Integrating Functions of Time

$$
\begin{gathered}
\text { change in displacement }=\int_{0}^{4} \dot{x} d t \\
\text { change in distance }=\int_{0}^{1} \dot{x} d t-\int_{1}^{3} \dot{x} d t+\int_{3}^{4} \dot{x} d t
\end{gathered}
$$

$$
\begin{aligned}
& \text { change in velocity }=\int_{0}^{4} \ddot{x} d t \\
& \text { change in speed }=-\int_{0}^{2} \ddot{x} d t+\int_{2}^{4} \ddot{x} d t
\end{aligned}
$$

Derivative Graphs

Function displacement	$1^{\text {st }}$ derivative velocity	$\mathbf{2}^{\text {nd }}$ derivative acceleration
stationary point	x intercept	
inflection point	stationary point	x intercept
increasing	positive	
decreasing	negative	
concave up	increasing	positive
concave down	decreasing	negative

graph type	integrate	differentiate
horizontal line	oblique line	x axis
oblique line	parabola	horizontal line
parabola	cubic inflects at turning pt	oblique line

Remember:

- integration = area
- on a velocity graph, total area = distance
total integral = displacement
- on an acceleration graph, total area = speed total integral = velocity
a) $\mathbf{2 0 0 3}$ HSC Question 7b)

The velocity of a particle is given by $v=2-4 \cos t$ for $0 \leq t \leq 2 \pi$, where v is measured in metres per second and t is measured in seconds
(i) At what times during this period is the particle at rest?

$$
\begin{array}{rlrl}
v & =0 & \mathrm{Q} 1,4 & t \\
2-4 \cos t & =0 & \cos \alpha & =\frac{1}{2} \\
\cos t & =\frac{1}{2} & & t=\frac{\pi}{3}, \frac{5 \pi}{3} \\
& \alpha & =\frac{\pi}{3} &
\end{array}
$$

\therefore particle is at rest after $\frac{\pi}{3}$ seconds and again after $\frac{5 \pi}{3}$ seconds
(ii) What is the maximum velocity of the particle during this period?

$$
\begin{aligned}
& -4 \leq-4 \cos t \leq 4 \\
& -2 \leq 2-4 \cos t \leq 6
\end{aligned}
$$

\therefore maximum velocity is $6 \mathrm{~m} / \mathrm{s}$
(iii) Sketch the graph of v as a function of t for $0 \leq t \leq 2 \pi$
amplitude $=4$ un
shift $=\uparrow 2$ units

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{1} & \text { divisions } & =\frac{2 \pi}{4} \\
& =2 \pi & & =\frac{\pi}{2}
\end{aligned}
$$

flip upside down

(iv) Calculate the total distance travelled by the particle between $t=0$

$$
\begin{aligned}
\text { and } t & =\pi \\
\text { distance } & =-\int_{0}^{\frac{\pi}{3}}(2-4 \cos t) d t+\int_{\frac{\pi}{3}}^{\pi}(2-4 \cos t) d t \\
& =[2 t-4 \sin t]_{\frac{\pi}{3}}^{0}+[2 t-4 \sin t]_{\frac{\pi}{3}}^{\pi} \\
& =(0-0)+(2 \pi-4 \sin \pi)-2\left(\frac{2 \pi}{3}-4 \sin \frac{\pi}{3}\right) \\
& =2 \pi-2\left(\frac{2 \pi}{3}-\frac{4 \sqrt{3}}{2}\right) \\
& =4 \sqrt{3}+\frac{2 \pi}{3} \text { metres } \\
&
\end{aligned}
$$

b) 2004 HSC Question 9b)

A particle moves along the x-axis. Initially it is at rest at the origin. The graph shows the acceleration, a, of the particle as a function of time t for $0 \leq t \leq 5$

(i) Write down the time at which the velocity of the particle is a maximum

$$
\begin{aligned}
v= & \int \text { OR } \text { Odt } \quad v \text { is a maximum when } \frac{d v}{d t}=0 \\
& \int a d t \text { is a maximum when } t=2
\end{aligned}
$$

\therefore velocity is a maximum when $t=2$ seconds
(ii) At what time during the interval $0 \leq t \leq 5$ is the particle furthest from the origin? Give reasons for your answer.

Question is asking, "when is displacement a maximum?"

$$
x \text { is a maximum when } \frac{d x}{d t}=0
$$

But $v=\int a d t$
\therefore We must solve $\int a d t=0$
i.e. when is area above the axis = area below

By symmetry this would be at $t=4$
\therefore particle is furthest from the origin at $t=4$ seconds

c) 2007 HSC Question 10a)

An object is moving on the x-axis. The graph shows the velocity, $\frac{d t}{d t}$, of the object, as a function of t.
The coordinates of the points shown on the graph are $A(2,1), B(4,5)$, $C(5,0)$ and $D(6,-5)$. The velocity is constant for $t \geq 6$

(i) Using Simpson's rule, estimate the distance travelled between $t=0$

$$
\begin{aligned}
\text { distance } & \approx \frac{h}{3}\left\{y_{0}+4 y_{\text {odd }}+2 y_{\text {even }}+y_{n}\right\} \\
& =\frac{2}{3}\{0+4(1)+5\} \\
& =6 \text { metres }
\end{aligned}
$$

(ii) The object is initially at the origin. During which time(s) is the displacement decreasing?

$$
x \text { is decreasing when } \frac{d x}{d t}<0
$$

\therefore displacement is decreasing when $t>5$ seconds
(iii) Estimate the time at which the object returns to the origin. Justify your answer.
Question is asking, "when is displacement $=0$?"

$$
\begin{gathered}
\text { But } x=\int v d t \\
\therefore \text { We must solve } \int v d t=0
\end{gathered}
$$

i.e. when is area above the axis = area below

By symmetry, area from $t=4$ to 5 equals area from $t=5$ to 6

In part (i) we estimated area from $t=0$ to 4 to be 6 ,
$\therefore A_{4}=6$

$$
a=1.2
$$

$5 a=6 \quad \therefore$ particle returns to the origin when $t=7.2$ seconds
(iv) Sketch the displacement, x, as a function of time.

object is initially at the origin
when $t=4, x=6$
by symmetry of areas $t=6, x=6$
Area of triangle $=2.5$
\therefore when $t=5, x=8.5$
returns to $x=0$ when $t=7.2$
v is steeper between $t=2$ and 4 than between $t=0$ and 2
\therefore particle covers more distance between $t=2$ and 4 when $t>6, v$ is constant
\therefore when $t>6, x$ is a straight line

d) 2005 HSC Question 7b)

The graph shows the velocity, $\overline{d t}$, of a particle as a function of time. Initially the particle is at the origin.
(i) At what time is the displacement, x, from the origin a maximum?

Displacement is a maximum when area is most positive, also when velocity is zero
i.e. when $t=2$
(ii) At what time does the particle return to the origin? Justify your answer

Question is asking, "when is displacement $=0$?"
i.e. when is area above the axis = area below?

$$
\begin{array}{r}
2 w=2 \\
w=1
\end{array}
$$

$\underline{\text { Returns to the origin after } 4 \text { seconds }}$
(iii) Draw a sketch of the acceleration, $\frac{d^{2} x}{d t^{2}}$, as afunction of
time for $0 \leq t \leq 6$

differentiate a horizontal line you get the xaxis
from 1 to 3 we have a cubic, inflects at 2 , and is decreasing
differentiate, you get a parabola, stationary at 2 , it is below the x axis
from 5 to 6 is a cubic, inflects at 6 and is increasing (using symmetry)
differentiate, you get a parabola stationary at 6 , it is above the x axis

Exercise 3C; 1 ace etc, 2 ace etc, 4a, 7ab(i), 8, 9a, 10, 13, 15, 16, 18

