SYDNEY BOYS HIGH SCHOOL
 mOORE PARK, SURRY HILLS

2014
 HIGHER SCHOOL CERTIFICATE
 TRIAL PAPER

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time - 3 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Answer Questions 1 to 10 on the sheet provided.
- Each Question from 11 to 16 is to be returned in a separate bundle.
- All necessary working should be shown in every question

Total Marks - 100

- Attempt questions 1 - 16
- Answer in simplest exact form unless otherwise instructed

Examiner: P.R.Bigelow

- NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Use Multiple Choice Answer Sheet

Question 1

Seven people are to be placed in four hotel rooms. In how many ways may this be done?

A: $\quad 4^{7}$
B: $\quad{ }^{7} C_{4}$
C: $\quad{ }^{7} P_{4}$
D: $\quad 7^{4}$

Question 2

$$
i^{2114}=
$$

A: 1
B: $\quad i$
C: $\quad-i$
D: $\quad-1$

Question 3

The circle $x^{2}+y^{2}=1$ is rotated about the line $\boldsymbol{x}=2$. With use of cylindrical shells, the volume is given by:

A: $\quad 4 \pi \int_{-1}^{1}(2-x) \sqrt{1-x^{2}} d x$
B: $\quad 8 \pi \int_{0}^{1}(2-x) \sqrt{1-x^{2}} d x$
C: $\quad 2 \pi \int_{-1}^{1}(2-x) \sqrt{1-x^{2}} d x$
D: $\quad 4 \pi \int_{1}^{2}(2-x) \sqrt{1-x^{2}} d x$

Question 4

The equation of the chord of contact from $(5,-2)$ to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is given by:

A: $\quad \frac{x}{8}-\frac{5 y}{16}=1$
B: $\quad \frac{5 x}{16}+\frac{2 y}{9}=1$
C: $\quad \frac{5 x}{16}-\frac{2 y}{9}=0$
D: $\quad \frac{5 x}{16}-\frac{2 y}{9}=1$

Question 5

The roots of $x^{3}+5 x+11=0$ are α, β, and γ.
The value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$ is:
A: $\quad 25$
B: 0
C: $\quad-55$
D: 55

Question 6

If a and b are positive, which of the following is false?
A: $\quad \frac{a}{b}+\frac{b}{a} \geq 2$.
B: $\quad \frac{a+b}{2} \leq \sqrt{a b}$.

C: $\quad(\sqrt{a}-\sqrt{b})^{2} \geq 2 a b$.
D: $\quad(a+b)^{2} \geq(a-b)^{2}+(2 a b)^{2}$.

Question 7

The graph has equation:
A: $\quad(x-1)(y+1)=1$
B: $y=\frac{x+2}{x}$
C: $\quad(x+1)(y-1)=1$

D: $\quad y=\frac{x}{x+1}$

Question 8

$1+i$ is a zero of $x^{3}+a x+b$ where a, b are real, therefore the values of a and b are:

A: $\quad a=-2, b=-4$
B: $\quad a=-2, b=4$
C: $\quad a=2, b=-4$
D: $\quad a=2, b=4$

Question 9

The diagram shows a trapezium, with an internal parallel line. Which of the following is true?
A: $\quad y=\frac{3}{4} h+8$.
B: $\quad y=\frac{3}{4} h+9$.
C: $\quad 4 y=9 h+72$
D: $\quad 9 y=4 h+72$

Question 10

By considering the graphs of $y=3 x^{2}-2 x-2$ and $y=|3 x|$, the solution to $3 x^{2}-2 x-2 \leq|3 x|$ is:

A: $\quad-\frac{1}{3} \leq x \leq 2$.
B: $\quad-1 \leq x \leq \frac{3}{2}$.
C: $\quad-\frac{1}{3} \leq x \leq \frac{3}{2}$
D: $\quad-1 \leq x \leq 2$

Question 11. (15 marks) (Start a new answer booklet.)
(a) Given $z=1-i$, find the values of w such that

$$
w^{2}=i+3 \bar{z}
$$

(b) On separate Argand diagrams, shade the following regions:
(i) $4 \leq Z+\bar{Z} \leq 10$
(ii) $\quad \arg \left(z^{2}\right)=\frac{2 \pi}{3}$
(iii) $\quad z \bar{Z}=4$
(c) (i) Show that $Z=1+i$ is a root of the polynomial

$$
z^{2}-(3-2 i) z+(5-i)=0
$$

$$
1
$$

(ii) Find the other root.
(d) $O A B C$ is a square in the Argand diagram.
B represents the complex number $2+2 i$.

Find the complex numbers represented by A and C.

Question 11 (Continued)

(e) From $\{1,2,3,4,5,6,7,8,9\}$ codes of three digits are formed, where no digit is repeated.
(i) Find the number of possible different codes.
(ii) How many of these are not in decreasing order of magnitude, reading 2 from left to right?
(f) Given that α, β, and γ are the roots of $x^{3}-7 x+6=0$, evaluate

$$
\alpha^{3}+\beta^{3}+\gamma^{3}
$$

Question 12. (15 marks) (Start a new answer booklet.)

Marks

(a) Find $\int x e^{4 x} d x$.
(b) Evaluate $\int_{\frac{3 x}{2}}^{\frac{5 x}{2}} \frac{d x}{\cos x+2}$.
(c) Find $\int \frac{d u}{8+u^{3}}$.
(d) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos ^{5} \theta d \theta$
(e) (i) Find $\int \frac{d x}{x^{2}+2 x+10}$.
(ii) Hence find $\int \frac{x^{2}}{x^{2}+2 x+10} d x$.
(f) Consider the curve defined by $2 x^{2}+x y-y^{2}=0$.

Find the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $P(2,4)$.
(g) Sketch the locus $|z-1|+|z+1|=4$ (where z is a complex number), showing x 2 and y intercepts.

Question 13. (15 marks) (Start a new answer booklet.)
(a) Find the values of the real numbers p and q given that

$$
x^{3}+2 x^{2}-15 x-36=(x+p)^{2}(x+q)
$$

(b) An ellipse has equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

(i) Find the eccentricity of the ellipse.
(ii) Sketch the ellipse showing foci, directrices and intercepts.
(iii) Prove that the equation of the tangent to the ellipse at the point $P(3 \cos \theta, 2 \sin \theta)$ is $2 x \cos \theta+3 y \sin \theta=6$.
(iv) The ellipse meets the y-axis at points A and B. The tangents to the ellipse at A and B meet the tangent at P, at points C and D respectively.

Prove that $\quad A C \times B D=9$.
(c) The area defined by $0 \leq x \leq \frac{\pi}{2}$, $0 \leq y \leq 1$ and $y \geq \sin x$ is rotated about the line $y=1$.
(i) Copy the diagram and shade the defined area.
(ii) Find the volume of the solid by taking slices perpendicular to the axis of rotation.

Question 14 (15 marks) (Start a new answer booklet.)

(a) $A B C D$ is a cyclic quadrilateral. The diagonals $A C$ and $B D$ intersect at right-angles at $X . M$ is the mid-point of $B C$, and $M X$ produced meets $A D$ at N.

(i) Copy the diagram to your answer booklet, then show that $B M=M X$.
(ii) Show that $\angle M B X=\angle M X B$.
(iii) Show that $M N$ is perpendicular to $A D$.
(b) The base of a solid is in the shape of an ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathbf{1}$. Vertical cross-sections taken perpendicular to the major axis are rectangles where length is double the height.
(i) Show that the volume of a typical rectangular slice is

$$
\delta V=\frac{2 b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \cdot \delta x
$$

(where δx is the width of the slice.)
(ii) Find the volume of the solid by integration.

Question 14 (Continued)

(c) In each of the following parts, $x, y, z, w, a, b, c, d>0$:
(i) Show that $(x+y)^{2} \geq 4 x y$. 1
(ii) Show that $[(x+y)(z+w)]^{2} \geq 16 x y z w ~ 1$
(iii) Deduce that $\frac{x+y+z+w}{4} \geq \sqrt[4]{x y z w}$
(iv) Hence show that (using (iii)):

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} \geq 4
$$

Question 15 (15 marks) (Start a new answer booklet.)

Marks
(a) The graph of $y=f(x)$ is shown.

Sketch the following on separate diagrams:
(i) $y=f(4-x)$.
(ii) $\quad y=f(|x|)$.

(iii) $y \times f(x)=1$.
(iv) $y^{2}=f(x)$.
(b) Let w be a non-real cube root of unity.
(i) Show that $1+w+w^{2}=0$.
(ii) Simplify $(1+w)^{2}$.
(iii) Show that $(1+w)^{3}=-1$.
(iv) Using part (iii) simplify $(1+w)^{3 n}$ where $n \in Z^{+}$.
(v) Show that

$$
\begin{gathered}
\binom{3 n}{0}-\frac{1}{2}\left[\binom{3 n}{1}+\binom{3 n}{2}\right]+\binom{3 n}{3}-\frac{1}{2}\left[\binom{3 n}{4}+\binom{3 n}{5}\right]+\binom{3 n}{6}-\cdots \\
\ldots+\binom{3 n}{3 n}=(-1)^{n}
\end{gathered}
$$

[Hint: You may use $\operatorname{Re}(w)=\operatorname{Re}\left(w^{2}\right)=-\frac{1}{2}$]
(c) (i) Show that $\ln (e x)>e^{-x}$ for $x \geq 1$. (Use a diagram.)
(ii) Hence show that $\ln \left(e^{n} \times n!\right)>\frac{e^{n}-1}{e^{n}(e-1)}$.
(a) A Particle P of unit mass is thrown vertically downwards in a medium where the resistive force is proportional to the velocity.
(i) Taking downwards as positive, show that $\ddot{x}=g-k v$ for some $k>0$.
(ii) Given that the initial speed is U and the particle is thrown from a point T, distant d units above a fixed point O, (taken as the Origin) so that the initial conditions are $\boldsymbol{v}=\boldsymbol{U}$ and $\boldsymbol{x}=-\boldsymbol{d}$.

Show that $v=\frac{g}{k}-\left(\frac{g-k U}{k}\right) e^{-k t}$.
(iii) Hence show that:

$$
x=\frac{g t-k d}{k}+\left(\frac{g-k U}{k^{2}}\right)\left(e^{-k t}-1\right)
$$

(iv) A second identical particle Q is dropped from O, at then same instant that P is thrown down. Use the above results to find expressions for v and x as functions of t, for the particle Q.
(v) The particles collide. Find when this occurs, and find the speed at which they collide
(b) (i) Show that:

$$
\sin (2 r+1) \theta-\sin (2 r-1) \theta=2 \sin \theta \cos 2 r \theta
$$

(ii) Hence shown that:

$$
\sin \theta \sum_{r=1}^{n} \cos 2 r \theta=\frac{1}{2}\{\sin (2 n+1) \theta-\sin \theta\}
$$

(iii) Hence evaluate:

$$
\sum_{r=1}^{100} \cos ^{2} \frac{r \pi}{100}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Student Number:

SOLUTIONS

Mathematics Extension 2 Trial HSC 2014

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A -
в
$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

Section I: Multiple choice answer sheet.
Completely colour the cell representing your answer. Use black pen.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

2014 Extension 2 Mathematics Trial HSC:

Solutions- Question 11

11. (a) Given $z=1-i$, find the values of w such that

$$
w^{2}=i+3 \bar{z}
$$

Solution: $\quad i+3 \bar{z}=i+3+3 i$,

$$
\begin{aligned}
& =3+4 i, \\
& =w^{2} .
\end{aligned}
$$

Let $w=a+i b$;
$a^{2}-b^{2}+2 a b i=3+4 i$,
$a^{2}-b^{2}=3$,
$a^{2}+b^{2}=5$,
$a b=2$,
$2 a^{2}=8$,
$a= \pm 2$,
$b= \pm 1$.
$\therefore w= \pm(2+i)$.
(b) On separate Argand diagrams, shade the following regions:
(i) $4 \leqslant z+\bar{z} \leqslant 10$

Solution: $\quad z+\bar{z}=2 \Re(z)$,

$$
4 \leqslant 2 \Re(z) \leqslant 10
$$ $2 \leqslant \Re(z) \leqslant 5$.

(ii) $\arg \left(z^{2}\right)=\frac{2 \pi}{3}$

$$
\text { Solution: } \quad \begin{aligned}
\arg \left(z^{2}\right) & =2 \arg (z) \\
& =\frac{2 \pi}{3},-\frac{4 \pi}{3} \\
\therefore \arg (z) & =\frac{\pi}{3}, \quad-\frac{2 \pi}{3}
\end{aligned}
$$

(iii) $z \bar{z}=4$

$$
\begin{array}{ll}
\text { Solution: } & z \bar{z}=|z|^{2} \\
& |z|=2
\end{array}
$$

(c) (i) Show that $z=1+i$ is a root of the polynomial

$$
z^{2}-(3-2 i) z+(5-i)=0
$$

Solution: Put $P(z)=z^{2}-(3-2 i) z+(5-i)$,

$$
\begin{aligned}
P(1+i) & =(1+i)^{2}-(3-2 i)(1+i)+5-i, \\
& =1+2 i-1-(3+3 i-2 i+2)+5-i, \\
& =i+5-5-i \\
& =0
\end{aligned}
$$

i.e. $1+i$ is a root of $P(z)$.
(ii) Find the other root.

Solution: Let the other root be $a+i b$.

$$
\begin{aligned}
1+i+a+i b & =3-2 i, \\
1+a & =3, \\
1+b & =-2, \\
a & =2, \\
b & =-3 .
\end{aligned}
$$

\therefore The other root is $2-3 i$.
(d) $O A B C$ is a square in the Argand diagram.
B represents the complex number $2+2 i$.

Find the complex numbers represented by A and C.

Solution: Method 1-

Notice that $\arg (B)=\frac{\pi}{4}$, so that A must lie on $O x$ and C must lie on $O y$. Hence $A=(2+0 i)$ and $C=(0+2 i)$.

Solution: Method 2-

$$
\begin{aligned}
\text { Let } A & =z=a+i b \text { and so } C=i z=-b+a i . \\
B & =A+C, \\
2+2 i & =a-b+i(a+b), \\
a-b & =2, \\
a+b & =2, \\
2 a & =4, \\
a & =2, \\
b & =0 \\
\text { i.e. } A & =(2+0 i) \text { and } C=(0+2 i) .
\end{aligned}
$$

Solution: Method 3-

$$
\begin{aligned}
|B| & =\sqrt{2^{2}+2^{2}}, \\
& =2 \sqrt{2} . \\
|A| & =2 . \\
A & =\frac{B}{\sqrt{2}} \operatorname{cis}\left(-\frac{\pi}{4}\right), \\
& =\frac{2+2 i}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right), \\
& =\frac{2-2 i+2 i+2}{\sqrt{2} \times \sqrt{2}}, \\
& =2+0 i . \\
C & =A i, \\
& =0+2 i .
\end{aligned}
$$

(e) From $\{1,2,3,4,5,6,7,8,9\}$ codes of three digits are formed, where no digit is repeated.
(i) Find the number of possible different codes.

Solution: $9 \times 8 \times 7=504$ different codes.
(ii) How many of these are not in decreasing order of magnitude, reading from left to right?

Solution: 6 ways of arranging any group of 3 , only one of which is in decreasing order of magnitude.
There are ${ }^{9} C_{3}=84$ ways of selecting groups of 3 .
Thus there are $5 \times 84=420$ which are not decreasing.
(f) Given that α, β, and γ are the roots of $x^{3}-7 x+6=0$, evaluate

$$
\alpha^{3}+\beta^{3}+\gamma^{3}
$$

Solution: Method 1-

$$
\begin{aligned}
\alpha+\beta+\gamma & =0, \\
\alpha \beta+\beta \gamma+\gamma \alpha & =-7, \\
\alpha \beta \gamma & =-6 .
\end{aligned}
$$

As α, β, and γ are roots,

$$
\begin{aligned}
\alpha^{3}-7 \alpha+6 & =0, \\
\beta^{3}-7 \beta+6 & =0, \\
\gamma^{3}-7 \gamma+6 & =0, \\
+\beta+\gamma)+18 & =0, \\
\alpha^{3}+\beta^{3}+\gamma^{3} & =-18 .
\end{aligned}
$$

$$
\alpha^{3}+\beta^{3}+\gamma^{3}-7(\alpha+\beta+\gamma)+18=0
$$

Solution: Method 2-

$$
\begin{aligned}
\text { Put } y & =x^{3}, \\
x & =y^{\frac{1}{3}} \\
y-7 y^{\frac{1}{3}}+6 & =0, \\
y+6 & =7 y^{\frac{1}{3}}
\end{aligned}
$$

$$
y^{3}+18 y^{2}+108 y+216=343 y
$$

$$
y^{3}+18 y^{2}-235 y+216=0
$$

$$
\therefore \alpha^{3}+\beta^{3}+\gamma^{3}=-18
$$

Solution: Method 3-

$$
\begin{aligned}
&(\alpha+\beta+\gamma)^{3}=\left(\alpha^{2}+\beta^{2}+\gamma^{2}+2 \alpha \beta+2 \alpha \gamma+2 \beta \gamma\right)(\alpha+\beta+\gamma), \\
&= \alpha^{3}+\alpha \beta^{2}+\alpha \gamma^{2}+2 \alpha^{2} \beta+2 \alpha^{2} \gamma+2 \alpha \beta \gamma+\alpha^{2} \beta+ \\
& \beta^{3}+\beta \gamma^{2}+2 \alpha \beta^{2}+2 \alpha \beta \gamma+2 \beta^{2} \gamma+\alpha^{2} \beta+\beta^{2} \gamma+ \\
& \gamma^{3}+2 \alpha \beta \gamma+2 \alpha \gamma^{2}+2 \beta \gamma^{2}, \\
&= \alpha^{3}+\beta^{3}+\gamma^{3}+6 \alpha \beta \gamma+3\left(\alpha \beta^{2}+\alpha \gamma^{2}+\alpha^{2} \beta+\beta \gamma^{2}+\right. \\
&\left.\alpha^{2} \gamma+\beta^{2} \gamma\right), \\
&= \alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma+3(\alpha+\beta+\gamma)(\alpha \beta+\alpha \gamma+\beta \gamma), \\
&= 3 \alpha \beta \gamma+(\alpha+\beta+\gamma)^{3}-3(\alpha+\beta+\gamma)(\alpha \beta+\alpha \gamma+\beta \gamma), \\
& \alpha^{3}+\beta^{3}+\gamma^{3}-3(0)(-7), \\
&=-18 .
\end{aligned}
$$

QUESTION TWELVE.

$$
=\int x e^{4-x} d x
$$

$$
\text { Let } u=x \quad d u=e^{4 x} d x
$$

$$
d u=d x \quad v=\frac{1}{4} e^{4 x}
$$

$$
V=\frac{1}{4} x e^{4 x}-\frac{1}{4} \int e^{4 x} d x
$$

$$
=\frac{1}{4} x e^{4 x}-\frac{1}{16} e^{4 x}+c
$$

$$
\begin{aligned}
& =2 \int_{-1}^{t} \frac{c t t}{1-t^{2}+2+2 t^{2}} \\
& =\int_{-1}^{1} \frac{c t}{t^{2}+3} \\
& \left.=\frac{2}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}\right]_{-1}^{1} \\
& =\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\frac{2}{\sqrt{3}} \\
& =\frac{4}{\sqrt{3}} \cdot \frac{\pi}{6} \\
& =\frac{2 \pi}{3 \sqrt{3}}=\frac{2 \sqrt{3} \pi}{9}
\end{aligned}
$$

v)

$$
\int_{3 \frac{\pi}{2}}^{\frac{5 \pi}{2}} \frac{d x}{\cos x+2}
$$

$\operatorname{Let} t=\tan \frac{x}{2}$

$$
\tan x=\frac{2 t}{1-t^{2}}
$$

$\cos x=\frac{1-t^{2}}{1+t^{2}}$ from diagram

$$
\begin{aligned}
\frac{d t}{d t} & =\frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\frac{1}{2}\left(1+\tan ^{2} \frac{x}{2}\right) \\
& =\frac{1}{2}\left(1+t^{2}\right)
\end{aligned}
$$

$$
\frac{2 d t}{1+t^{2}}=d x
$$

When $x=\frac{5 \pi}{2}, t=1$

$$
\begin{gathered}
x=\frac{3 \pi}{2}, t=-1 \\
\int=2 \int \frac{d t}{\left(1+t^{2}\right)\left[\frac{1-t^{2}}{1+t^{2}}+2\right]}
\end{gathered}
$$

Question in e
Consider $\frac{1}{u^{3}+8}=\frac{A}{u+2}+\frac{B u+C}{u^{2}-2 u+4}$

$$
\begin{aligned}
&=\frac{A u^{2}-2 A u+4 A+B u^{2}+u+2 B u+2 C}{u^{3}+8} \\
&=\frac{u^{2}(A+B)+u(C+2 B-2 A)+4 A+2 C}{u^{3}+8} \\
& A+B=0 \quad \text { Soloing } \Rightarrow A=\frac{1}{12}, \quad B=-\frac{1}{12}, C=1 / 3 \\
& 2 A-2 B-C=0 \quad 4 A+2 C
\end{aligned}
$$

Then $\frac{1}{u^{3}+8}=\frac{\frac{1}{1}}{u+2}+\frac{-\frac{1}{2} u+\frac{1}{3}}{u^{2}-2 u+4}$

$$
\begin{aligned}
& =\frac{\frac{1}{12}}{u+2}-\frac{1}{12}\left(\frac{u-4}{u^{2}-2 u+4}\right) \\
& =\frac{\frac{1}{12}}{u+2}-\frac{1}{12}\left[\frac{1}{2}\left(\frac{2 u-2}{u^{2}-2 u+4}\right)-\frac{3}{u^{2}-2 u+4}\right] \\
& =\frac{\frac{1}{12}}{u+2}-\frac{1}{24}\left(\frac{2 u-2}{u^{2}-2 u+4}\right)+\frac{1}{4}\left(\frac{1}{(u-1)^{2}+3}\right)
\end{aligned}
$$

Then

$$
\sqrt{\frac{d u}{u^{3}+8}}=\frac{1}{12} \ln (w+2)-\frac{1}{24} \ln \left(u^{2}-2 u+4\right)+\frac{1}{4 \sqrt{3}} \tan ^{-1} \frac{(u-1)}{\sqrt{3}}
$$

TWELU盾 ,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \cos ^{5} \theta d \theta & =\sqrt{\cos ^{2} \theta \cdot \cos ^{2} \theta \cos \theta d \theta} \\
& =\int\left(1-\operatorname{sen}^{2} \theta\right)^{2} \cos \theta d \theta \\
& =\sqrt{ }\left(1-2 \operatorname{sen}^{2} \theta+\tan ^{4} \theta\right)+\frac{1}{2} \cos \theta \cdot d \theta \\
& \left.=\operatorname{sen} \theta-\frac{2}{3} \sin ^{3} \theta+\frac{1}{5} \tan ^{5} \theta\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{\sqrt{2}}-\frac{2}{3}\left(\frac{1}{\sqrt{2}}\right)^{3}+\frac{1}{5}\left(\frac{1}{\sqrt{2}}\right)^{5}-\frac{2}{3} \times \frac{1}{2 \sqrt{2}}+\frac{1}{5} \times \frac{1}{4 \sqrt{2}} \\
& =\frac{1}{\sqrt{2}}-\frac{1}{3 \sqrt{2}}+\frac{1}{20 \sqrt{2}} \\
& =\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{6}+\frac{\sqrt{2}}{40} \\
& =\frac{20 \sqrt{2}}{40} \\
& =\frac{43 \sqrt{2}}{120} \\
&
\end{aligned}
$$

TMELVE e

$$
\begin{aligned}
\sqrt{\int \frac{d x}{x^{2}+2 x+10}} & =\int \frac{d x}{(x+1)^{2}+9} \\
& =\frac{1}{3} \tan ^{-1} \frac{x+1}{3}+C
\end{aligned}
$$

ANO

$$
\begin{aligned}
& \text { An0 } \\
& \begin{aligned}
\frac{x^{2}}{x^{2}+2 x+10} & =\frac{x^{2}+2 x+10}{x^{2}+2 x+10}-\frac{2 x+10}{x^{2}+2 x+10} \\
& =1-\frac{2 x+2}{x^{2}+2 x+10}-\frac{8}{x^{2}+2 x+10} \\
& =1-\frac{2 x+2}{x^{2}+2 x+10}-\frac{8}{(x+1)^{2}+9}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AND }=x-\ln \left(x^{2}+2 x+10\right)-\frac{8}{3} \tan ^{-1} \frac{x+1}{3} \\
& +C
\end{aligned}
$$

Question in f

$$
\begin{aligned}
& 2 x^{2}+x y-y^{2}=0 \\
& 4 x+x \frac{d y}{d x}+y-2 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}(2 y-x)=4 x+y \\
& \frac{d y}{d x}=\frac{4 x+y}{2 y-x} \\
& =\frac{8+4}{8-2} \text { at } p(2,4) \\
& =2 \\
& \frac{d^{2} y}{d x^{2}}=\frac{(2 y-x)\left(4+\frac{d y}{d x}\right)-(4 x+y)\left(2 \frac{d y}{d x}-1\right)}{(2 y-x)^{2}} \\
& =\frac{(6)(6)-(12)(3)}{36} \\
& =0
\end{aligned}
$$

$$
|3-1|+|5+1|=4
$$

$$
A A+P B=4
$$

Phas fosition on the x exsis when $y=0$ of $C(2,0)$
Hence major axis hou length 4

Let P have forction $(0,4)$ on the y exis
Then

$$
\begin{gathered}
\sqrt{a^{2}+1}+\sqrt{b^{2}+1}=4 \\
\sqrt{b^{2}+1}=2 \\
b^{2}+1=4 \\
a=\sqrt{3}
\end{gathered}
$$

Lours is ecirfere

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

ALTERNATNBLY
USIMG JISTANCES

$$
P S^{\prime}+P S=4
$$

$$
\sqrt{(x-1)^{2}+y^{2}}+\sqrt{(x+1)^{2}+y^{2}}=4
$$

$$
\begin{aligned}
& \sqrt{(x-1)^{2}+y^{2}}= 4-\sqrt{(x+1)^{2}+y^{2}} \\
& x^{2}-2 x+1+y^{2}= 16-8 \sqrt{(x+1)^{2}+y^{2}} \\
&+x^{2}+2 x+1+y^{2} \\
&-4 x-16=-8 \sqrt{(x+1)^{2}+y^{2}} \\
& x+4= 2 \sqrt{(x+1)^{2}+y^{2}} \\
& \frac{x}{2}+2=\sqrt{(x+1)^{2}+y^{2}} \\
& \frac{x^{2}}{4}+2 x+4= x^{2}+2 x+1+y^{2} \\
& \frac{3}{4} x^{2}+y^{2}=3 \\
& \frac{x^{2}}{4}+\frac{y^{2}}{3}=1
\end{aligned}
$$

Q13.

$$
E \times T-\alpha
$$

(a) $x^{3}+2 x^{2}-15 x-36=(x+p)^{2}(x+q)$
" $-p$ " is a donble root

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}+4 x-15 \\
\text { Let } f^{\prime}(x)=0 \Rightarrow 3 x^{2}+4 x-15=0 \\
(3 x-5)(x+3)=0 \\
x=5 / 3 \text { or } x=-3 .
\end{array}
$$

$$
3 x>-5
$$

Then $f(-3)=-27+18+45-36=0$

$$
\therefore p=3
$$

$$
\Rightarrow f(x)=(x+3)^{2}(x+q)
$$

$$
\Rightarrow x^{3}+2 x^{2}-15 x-36=\left(x^{2}+6 x+9\right)(x+9)
$$

By inspection, $q=-4$.

$$
\therefore p=3, q=-4
$$

(b) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(i)

$$
\begin{aligned}
e & =\frac{\sqrt{a^{2}-b^{2}}}{a} \\
& =\frac{\sqrt{9-4}}{3} \\
& =\frac{\sqrt{5}}{3}
\end{aligned}
$$

(ii)

$$
\begin{array}{r}
S=(\pm a e, 0)=(\pm \sqrt{5}, 0) \\
\left.D: x= \pm \frac{a}{l} \Rightarrow x= \pm \frac{3}{(\sqrt{5} / 3}\right) \\
x= \pm \frac{9}{\sqrt{5}}
\end{array}
$$

13.

(b) $(\tilde{\mu})($ cont $)$

(iii) $\quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$$
\begin{array}{r}
\Rightarrow \frac{2 x}{9}+\frac{y}{2} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{-4 x}{9 y}
\end{array}
$$

$$
A t P(3 \cos \theta, 2 \sin \theta),
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-12 \cos \theta}{18 \sin \theta} \\
& \frac{d y}{d x}=\frac{-2 \cos \theta}{3 \sin \theta}
\end{aligned}
$$

Then Egn of tangent: $y-y_{i}=m\left(x-x_{i}\right)$

$$
\begin{array}{r}
y-2 \sin \theta=\frac{-2 \cos \theta}{3 \sin \theta}(x-3 \cos \theta) \\
3 y \sin \theta-6 \sin ^{2} \theta=-2 x \cos \theta+6 \cos ^{2} 6 \\
\Rightarrow 2 x \cos \theta+3 y \sin \theta=6\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
2 x \cos \theta+3 y \sin \theta=6 \quad \#
\end{array}
$$

$13(i v)$

Eqp of tangent at $P: 2 x \cos \theta+3 y \sin \theta=6$ (1)
Eipn tangent at $A: y=2$
Egp torgent at $B ; y=-2$
For $C \quad \operatorname{sub}(2) \operatorname{in}(1) \Rightarrow 2 x \cos \theta+6 \sin \theta=6$

$$
\begin{array}{r}
x \cos \theta+\theta \sin \theta(1-\sin \varepsilon \\
x=\frac{6(1-\sin \theta)}{2 \cos \theta} \\
x_{c}=\frac{3(1-\sin \theta)}{\cos \theta}
\end{array}
$$

For $D \operatorname{sub}(3)$ in $(1) \Rightarrow 2 x \cos \theta-6 \sin \theta=6$

$$
\begin{array}{r}
2 x \cos \theta, \quad \begin{aligned}
& 2 x \cos \theta=6(1+\sin \theta) \\
& x_{0}=3(1+\sin \theta) \\
& \therefore \cos \theta
\end{aligned}
\end{array}
$$

Then $A C=\frac{3(1-\sin \theta)}{\cos \theta}$ and $B D=\frac{3(1+\sin \theta)}{\cos \theta}$

$$
\begin{aligned}
\therefore A(\times B D & =\frac{3(1-\sin \theta)}{\cos \theta} \times \frac{3(1+\sin \theta)}{\cos \theta}=\frac{9\left(1-\sin ^{2} \theta\right.}{\cos ^{2} \theta} \\
& =9+1
\end{aligned}
$$

(M) Washom:

$$
\begin{aligned}
& V_{\text {slice }}=\pi r^{2} \delta x \\
& =\pi(1-\sin x)^{2} \delta x \\
& V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{\pi_{2}} \pi(1-\sin x)^{2} \delta x \\
& V=\int_{0}^{\pi / 2} \pi(1-\sin x)^{2} d x \\
& =\pi \int_{0}^{\pi / 2}\left(1-2 \sin x+\sin ^{2} x\right) d x \\
& =\pi \int_{0}^{0}\left(1-2 \sin x+\frac{1}{2}-\frac{1}{2} \cos 2 x\right) d x \\
& =\pi \int_{0}^{\frac{\pi}{3}}\left(\frac{3}{2}-2 \sin x-\frac{1}{2} \cos 2 x\right) d x \\
& =\pi\left[\frac{3}{2} x+2 \cos x-\frac{1}{4} \sin 2 x\right]_{0}^{\pi / 2} \\
& =\pi\left[\left(\frac{3 \pi}{4}+0-0\right)-(0+2-0)\right] \\
& =\left(\frac{3 \pi^{2}}{4}-2 \pi\right) \text { units }^{3} .
\end{aligned}
$$

14)a) i)

since $\angle B \times C=90^{\circ}$
$B C$ is the diameter of able $B C X$ since M is the midpoint of is
M is the centre of circle $B C X$

$$
B M=M x \text { (equal -adii) }
$$

ii) $\triangle M B x$ is isosceles $(B M=M x)$

$$
\therefore \angle M B X=\angle M X B \text { (base angles of isosceles traingLe) }
$$

iii) Let $\angle M B X=\angle M X B=\alpha$
$\angle B C X=90-\alpha$ (angie sum of $\triangle B C X$)
$\angle B D N=90-x$ (angles in the same segment)
$\angle N X D=\alpha$ (vertically opposite angles)
$\angle X N D=90^{\circ}$ (angle sim of $\triangle N X D$)

$$
\therefore M N \perp A D
$$

$$
\Delta V=(2 y)(y) \Delta x
$$

$$
=2 y^{2} \Delta x
$$

$$
=\frac{2 h^{2}}{\frac{a^{2}}{2}}\left(a^{2}-x^{2}\right) \Delta x
$$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}} \\
& y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \\
& y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
V & =\lim _{\Delta x \rightarrow 0} \sum_{x=-a}^{a} \frac{2 b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \Delta x \\
& =\frac{2 b^{2}}{a^{2}} \int_{-a}^{a}\left(a^{2}-x^{2}\right) d x \\
& =\frac{4 b^{2}}{a^{2}} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x \\
& =\frac{4 b^{2}}{a^{2}}\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{4 b^{2}}{a^{2}}\left[a^{2}(a)-\frac{(a)^{3}}{3}-(0)\right] \\
& =\frac{4 b^{2}}{a^{2}}\left[\frac{2 a^{3}}{3}\right] \\
& =\frac{8 a b^{2}}{3} \text { eric units. }
\end{aligned}
$$

c) i)

$$
\begin{aligned}
(x+y)^{2} & =(x-y)^{2}+4 x y \\
& \geqslant 4 x y
\end{aligned}
$$

ii) similarly $(z+w)^{2} \geq 4 z w$

$$
\begin{aligned}
&(x+y)^{2}(2+\omega)^{2} \geqslant 4 x y .42 \omega \\
&=16 x y 2 \omega \\
& \therefore[(x+y)(2+w)]^{2} \geqslant 16 x y 2 \omega
\end{aligned}
$$

iii) From (i) $\left(\left(\frac{x+y)}{4}\right)+\left(\frac{2+w}{4}\right)\right)^{2} \geqslant 4\left(\frac{x+y}{4}\right)\left(\frac{2+w}{4}\right)$

$$
\begin{aligned}
& \left(\frac{x+y+2+w}{4}\right)^{2} \geqslant \frac{(x+y)(2+w)}{4} \\
& \left(\frac{x+y+2+w}{4}\right)^{4} \geqslant \frac{[(x+y)(2+w)]^{2}}{16}
\end{aligned}
$$

From(ii)

$$
\left(\frac{x+y+2+w}{4}\right)^{4} \geqslant \frac{16 x y 2 w}{x 6}
$$

iv) let $x=\frac{a}{b}, y=\frac{b}{c}, z=\frac{c}{d}, w=\frac{d}{a}$

$$
\frac{\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}}{4} \geqslant \sqrt[4]{\frac{a}{b} \frac{b}{c}} \sqrt{\frac{a}{d}+\frac{d}{a}}}{\frac{\frac{a}{c}+\frac{c}{d}+\frac{a}{a}}{4} \geqslant 4}
$$

2014 Extension 2 Mathematics Trial HSC:

Solutions- Question 15

15. (a) The graph of $y=f(x)$ is shown.

Sketch the following on separate diagrams:

(i) $y=f(4-x)$,

(ii) $y=f(|x|)$,

(iii) $y \times f(x)=1$,

(iv) $y^{2}=\mathrm{f}(\mathrm{x})$.

Solution:

(b) Let w be a non-real cube root of unity.
(i) Show that $1+w+w^{2}=0$.

$$
\text { Solution: } \begin{aligned}
w^{3} & =1 \\
w^{3}-1 & =0 \\
(w-1)\left(w^{2}+w+1\right) & =0 \\
\text { but } w & \neq 1 \text { as } w \text { not real, } \\
\therefore w^{2}+w+1 & =0
\end{aligned}
$$

(ii) Simplify $(1+w)^{2}$.

Solution: $\quad(1+w)^{2}=w^{2}+2 w+1$,

$$
\begin{aligned}
& =\left(w^{2}+w+1\right)+w, \\
& =w .
\end{aligned}
$$

(iii) Show that $(1+w)^{3}=-1$.

Solution: $\quad(1+w)^{2}(1+w)=w(1+w)$,

$$
\begin{aligned}
& =w+w^{2} \\
& =\left(1+w+w^{2}\right)-1, \\
& =-1
\end{aligned}
$$

(iv) Using part (iii) simplify $(1+w)^{3 n}$ where $n \in \mathbb{Z}^{+}$.

Solution: $\left((1+w)^{3}\right)^{n}=(-1)^{n}$,

$$
=\left\{\begin{aligned}
-1 & \text { if } n \text { is odd, } \\
1 & \text { if } n \text { is even }
\end{aligned}\right.
$$

(v) Show that

$$
\begin{gathered}
\binom{3 n}{0}-\frac{1}{2}\left[\binom{3 n}{1}+\binom{3 n}{2}\right]+\binom{3 n}{3}-\frac{1}{2}\left[\binom{3 n}{4}+\binom{3 n}{5}\right]+\binom{3 n}{6}-\ldots \\
\ldots+\binom{3 n}{3 n}=(-1)^{n}
\end{gathered}
$$

$\left[\right.$ Hint: You may use $\left.\Re(w)=\Re\left(w^{2}\right)=-\frac{1}{2}\right]$.

Solution: Now from part (iv), $(1+w)^{3 n}=(-1)^{n} \in \mathbb{R}$, so when looking at the expansion of $(1+w)^{3 n}$ we need only consider the real parts.
We also note that $w^{3 k}=1$ as $w^{3}=1, w^{3 k+1}=w$, $w^{3 k+2}=w^{2}$ and,
using $\Re(w)=\Re\left(w^{2}\right)=-\frac{1}{2}$, we have
$(1+w)^{3 n}=\binom{3 n}{0}+\binom{3 n}{1} w+\binom{3 n}{2} w^{2}+\binom{3 n}{3} w^{3}+\binom{3 n}{4 n} w^{4}+\binom{3 n}{5} w^{5}+\ldots$ $\cdots+\binom{3 n}{3 n-2} w^{3 n-2}+\binom{3 n}{3 n-1} w^{3 n-1}+\binom{3 n}{3 n} w^{3 n}$,
i.e. $(-1)^{n}=\binom{3 n}{0}-\frac{1}{2}\left[\binom{3 n}{1}+\binom{3 n}{2}\right]+\binom{3 n}{3}-\frac{1}{2}\left[\binom{3 n}{4}+\binom{3 n}{5}\right]+\binom{3 n}{6}-\ldots$ $\cdots+\binom{3 n}{3 n}$.
(c) (i) Show that $\ln (e x)>e^{-x}$ for $x \geqslant 1$. (Use a diagram.)

Solution: $\ln e x=1+\ln x$.

(ii) Hence show that $\ln \left(e^{n} \times n!\right)>\frac{e^{n}-1}{e^{n}(e-1)}$.

Solution: Method 1-
From part (i), $\ln (e x)>e^{-x}$;
so \quad L.H.S. $=\ln (1 \times e)+\ln (2 e)+\ln (3 e)+\cdots+\ln ((n-1) e)+\ln (n e)$,

$$
\begin{aligned}
& >e^{-1}+e^{-2}+e^{-3}+\cdots+e^{1-n}+e^{-n}, \\
& >\frac{1}{e^{n}}\left(e^{n-1}+e^{n-2}+\cdots+e^{2}+e^{1}+e^{0}\right), \\
& >\frac{1}{e^{n}} \times \frac{e^{n}-1}{e-1} .
\end{aligned}
$$

i.e. $\ln \left(e^{n} \times n!\right)>\frac{e^{n}-1}{e^{n}(e-1)}$.

Solution: Method 2-

Test $n=1$,

$$
\begin{aligned}
\text { L.H.S. } & =\ln e, & \text { R.H.S. } & =\frac{e-1}{e(e-1)}, \\
& =1 . & & =\frac{1}{e} .
\end{aligned}
$$

So it is true for $n=1$.
Now assume true for some $n=k, k \in \mathbb{Z}^{+}$,
i.e. $\ln \left(e^{k} \times k!\right)>\frac{e^{k}-1}{e^{k}(e-1)}$.

Then test for $n=k+1$, i.e. $\ln \left(e^{k+1} \times(k+1)!\right)>\frac{e^{k+1}-1}{e^{k+1}(e-1)}$.

$$
\begin{aligned}
\text { L.H.S. } & =\ln \left(e^{k} . k!\times e(k+1)\right), \\
& =\ln \left(e^{k} \times k!\right)+\ln (e(k+1))
\end{aligned}
$$

Now $\ln \left(e^{k} \times k!\right)>\frac{e^{k}-1}{e^{k}(e-1)}$ from the assumption,
and $\ln (e(k+1))>e^{-(k+1)}$ from part (i) where $x \geqslant 1$,

$$
\begin{aligned}
\therefore \text { L.H.S. } & >\frac{e^{k}-1}{e^{k}(e-1)} \times \frac{e}{e}+\frac{1}{e^{k+1}} \times \frac{e-1}{e-1} \\
& >\frac{e^{k+1}-e+e-1}{e^{k+1}(e-1)} \\
& >\frac{e^{k+1}-1}{e^{k+1}(e-1)}=\text { R.H.S. }
\end{aligned}
$$

Thus true for $n=k+1$ if true for $n=k$, but true for $n=1$ so true for $n=2,3,4$, and so on for all $n \in \mathbb{Z}^{+}$.

(i) $\quad \ddot{x}=g-k v \quad[1]$

$$
\begin{aligned}
& \text { (ii) } \frac{d r}{d t}=g-k v \\
& \frac{d t}{d v}=\frac{1}{g-k v} \\
& \therefore t=-\frac{1}{k} \int\left(\frac{-k}{g-k v}\right) d v \\
& t=-\frac{1}{k} \ln (g-k v)+c_{1}
\end{aligned}
$$

When $t=0, v=u$.

$$
\begin{gathered}
\therefore 0=-\frac{1}{k} \ln (g-k v)+c_{1} \\
\therefore c_{1}=\frac{1}{k} \ln (g-k v), \\
t=\frac{1}{k} \ln \left(\frac{g-k u}{g-k v}\right),
\end{gathered}
$$

$$
\begin{align*}
& \therefore e^{k t}= \\
& \therefore \quad g-k V \\
& \therefore \quad g-k U \\
& \therefore k v=g-k v) e^{-k t} \tag{1}\\
& \quad V_{p}=\frac{g}{k}-\frac{g-k U}{k} e^{-k t}
\end{align*}
$$

(iii)

$$
\frac{d x}{d t}=\frac{g}{k}-\left(\frac{g-k u}{k}\right) e^{k t}
$$

$$
x=\frac{g t}{k}+\left(\frac{g-k U}{k^{2}}\right) \int(t) e^{k t} d t
$$

$$
x=\frac{g}{k} t+\left(\frac{g-k v}{k^{2}} e^{-k t}+c_{2}\right.
$$

When $t=0, x=-d$.

$$
\begin{aligned}
& \therefore-d=g-k u \\
& \Rightarrow c_{2}=-\left(\frac{g-k u}{k^{2}}\right)-d . \\
& \therefore k_{p}=\left(\frac{g t-k d}{k}\right)+\frac{g-k u}{k^{2}}\left(e^{-k k}-1\right)
\end{aligned}
$$

(iv)

$$
\begin{align*}
& r_{p}=\frac{g}{k}-\frac{g-k U}{k} e^{-k t} \tag{1}\\
& x_{p}=\left(\frac{g t-k d}{k}\right)+\frac{g-k U}{k^{2}}\left(e^{-k t}-1\right) \\
& p u+U=0 \\
& \therefore r_{p}=\frac{g}{k}\left(1-e^{-k t}\right)
\end{align*}
$$

put $v=0, d=0^{\text {. }}$

$$
\begin{equation*}
\Rightarrow x_{p}=\frac{g t}{k}+\frac{g}{k^{2}}\left(e^{-k t}-1\right) . \tag{4}
\end{equation*}
$$

(v) The particles collide When $x_{p}=x_{q}$

$$
\frac{g k-k d}{k}+\left(\frac{g-k u}{k^{2}}\right)\left(e^{-k t}-1\right)=\frac{g k}{k+\frac{g}{k^{2}}\left(e^{-k t}-1\right)}
$$

$$
\begin{align*}
& \text { 1.e } \frac{u}{k} e^{-k t}=\frac{u}{k}-d \\
& e^{-k t}=1-\frac{k d}{U} \\
& \frac{k t}{k t}=\ln \left(1-\frac{k d}{u}\right) \\
& t=-\frac{1}{k} \ln \left(1-\frac{k d}{u}\right)^{[1]} . \tag{5}
\end{align*}
$$

When $t=-\frac{k}{k} \ln \left(\frac{v}{u-k a}\right)$

$$
\begin{align*}
r_{p} & =\frac{g}{k}-\frac{g}{k}+u+(g-k u) \frac{d}{v} \\
& =u+\frac{g d}{u}-k d \\
r_{p} & =\frac{g}{k}\left(1-1+\frac{k d}{u}\right)=\frac{g d}{u} \tag{2}
\end{align*}
$$

\therefore speed of Collission $\left|r_{p}-r_{p}\right|$

$$
\begin{aligned}
& =\left|\left(u+\frac{9 d}{u}-k d\right)-\frac{g d}{u}\right| \\
& =\mid
\end{aligned}
$$

$$
\begin{equation*}
=|u-k d| \tag{17}
\end{equation*}
$$

Phestion 16 (b)

$$
\begin{align*}
& \text { (i) } \sin (2 r+1) \theta-\sin (2 r-1) \theta \\
& =\sin 2 r \theta \cos \theta+4 \sin \sin \theta \\
& -(\sin 2 r \theta \cos \theta-6 \sin \theta) . \\
& =2 \sin \theta \cos 2 r \theta . \tag{1}
\end{align*}
$$

GR.

$$
\sin A-\sin B=240\left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
$$

$$
\sin (2 r+1) \theta-\sin (2 r-1) \theta
$$

$$
=2 \cos \left[\frac{(2 r+1) \theta+(2 r-1) \theta}{2}\right] \sin \left[\frac{(2 r+1) \theta-(2 r-1) \theta}{2}\right]
$$

$$
=260\left(\frac{4 r \theta}{2}\right) \sin \left(\frac{2 \theta}{2}\right) .
$$

$$
\begin{equation*}
=2 \cos (2 r \theta) \sin \theta \tag{1}
\end{equation*}
$$

(ii) From (i)

$$
\begin{aligned}
& 2 \sin \theta \sum_{r=1}^{n} \sin (2 r-\theta)=\sum_{r=1}^{n}[\sin (2 r+1) \theta-\sin (2 r-1) \theta] \\
& \left.\therefore \operatorname{sen} \theta \sum_{r=1}^{n} \cos (2 r \theta)=\frac{1}{2} \sum_{r=1}^{n}[\sin (2 r+1) \theta-\sin (2 r-1) \theta]\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2}[(\sin 5 \theta-\sin \theta)+(\sin 5 \theta-\sin 2 \theta)+\cdots+\sin (2 n+1) \theta-\sin (2 n-1 \\
& =\frac{1}{2}[\sin (2 n+1) \theta-\sin \theta] . \\
& \text { (iii) }[1] . \\
& \left.\therefore \cos ^{2} r\left(\frac{\pi}{100}\right)=\frac{1+\cos \left[2 r\left(\frac{\pi}{100}\right)\right]}{2}\right] \\
& \therefore \sum_{r=1}^{n} 6 \pi 2 r \theta=\frac{\pi}{2 \sin \theta}[\sin (2 n+1) \theta-\sin \theta] \\
& \therefore \sum_{r=1}^{100} \cos ^{2}\left(\frac{1 \pi}{100}\right)=\sum_{r=1}^{100}\left[\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 r \pi}{100}\right)\right. \\
& \left.=\frac{1}{2} \times\left(2 r\left(\frac{\pi}{100}\right)\right)\right]
\end{align*}
$$

using (2) $\quad \theta=\frac{\pi}{100}, n=100$

$$
\begin{aligned}
& \therefore \sum_{r=1}^{100} \cos ^{2}\left(\frac{r \pi}{100}\right)=50+\frac{1}{2}\left[\frac{\sin \left(\frac{201 \pi}{100}\right)-\sin \frac{\pi}{100}}{2 \sin \left(\frac{\pi}{100}\right)}\right] \\
& =50+\frac{\sin \left(2 \pi+\frac{\pi}{100}\right)-\sin \left(\frac{\pi}{100}\right)}{4 \sin \left(\frac{\pi}{100}\right)} \quad[1] \\
& \left.=50+\frac{\left(\sin \frac{\pi}{100}-\sin \frac{\pi}{100}\right)}{4 \sin \frac{\pi}{100}} \quad \begin{array}{l}
=\sin 0
\end{array}\right] \\
& =50 \quad
\end{aligned}
$$

