and t is in seconds.
 - (i) Show that the particle moves in Simple Harmonic motion.

1

- (ii) What is the period of the motion?
- (iii) What is the amplitude?
- (b) A container in the shape of a right cone with both height and diameter 2 m is being filled with water at a rate of π m^3/min .



(i) Show that 2

$$\frac{dV}{dt} = \frac{\pi h^2}{4} \cdot \frac{dh}{dt}$$

(ii) Find the rate of change of height h of the water when the container is $\frac{1}{8}th$ full by volume.

Question 13 continues on page 10

(c) The rate of change in the number of members of the Sydney Boys High School Old Boys Mathematical Society, *M*, is given by

$$\frac{dM}{dt} = k(M - 50)$$

The number of members of this society at the start of 1995 was 70.

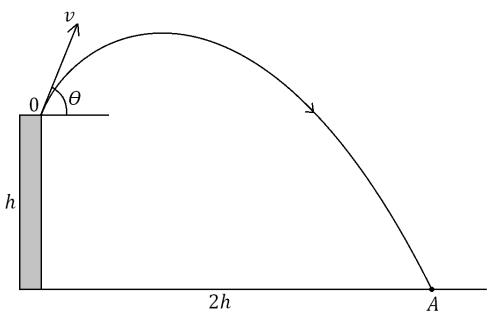
(i) Show that $M = 20e^{kt} + 50$ satisfies the differential equation above. 1

1

2

- (ii) In 2000, the number of members was 150. Find the number of members in 2005.
- (iii) There is a year that this society will eventually become a "ghost society" with no members. Do you agree? Give reasons.

(d)



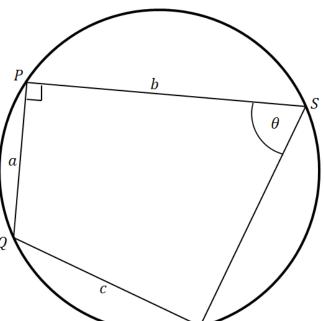
A projectile is fired with speed $\sqrt{\frac{4gh}{3}}$ at an angle θ to the horizontal from the top of a cliff of height h and the projectile strikes the ground a horizontal distance 2h from the base of the cliff.

You may assume $y = Vt \sin \theta - \frac{1}{2}gt^2$ and $x = Vt \cos \theta$.

- (i) Show that $y = x \tan \theta \frac{gx^2}{2V^2} (1 + \tan^2 \theta)$.
- (ii) Find the 2 possible values of $\tan \theta$.

Question 13 continues on page 11

(e) In the diagram below, PQRS is a cyclic quadrilateral, $\angle QPS = 90^{\circ}$ and $\angle PSR = \theta$, PQ = a, PS = b and QR = c.



2

Show that $(a^2 + b^2) \sin^2 \theta = a^2 + c^2 + 2ac \cos \theta$.

End of Question 13

Question 14 (15 Marks) Start a NEW Writing Booklet

- (a) At an election, 30% of the voters favoured party A. If 5 voters were selected at random, what is the probability (as a decimal) that
 - (i) exactly 3 favoured party A.

1

(ii) at most 2 favoured party A.

1

(b)

(i) Show that

3

$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

(ii) If x satisfies the equation $\tan 3x = \cot 2x$, show that x also satisfies the equation $5 \tan^4 x - 10 \tan^2 x + 1 = 0$.

2

(iii) Using the result of (ii), deduce that

4

$$\tan\frac{\pi}{5} = \sqrt{5 - 2\sqrt{5}}$$

(c) In the expansion of $(1+x)^n$, let S_1 be the terms containing the coefficients nC_0 , nC_2 , nC_4 , ... whilst S_2 be the terms containing the coefficients

 ${}^{n}C_{1}$, ${}^{n}C_{3}$, ${}^{n}C_{5}$, ...

Prove that,

(i) $4S_1S_2 = (1+x)^{2n} - (1-x)^{2n}$

2

(ii)
$$(S_1)^2 - (S_2)^2 = (1 - x^2)^n$$

2

End of paper

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$
NOTE: $\ln x = \log_{e} x, x > 0$

BLANK PAGE

BLANK PAGE

Student Number:

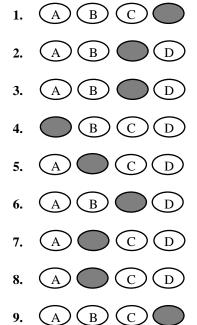
SOLUTIONS

Mathematics Extension 1 Trial HSC 2014

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8 C \bigcirc	(D) 9
		$A \bigcirc$	В	$C \bigcirc$	$D \bigcirc$
If you think new answer.	· ·	e a mistake, pu	it a cross throu	gh the incorrec	t answer and fill in the
		A leftin	В	$C \bigcirc$	$D \bigcirc$
	S 150		477		the correct answer, then arrow as follows.
			corre	ect	
		_/	р 📥	С	$D \bigcirc$
		А 🗨	Б 💻		D
		A 🗨	В		Ъ

Section I: Multiple choice answer sheet.

Completely colour the cell representing your answer. Use black pen.



10. (A) (B) (C)

Guestian 11 B(-1, -1) C(1,3)d. $\cos 2x = -1/2$ SA $M_i = \frac{3+1}{1+1}$ cose = 12 a= 713 $2x = \frac{2\pi}{3} + \frac{2\kappa\pi}{3}, \frac{4\pi}{3} + 2\kappa\pi$ $\alpha - 3y + 2 = 0$ 3y = 3C + 2 $y = \frac{1}{3}3C + \frac{2}{3}$ $\Delta = \frac{\pi}{3} + 2k\pi, \quad \frac{2\pi}{3} + k\pi$.. M2= 1/3 $e_i 12\cos x - 6\sin x = A\cos(x+x)$ tanx = 2-1/3 1+2. <= 45° =Acosacosa - Asinasina $12 = A \cos \alpha , 5 = A \sin \alpha$ $\cos \alpha = 12 , \sin \alpha = 5$ A A Ab lim 32 270 asin4x = lim 4 3a 270 4 2504c $\frac{1}{2}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{4}{3}$ $+a_{1} \propto = 5/12$ $\propto = 22^{\circ}37'$ C x-2 > 0 11 12000x - 5510x = 13Cos(x+ $\alpha \neq 1, 3$ Max value = 13 consider occurs when Cos(x+2)37) y = (x-2)(x-1)(x-3) $\cos(x + 22^{2}37') = 1$ x+22°37' = 360 x=337°23' 14242, 2730- 1/2 for neg angle (5.89)

 $f. Banana = \frac{6!}{2!3!} = 60 \text{ }$ $\frac{g \cdot 1}{dx} = \frac{1}{tanx} dx \qquad u = 1 \quad u' = 0$ $\frac{1}{dx} = \frac{1}{tanx} dx \qquad v' = sec^2x$ $\frac{d(\alpha \cot \alpha) d\alpha}{d\alpha} = \frac{\alpha \times (-\cos e c^{2} \alpha) + \cot \alpha}{d\alpha}$ = cotx - orcosecza $\int a \cos^2 x \, dx = -\int -x \cos^2 x \, dx$ $= -\int (\cot x - 2\cos x - \cot x) dx$ = - ((otx - x rosers - cos2 do $= - \left[x \cot x - \ln(\sin x) \right] + C$ = 10(sinou) - x(otor +c- 1)

12)a)
$$t = t_{000} 0$$

HS=\frac{1 + \sin 20 - \cos 20}{1 + \sin 10 + \cos 20}

\[
\begin{align*}
& = \frac{1 + \frac{2}{1 + \text{c}}}{1 + \text{c}} \\
& = \frac{1 + \frac{2}{1 + \text{c}}}{1 + \text{c}} \\
& = \frac{1 + \frac{2}{1 + \text{c}}}{1 + \text{c}} \\
& = \frac{1 + \text{c}}{1 + \text{c}} \\
& = \frac{1 + \text{

$${}^{4}C_{o}(-2) + {}^{4}C_{o}(2) = -2 + 8$$

$$= 6$$

$$(\alpha - \beta) + \alpha + (\alpha + \beta) = -\frac{b}{\alpha}$$

$$3\alpha = -\frac{(-6)}{1}$$

$$(2)^3 - 6(2)^2 + 3(2) + k = 0$$

$$\frac{d}{\int_{0}^{3/4} x \sqrt{1-x}} dx$$

$$u = 1 - x$$

$$x=\frac{1}{4}$$
, $u=\frac{1}{4}$

 $= \int_{0}^{4} (1-u) \sqrt{u} - du$

$$= \int_{1}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) du$$

$$= \begin{bmatrix} \frac{2}{3} & \frac{3}{2} & \frac{2}{5} & \frac{5}{2} \\ \frac{2}{3} & \frac{3}{5} & \frac{1}{2} \end{bmatrix}$$

$$= \frac{2}{3} \left(1\right)^{\frac{3}{2}} - \frac{2}{5} \left(1\right)^{\frac{5}{2}} - \left(\frac{2}{3} \left(\frac{1}{4}\right)^{\frac{3}{2}} - \frac{2}{5} \left(\frac{1}{4}\right)^{\frac{5}{2}}\right)$$

$$=\frac{41}{240}$$

e)i) Prove
$$1 \times 2^{1} + 2 \times 2^{2} + 3 \times 2^{3} + \dots + n \times 2^{n} = (n-1) \times 2^{n+1} + 2$$

Prove true for $n=1$

LHS= 1×2^{1}
 $2 \times 2^{n} \times 2^{n} \times 2^{n} \times 2^{n} \times 2^{n+1} \times 2$

$$= n \times 2^{n+1} + 1 - 1$$

$$= n \times 2^{n+1}$$

OR
$$= (r+1)2^{n} = (r \times 2) + (2^{n}) = (r \times 2) + (2^{n}) = (r \times 2) = (r \times$$

Question 13

- (a) $x = 10 + 8\sin 2t + 6\cos 2t$
 - (i) $\dot{x} = 16\cos 2t 12\sin 2t$ $\ddot{x} = -32\sin 2t 24\cos 2t$ $\ddot{x} = -4(8\sin 2t + 6\cos 2t)$ $\therefore \ddot{x} = -4(x-10)$ Now let X = x 10
 - $\therefore \ddot{X} = -4X$ and thus the motion is SHM.
 - (ii) Clearly n = 2. $\therefore T = \frac{2\pi}{2}$ $= \pi$
 - (iii) Amplitude $a = \sqrt{8^2 + 6^2}$ = 10
- (b) (i) $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt}$ $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h$ $= \frac{1}{12}\pi h^3$ $\frac{dV}{dh} = \frac{1}{4}\pi h^2$ $\therefore \frac{dV}{dt} = \frac{\pi h^2}{4} \frac{dh}{dt}$
 - (ii) Maximum Volume

$$V_{\text{max}} = \frac{1}{12}\pi(2)^3$$

One eighth full means

$$V = \frac{8\pi}{12} \div 8$$
$$= \frac{\pi}{12}$$

Thus

$$\frac{\pi}{12} = \frac{1}{12}\pi h^3$$

$$h = 1 \text{m}$$

We seek
$$\frac{dh}{dt}$$
 when $h = 1$.

$$\frac{dh}{dt} = \frac{dh}{dV} \frac{dV}{dt}$$
$$= \frac{4}{\pi h^2} \pi$$
$$= 4 \text{ m/min}$$

(c)
$$\frac{dM}{dt} = k(M - 50)$$

When t = 0, M = 70.

(i) Consider

$$M = 20e^{kt} + 50$$

$$\frac{dM}{dt} = 20ke^{kt}$$
$$= k(20e^{kt})$$
$$= k(M - 50)$$

: Satisfies D.E.

(ii) When t = 5, M = 150.

$$150 = 20e^{5k} + 50$$

$$100 = 20e^{5k}$$

$$5 = e^{5k}$$

$$k = \frac{\ln 5}{5}$$

$$\approx 0.3219$$

Thus when t = 10

$$M = 20e^{10k} + 50$$

= 550

(iii) No, as k > 0 membership always increases.

(d) Given
$$y = Vt \sin \theta - \frac{1}{2}gt^2$$
 and $x = Vt \cos \theta$

(i)
$$t = \frac{x}{V \cos \theta}$$
, substitute to obtain

$$y = \frac{x \sin \theta}{\cos \theta} - \frac{1}{2} g \left(\frac{x^2}{V^2 \cos^2 \theta} \right)$$
$$y = x \tan \theta - \frac{gx^2}{2V^2} (1 + \tan^2 \theta) \text{ as required.}$$

(ii) The point A is (2h,-h). Substitute:

$$-h = 2h\tan\theta - \frac{g(2h)^2}{2V^2} \left(1 + \tan^2\theta\right)$$

But
$$V^2 = \frac{4gh}{3}$$

$$-h = 2h\tan\theta - \frac{3h}{2}\left(1 + \tan^2\theta\right)$$

Thus $3\tan^2\theta - 4\tan\theta + 1 = 0$

So
$$\tan \theta = 1 \text{ or } \frac{1}{3}$$

(e) Required to prove $(a^2 + b^2)\sin^2\theta = a^2 + c^2 + 2ac\cos\theta$

Join PR, QS. QS is the diameter, so $\angle QPR = 90^{\circ}$ (angle in a semicircle).

In
$$\triangle PQS$$
 $QS^2 = a^2 + b^2$ (Pythagoras's Thm)
 $\sin \angle PQS = \frac{b}{QS}$
 $\therefore QS = \frac{b}{\sin \angle PQS}$

In quad $PQRS \angle PQR = 180^{0} - \theta$ (opposite angles of cyclic quadrilateral) $\angle PRS = \angle PQS$ (angles in same segment)

In ΔPQR

$$PR^{2} = a^{2} + c^{2} - 2ac\cos(180^{0} - \theta)$$
$$= a^{2} + c^{2} + 2ac\cos\theta$$

In ΔPRS

$$\frac{PR}{\sin \theta} = \frac{b}{\sin \angle PRS}$$

$$= \frac{b}{\sin \angle PQS}$$

$$= QS \qquad \text{from above}$$

$$PR = QS \sin \theta$$

$$PR^2 = QS^2 \sin^2 \theta$$

$$= a^2 + c^2 + 2ac \cos \theta$$
Thus $(a^2 + b^2)\sin^2 \theta = a^2 + c^2 + 2ac \cos \theta$ QED

QUESTION 14 (XI)

(a) (1)
$$P(x=3) = {5 \choose 3} (0.3)^{3} (0.7)^{2}$$

$$= \frac{1}{2} \cdot 0.1323.$$

(11)
$$P(x=0) + P(x=1) + P(x=2)$$

 $= (5) (0.3)^{0} (0.7)^{5} + (5) (0.3)^{1} (0.7)^{4} + (5) (0.3)^{3} (0.7)^{3}$
 $| = 0.8369 \lambda |$

$$\frac{ton 3x = ton(2x+2)}{ton 2x + ton x}$$

$$= \frac{ton 2x + ton x}{1 - ton 2x \cdot ton x}$$

$$= \frac{2t}{1 - t^{2}} + t$$

$$\frac{1 - 2t}{1 - t^{2}} \cdot t$$

$$= \frac{3t + t(1-t^{2})}{1-t^{2}-2t^{2}}$$

$$= \frac{3t-t^{3}}{1-3t^{2}}$$

$$= \frac{3\tan z - \tan^{3}z}{1-3\tan z}$$

ie.
$$tan 3x = tan (\overline{x}-2x)$$

$$3x = \overline{x}-2x$$

$$5x = \overline{x}$$

("Y(OMTD) A.
$$\frac{3t-4^3}{1-3t^2} = \frac{1-t^4}{3t}$$

$$2+(3t-t^3) = (1-3t^4)(1-t^4)$$

$$1+t^4-3t+5=1-t^4-3t^4+3t^4$$

$$5t+-10t^4+1=0. \quad \text{(III)} \quad \text{for } 2=\frac{1}{10} \text{ is also a setution to (A)}$$

$$11 \quad t^2 = \frac{10 \pm 4\sqrt{5}}{5}$$

$$12 \quad t = \pm \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$13 \quad t = \pm \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$14 \quad t = \pm \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$15 \quad t = \frac{1}{10} \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$16 \quad t = \frac{1}{10} \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$17 \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$18 \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$19 \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$19 \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

$$19 \quad t = \sqrt{\frac{5\pm 3\sqrt{5}}{5}}$$

1- 5+255

(") CONTD.

$$= \frac{2\sqrt{5\pm2\sqrt{5}}}{5}$$

$$= \pm\sqrt{5\pm2\sqrt{5}}$$

$$= \sqrt{5\pm2\sqrt{5}}$$

$$= \sqrt{5\pm2\sqrt{5}}$$

$$= \sqrt{5\pm2\sqrt{5}}$$

$$= \sqrt{5\pm2\sqrt{5}}$$
(clearly $\tan \overline{x} > 0$)
$$= \sqrt{5\pm2\sqrt{5}}$$
Also
$$= \sqrt{5\pm2\sqrt{5}}$$

which is >1.

(1) RHS =
$$(1+x)^{2n}$$
 = $(1-x)^{2n}$
= $(1+x)^{2n}$ = $(1-x)^{2n}$

ļ