

Penrith Selective High School

2014

Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- All diagrams are not to scale

Total Marks – 70

Section I Pages 2–5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

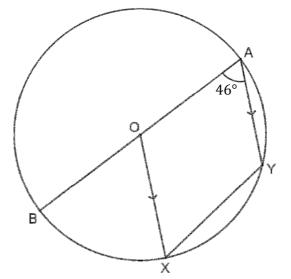
Section II Pages 6–12

60 marks

- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

Student Number:

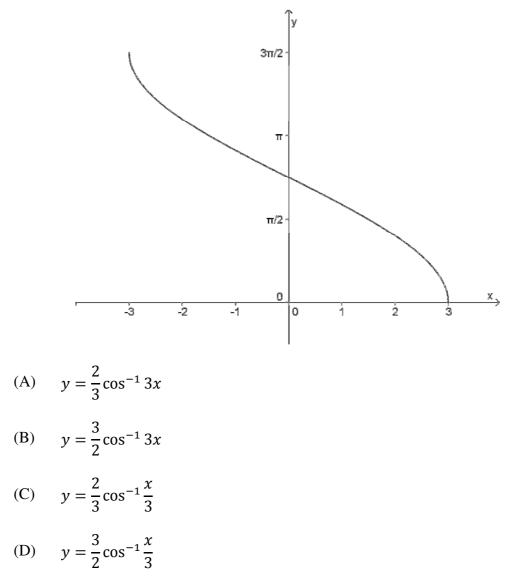
Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2014 Higher School Certificate Examination.


Section I:

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

Q1. Evaluate
$$\lim_{x \to 0} \frac{5x}{\sin \frac{\pi x}{2}}$$
(A) $\frac{5}{2\pi}$
(B) $\frac{\pi}{10}$
(C) $\frac{2}{5\pi}$
(D) $\frac{10}{\pi}$


Q2. *AB* is the diameter of the circle and *O* is the centre. $AY \parallel OX, \angle OAY = 46^\circ$. What is the size of $\angle XYA$?

NOT TO SCALE

- (A) 100°
- (B) 113°
- (C) 134°
- (D) 146°

Q3. Which function best describes the following graph?

Q4. How many ways can you arrange the letters in the word INDEPENDENT so that the D's are separated?

(A)
$$\frac{11!}{2! \times 3! \times 3!} - \frac{9!}{3! \times 3!}$$

(B)
$$\frac{11!}{2! \times 3! \times 3!} - \frac{10!}{3! \times 3!}$$

(C)
$$\frac{11!}{2! \times 3! \times 3!} - \frac{11!}{3! \times 3!}$$

(D)
$$\frac{11!}{2! \times 3! \times 3!}$$

- Q5. When the polynomial P(x) is divided by $x^2 + x 2$, the remainder is 4x 1. The remainder when P(x) is divided by x + 2 is:
 - (A) $4x^2 + 7x 2$
 - (B) 4x 1
 - (C) –9
 - (D) –7

Q6. The general solution to $\sin 2\theta = \sqrt{3} \sin \theta$ is:

- (A) $\pi n \text{ or } 2\pi n \pm \frac{\pi}{6}$, *n* is an integer
- (B) $\pi n \text{ or } 2\pi n \pm \frac{\pi}{3}$, *n* is an integer
- (C) $2\pi n \text{ or } \pi n \pm \frac{\pi}{6}$, *n* is an integer
- (D) $2\pi n$ or $\pi n \pm \frac{\pi}{3}$, *n* is an integer
- Q7. Let x = 0.8 be a first approximation to the root of the equation 3lnx + x = cos 2x. What is the second approximation to the root using Newton's method to 3 significant figures?
 - (A) 0.742
 - (B) 0.776
 - (C) 0.981
 - (D) 0.985

Q8. An inverse function exists for the monotonic increasing part of this function

$$f(x) = \frac{4}{\sqrt{4 - x^2}}.$$

For what *x* values is this?

- (A) $-2 \le x \le 2$
- $(B) \qquad x \le -2$
- (C) $x \ge 2$
- (D) 0 < x < 2
- Q9. The points A, B and P are collinear. If P divides the interval AB internally in the ratio 2:3, then B divides AP:
 - (A) 3:2 internally
 - (B) 2:5 internally
 - (C) 5:3 externally
 - (D) 5:1 externally
- Q10. The motion of a particle moving along the x-axis executes simple harmonic motion. The maximum speed of the particle is 3 metres per second and the period of motion is $\frac{\pi}{3}$ seconds. Which of the following could be the displacement equation for this particle?
 - (A) $x = \frac{1}{2}\sin 6t$
 - (B) $x = 3\cos\frac{\pi}{2}t$
 - (C) $x = 3\cos \pi t$
 - $(D) \qquad x = \frac{1}{2} + \sin 6t$

Section II

60 Marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Differentiate
$$\tan^{-1}(4 + x^3)$$
 1

b) Find
$$\int \frac{2}{\sqrt{25-2x^2}} dx$$
 2

- c) From a group of 4 teachers and 10 students a committee of 3 is to be chosen.
 - i) If the committee only contain students, how many different **1** committees are possible?
 - ii) What is the probability that at least one teacher is chosen to be on **1** the committee?

d) Use the substitution $u = e^{4x} + 9$ to evaluate $\int_{0}^{\ln 2} \frac{3e^{4x}}{\sqrt{e^{4x} + 9}} dx$

Leave your answer in exact form.

Question 11 continues on page 7

2

e)	The two functions $y = 2 \ln(x + 1)$ and $y = \ln(x^2 + 3)$ meet at the point x		
	i)	Find the coordinates of <i>T</i> .	2
	ii)	Find the acute angle between the tangents to the curve at T to the nearest minute.	2
f)	i)	Find the quotient and the remainder obtained by dividing $P(x) = x^3 - mx^2 - mx + 9$ by $A(x) = x - 3$.	2
	ii)	Hence, or otherwise, find a value of the constant m such that $P(x)$ is divisible by $A(x)$.	1
	iii)	Find all the zeroes of $P(x)$ for this value of m .	1

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The series
$$1 + \frac{4}{\sqrt{3}}\sin x \cos x + \frac{16}{3}\sin^2 x \cos^2 x + \frac{64}{3\sqrt{3}}\sin^3 x \cos^3 x + \dots \dots$$

has a limiting sum.

i) Show that
$$-\frac{\sqrt{3}}{2} < \sin 2x < \frac{\sqrt{3}}{2}$$
 1

ii) Hence, or otherwise, find the values of x, where $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ 2

b) Find the term independent of x in the expansion of
$$\left(x^2 - \frac{1}{2x^5}\right)^{14}$$
 2

c) Find the exact volume of the solid formed if the curve $y = \cos x + 1$ is 3 rotated about the *x*-axis from x = 0 to $x = \frac{\pi}{2}$

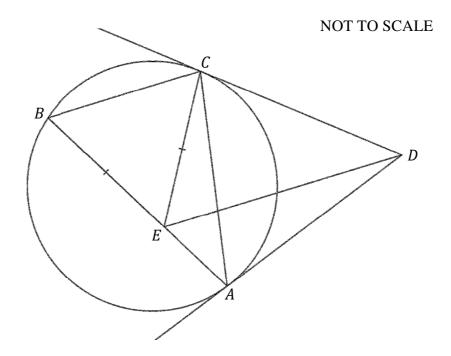
d) The velocity, v cm/s, of a particle moving along the x-axis is given by $v^2 = 56 - 20x - 4x^2$.

i) Show that this particle is undergoing simple harmonic motion. 2

ii) Find the period, the amplitude and the centre of the motion. 2

e) The function $(k-1)x^3 + (k+4)x^2 + (k-6)x - k = 0$ has roots α, β and γ and their product is $\frac{4}{5}$

- i) Find the sum of its roots. 1
- ii) Hence, or otherwise, find the value of $\alpha^2 + \beta^2 + \gamma^2$. 2


End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) Prove by mathematical induction for all positive integers *n* that,

 $a^{3n-1} - 1$ is divisible by a - 1 where a is an integer.

b) $\triangle ABC$ is inscribed inside a circle. Two tangents from the point *D* intersect with the circle at points *A* and *C*. The point *E* is on the line *AB* and it is joined to point *C*, such that BE = CE. The point *E* is also joined by a line to the point *D*. This information is in the diagram below.

3

Copy or trace the diagram into your writing booklet.

i)	Prove that $\angle BCE = \angle ACD$.	1
ii)	Prove that <i>ADCE</i> is a cyclic quadrilateral.	2
iii)	Hence, or otherwise, prove that BC ED.	1

Question 13 continues on page 10

c) By expanding $[x + (1 - x)]^n$, for all real numbers x and all positive integers n,

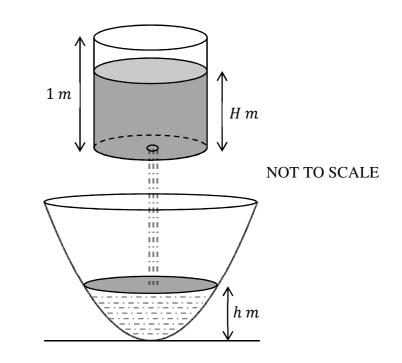
i) Show that
$$\binom{n}{0}x^n + \binom{n}{1}x^{n-1}(1-x) + \dots + \binom{n}{n}(1-x)^n = 1$$
 1

ii) Deduce that
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$
 2

d) $P(2ap, ap^2), Q(2aq, aq^2)$ are the end points of a focal chord of the parabola $x^2 = 4ay$.

i) Show that the distance between P and Q is
$$2a + a\left(p^2 + \frac{1}{p^2}\right)$$
 3

ii) A circle is drawn with PQ is its diameter. Prove that the directrix of the parabola $x^2 = 4ay$ is a tangent to this circle.


End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) Kirk is standing on a balcony and spots Spock walking along a street below. Kirk decides to launch a flour bomb down onto Spock when he stops to buy a pastry. The balcony is 70 metres above the street. Kirk launches the flour bomb at a velocity of 50 metres per second at an angle of θ to the horizontal.
 - i) Derive the equations for the horizontal and vertical displacements 2 after time t seconds. Assume that gravity is $9.8 ms^{-2}$.
 - ii) If Spock is 1.88 metres tall and standing approximately 300 metres 3 horizontally from where Kirk is standing on the balcony above, determine the possible values of θ to the nearest minute which allow Kirk to hit Spock with the flour bomb.
 - iii) If it takes 8 seconds for Kirk to hide himself to avoid being seen by 2 Spock, which value of θ should Kirk use? Justify your answer.

Question 14 continues on page 12

b) A cylindrical can, with radius 0.5 m and height 1 m is held above a bowl as shown in the diagram below. Initially the can was full and the bowl was empty. Water has dripped from the bottom of the can into the bowl. After t minutes, the height of the water in the can is H metres and the height of the water in the bowl is h metres.

If the flow rate of the water is $0.25 m^3/min$ and the volume of water in the bowl is given by πh^2 cubic metres.

i) Show that $H = 1 - \frac{t}{\pi}$ metres. 2

2

ii) Show that
$$h = \sqrt{\frac{t}{4\pi}}$$
 metres.

- iii) At the moment of time $t = t_1$ minutes, the height of the water in the two containers is equal. Prove that t_1 satisfies the quadratic equation $4t_1^2 9\pi t_1 + 4\pi^2 = 0$.
- iv) Find the value of t_1 minutes in terms of π and hence explain why t_1 2 only has one value.

End of Paper

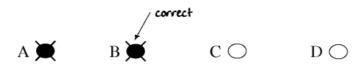
STANDARD INTEGRALS

< 0

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0

Multiple Choice Answer Sheet


Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		$A \bigcirc$	В 🔴	С 🔾	D 🔾

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \bullet B \not \equiv C \bigcirc D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

Start Here →	1.	АO	вО	сO	DO
	2.	АO	вО	сO	DO
	3.	АO	вО	сO	DO
	4.	АO	вО	сO	DO
	5.	АO	вО	СО	DO
	6.	ΛO	вО	сO	DO
	7.	АO	вО	сO	DO
	8.	АO	вО	сO	DO
	9.	АO	вО	сO	DO
	10.	АO	вО	сO	DO

2014 Mathematics Extension 1 Trial Solutions

Markers:

Q11. Katyal

Q12. Chirgwin

Q13. Young

Q14. Clarke

Section 1:

Q1. D	Q2. B	Q3. D	Q4. B	Q5. C
Q6. A	Q7. B	Q8. D	Q9. C	Q10. A

: Question...!! MATHEMATICS Exam **Suggested Solutions** Marker's Comments $x^{2} + (3-m)x + (9-4m)$ (1)x-3 x3/mx2-mx+9 $x^{3} - 3x^{2}$ (i)3-m/2 -mx $(3-m)\chi^2 - 3(3-m)\chi$ + 9=4mx x+9 (9-4m) × + 27+12m 36-12 m Quotient: $x^2 + (3 - m)x + (9 - 4m)$ Remainder: 36-12m (11) Remainder = 0 : m=3 V (11) $\chi^{3} - 3\chi^{2} - 3\chi + 9 = (\chi - 3) (\chi^{2} - 3)$ $= (x-3) (x+J_3)(x-J_3)$ the roots are 3, ± 53.

am Mathis Ext (MATHEMATIC Suggested Solut		Marker's Comments
a) i) $\Gamma = \frac{4}{\sqrt{3}} \sin x \cos x$		
-1 < 1 < 1		
-1 < 4 Sindlodx	_ <	
- 13 4 < Sinscroth	5	
- V3 < 2515360072	x (13)	2
· - 13 < since <		
< SIM CK (T	
- 311	π 3π	
$ \begin{array}{ccc} 10 & \pi & & \\ 4 & & \\ \end{array} \xrightarrow{3\pi} \rightarrow \end{array} $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
- 13 5 5152x 5 13		
$-\frac{\pi}{3} < 2x < \frac{\pi}{3} $	Quadrant 1k4)	
$\frac{4\pi}{3} > 2x > \frac{2\pi}{3}$	(Quad Fant 243)	
	(Under oddi 200)	
$\frac{\pi}{3} < \chi < \frac{2\pi}{3}$		
	-	
	7 374	
T3 T4 25		
-53		
-1 -		

1000000 0- 1	THEMATICS : Question.1.2	
Sugge	ested Solutions	Marker's Comments
b) $(\chi^{2} - \frac{1}{2\chi^{3}})^{14}$ ${}^{14}(\kappa(\chi^{2})^{14-\kappa}(\frac{1}{2}\chi^{-1})^{14-\kappa})$ $= {}^{14}(\kappa\chi^{2\theta-2\kappa}-\chi(\frac{1}{2})^{k}\chi^{2\theta-2\kappa})$		
$= \frac{14}{(k (\frac{1}{2})^{k} \times 2^{\theta-7k})}$		
:. term independe $14(4(2)^4 = 6$		
c) $V = \pi \int_{0}^{\frac{\pi}{2}} y^{2} dx$ = $\pi \int_{0}^{\frac{\pi}{2}} (\cos^{2} x + x)^{2} dx$		* incorrect expanse of y ² . « incorrect integr of cod ² x
$= T_{1} \int_{0}^{T_{2}} (\frac{1}{2} \cos 2\pi)$		
$= \pi \left[\frac{1}{4} \sin 2x + \frac{1}{4} + \frac{1}{4} \sin x + \frac{1}{4} $	$2\sin\frac{\pi}{2} + \frac{3}{2}\times\frac{\pi}{2}$	
4		

۹.

Exam Matter Ent MATHEMATICS : Question	
Suggested Solutions	Marker's Comments
d) i) V= 56-20x-4n2	
$\frac{1}{2}\sqrt{2} = 28 - 102 - 222^{2}$	
$\ddot{x} = \frac{d}{dx} (\frac{1}{2} v^2) = -10 - 4\pi$	
$x = -4(x+\frac{5}{2})$	
It is in simple harmonic motion as it is in the	
form of $\dot{x} = -n^2(x - x_0)$.	
ii) $n=2$, period = $\frac{2\pi}{n} = \pi$,	
The particle ascillates between two end points where	
$56 - 202 - 4n^2 = 0$	
$\chi^2 + 5\pi - 14 = 0$	
$(x\tau)/(x-2) = 0$	
x = -7, x = 2	
: amplitude is 4.5	
centre of motion is -2.5.	
e) i) $(k-1)x^{3} + (k+4)x^{2} + (k-6)x - K = 0$	
$\angle \beta X = -\frac{d}{a}$	
$\frac{k}{k-1} = \frac{4}{6}$	
3	
5k = 4k - 4 $k = -4$	
$\mathcal{L} + \beta + \gamma = -\frac{\kappa + 4}{\kappa - 1}$	
$\therefore 2+\beta+\delta = 0$	
22,2 ($1-12$) ($2B+35725$)	
ii) $\chi_{\pm 3}^{2} = (2 + \beta + \delta)^{2} - 2(2\beta + \beta \delta + 2\delta)$ = $0 - 2x \frac{k-6}{k-1}$	
= -4	

Exam MATHEMATICS : Question 13a Suggested Solutions	Marker's Comments
Suggested Solutions 13a	
Prove true for n=1	Must factorise
$a^2 - 1 = (a+1)(a-1)$ which is divisible by $a-1$	a^2 -1 to show that it is divisible
\bigcirc	by a-1
Assume true for n=k 3k-1	
$a^{3k-1}-1 = m(a-1)$ where m is an integer	
Prove true for n= K+1	
3(k+1)-1 a -1	
3k+3-1	
$= \alpha - 1$	
$= a^{3} \cdot a^{3k-1} - a^{3} + a^{3} - 1$	
$=a^{3}(a^{3k-1}-1)+a^{3}-1$	
$=a^{3}(m(a-1))+a^{3}-1$	
$= a^{3} (m(a-1)) + (a-1)(a^{2} + a + 1)$	
$=(a-1)(a^{3}m+a^{2}+a+1)$	
which is divisible by a-1	
: true for n=k+1	
Since true for nel and true for nek and true for	
n=k+1 then true for n=2 and so on.	
36 <u>c</u>	
B	
A	
1. LACD = LABC (angle between a tangent and a chord equals	some students
the angle at the circumference in the alternate	did not write
segment)	the last line
ACBE is isosceles since BE = CE LEBC = LECB (equal angles in isosceles A)	
: LACD = LBCE.	

Exam MATHEMATICS : Question	Marker's Comments
Suggested Solutions ii. Let $\angle ABC = \angle BCE = \angle ACD = \mathcal{X}$ (from i)	Warker's comments
LBEC=180-2x (angle sum ABCE)	make sure
LCEA = 2x (adjacent supplementary angles)	reasoning
AD = CD (tangents to a circle from an external point) are equal	includes full
· AACD is isoereles	description of properties
: $LCAD = x$ (equal angles in isosceles Δ)	properties, not just
LCDA=180-2x (LSUM DDAC)	"external angle
LADC+LAEC = 180	theorem"
: ADCE is a cylic quadrilateral since opposite	
angles are supplementary.	
III. $\angle ACD = \angle AED = \infty$	
(chord subtends equal angles to circumference in	
the same segment)	
BC//ED since corresponding angles are equal	
$\begin{bmatrix} c_{1} & \binom{n}{2} \chi^{n} (1-\chi)^{2} + \binom{n}{1} \chi^{n-1} (1-\chi) + \binom{n}{2} \chi^{n-2} (1-\chi)^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{2} + \ldots + \binom{n}{n} \chi^{n} (1-\chi)^{N} = (\chi + (1-\chi))^{N} = $	n
$\binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}(1-x) + \binom{n}{2}x^{n-2}(1-x)^{2} + \dots + \binom{n}{n}(1-x)^{n} = 1$	
ii. Sub $x = \frac{1}{2}$ (from part (1))	
$\binom{n}{o} \binom{1}{2}^{n} \binom{1}{2}^{n} \binom{1}{2}^{n-1} \binom{1}{2}^{n-1} \binom{1}{2}^{n+1} \binom{1}{2}^{n-2} \binom{1}{2}^{n-2} \binom{1}{2}^{2} + \dots + \binom{n}{n} \binom{1}{2}^{n} = 1$	use part(1) to
$\binom{n}{0}2^{n} + \binom{n}{1}2^{-n} + \binom{n}{2}2^{-n} + \dots + \binom{n}{n}2^{-n} = 1$	solve part (11)
$\left[\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}\right] 2^{-n} = 1$	
$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$	
$(0) (1) (2) (1) (n)^{-2}$	

Exam	MATHEMATICS : Question	
	Suggested Solutions	Marker's Comments
al. P	$Q = \sqrt{(2ap - 2aq)^2 + (ap^2 - aq^2)} \text{focal chord } q = -\frac{1}{p}$	
	· · · · · · · · · · · · · · · · · · ·	Some students
	$Q = \int (2ap + \frac{2a}{p})^2 + (ap^2 - \frac{a}{p^2})^2$	used pq = 1
	$= \sqrt{4a^{2}(p+\frac{1}{p})^{2}+a^{2}(p^{2}-\frac{1}{p^{2}})^{2}}$	instead of pg=-1
	$\sqrt{\tau \alpha} \left(p \cdot p \right) \tau \alpha \left(p - \frac{1}{p^2} \right)$	for focal chord
	$= \alpha \sqrt{4(p+\frac{1}{p})^{2}} (p+\frac{1}{p})^{2} (p+\frac{1}{p})^{2}$	i oceri chord
	$= \alpha \left[(b + \frac{1}{p})_{5} \left(4 + (b - \frac{1}{p})_{5} \right) \right]$	
	$= \alpha \sqrt{p+\frac{1}{p}^{2}} \left(p^{2} + 2 + \frac{1}{p^{2}} \right)$	
	$= 9 \int (p+-1)^2 (p+-1)^2$	
	$= \alpha \left(p + \frac{1}{p} \right)^2$	
	$= \alpha \left(p^2 + 2 + \frac{1}{p^2} \right)$	
	$=2a+a\left(p^2+\frac{1}{p^2}\right)$	
ii ce	ntre of circle is midpt of PQ	
Ì	$ap+aq, \frac{ap^2+aq^2}{2}$	
Ro	$divs = \frac{1}{2}pq = \frac{2a + a(p^2 + \frac{1}{p^2})}{2}$	
	$= 9 + \frac{9}{2} \left(p^{2} + \frac{1}{p^{2}} \right)$	
Dis	tance from directrix to centre is a + ap2+aq2	
9	$= \frac{1}{p} a + ap^2 + a = \frac{p^2}{p^2}$	
	$= 2a + ap^2 + \frac{q}{p^2}$	
	2	
	$= \alpha + \frac{\alpha}{2} \left(p^2 + \frac{1}{p^2} \right)$	
	= radius	
<i>.</i>	directive is tangent to the circle	

ι

$$\begin{aligned} H_{4i} & dV = \frac{1}{4} \qquad V = \pi r^{-1} (1-t) \qquad \therefore \quad dV = -\pi r^{-1} \qquad H(trestruction the triangle of triangle$$

¥

التي د