Rates of Change

In some cases two, or more, rates must be found to get the equation in terms of the given variable.

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

e.g. (i) A spherical balloon is being deflated so that the radius decreases at a constant rate of $10 \mathrm{~mm} / \mathrm{s}$.
Calculate the rate of change of volume when the radius of the balloon is 100 mm .

$$
\begin{aligned}
& \frac{d V}{d t}=? \quad V=\frac{4}{3} \pi r^{3} \quad \frac{d V}{d t}=\frac{d r}{d t} \cdot \frac{d V}{d r} \quad \text { when } r=100, \frac{d V}{d t}=-40 \pi(100)^{2} \\
& \begin{array}{rlr}
\frac{d r}{d t}=-10 \quad \frac{d V}{d r}=4 \pi r^{2} & =-10\left(4 \pi r^{2}\right) \quad=-400000 \pi \\
& =-40 \pi r^{2}
\end{array}
\end{aligned}
$$

\therefore when the radius is 100 mm , the volume is decreasing at a rate of $400000 \pi \mathrm{~mm}^{3} / \mathrm{s}$
(ii) A spherical bubble is expanding so that its volume increases at a constant rate of $70 \mathrm{~mm}^{3} / \mathrm{s}$
What is the rate of increase of its surface area when the radius is 10 mm ?

$$
\begin{array}{rlrl}
\frac{d S}{d t}=? & \frac{d V}{d t}=70 & V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d r} & =4 \pi r^{2} & \frac{d S}{d r} & =8 \pi r
\end{array}
$$

$$
\frac{d S}{d t}=\frac{d V}{d t} \cdot \frac{d S}{d r} \cdot \frac{d r}{d V} \quad \text { when } r=10, \frac{d V}{d t}=\frac{140}{10}
$$

$$
=(70)(8 \pi r)\left(\frac{1}{4 \pi r^{2}}\right)
$$

$$
=14
$$

$$
=\frac{140}{r} \quad \text { increasing at a rate of } 14 \mathrm{~mm}^{2} / \mathrm{s}
$$

(iii) 2013 Extension 1 HSC Q13 a)

A spherical raindrop of radius r metres loses water through evaporation at a rate that depends upon its surface area. The rate of change of the volume V of the raindrop is given by

$$
\frac{d V}{d t}=-10^{-4} \mathrm{~A}
$$

where t is in seconds and A is the surface area of the rain drop.
a) Show that $\frac{d r}{d t}$ is a constant.

$$
\begin{array}{rlrl}
\frac{d r}{d t}=\text { ? } & \left.\begin{array}{rlrl}
& \frac{d V}{d t} & =-10^{-4} A & \\
& =\frac{4}{3} \pi r^{3} & \\
\frac{d r}{d t} & =\frac{d V}{d t} \cdot \frac{d r}{d V} & \frac{d V}{d r} & =4 \pi r^{2} \\
& \therefore \frac{d V}{d r} & =A &
\end{array}\right)=-10^{-4} A \cdot \frac{1}{A} \\
& & &
\end{array}
$$

$$
\therefore \text { radius decreases at a constant rate of } 10^{-4} \mathrm{~m} / \mathrm{s}
$$

b) How long does it take for a raindrop of volume $10^{-6} \mathrm{~m}^{3}$ to completely evaporate?

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& 10^{-6}=\frac{4}{3} \pi r^{3} \\
& r^{3}=\frac{3 \times 10^{6}}{4 \pi} \\
& r=\sqrt[3]{\frac{3 \times 10^{6}}{4 \pi}} \\
& \frac{d r}{d t}=-10^{-4} \\
& -10^{4} \int_{\sqrt[3]{\frac{3 \times 10^{-6}}{4 \pi}}}^{0} d r=\int_{0}^{t} d t \\
& t=10^{4}[r]_{0}^{\sqrt[3]{\sqrt[3 \times 10^{6}]{4 \pi}}} \\
& t=10^{4} \sqrt[3]{\frac{3 \times 10^{6}}{4 \pi}} \\
& \text { = 62.03504909... } \\
& =62 \text { seconds }
\end{aligned}
$$

\therefore it takes approximately 62 seconds to evaporate

Exercise 7E; 2, 5, 6, 9, 13*

Exercise 7F; 2, 5, 9, 10, 11*

