Penrith Selective High School

2014

Higher School Certificate
Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- All diagrams are not to scale

Total Marks - 70

Section I Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-12

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section
\qquad

Section I:

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Q1. Evaluate $\lim _{x \rightarrow 0} \frac{5 x}{\sin \frac{\pi x}{2}}$
(A) $\frac{5}{2 \pi}$
(B) $\frac{\pi}{10}$
(C) $\frac{2}{5 \pi}$
(D) $\frac{10}{\pi}$

Q2. $A B$ is the diameter of the circle and O is the centre. $A Y \| O X, \angle O A Y=46^{\circ}$. What is the size of $\angle X Y A$?

(A) 100°
(B) 113°
(C) 134°
(D) 146°

Q3. Which function best describes the following graph?

(A) $y=\frac{2}{3} \cos ^{-1} 3 x$
(B) $y=\frac{3}{2} \cos ^{-1} 3 x$
(C) $y=\frac{2}{3} \cos ^{-1} \frac{x}{3}$
(D) $\quad y=\frac{3}{2} \cos ^{-1} \frac{x}{3}$

Q4. How many ways can you arrange the letters in the word INDEPENDENT so that the D's are separated?
(A) $\frac{11!}{2!\times 3!\times 3!}-\frac{9!}{3!\times 3!}$
(B) $\frac{11!}{2!\times 3!\times 3!}-\frac{10!}{3!\times 3!}$
(C) $\frac{11!}{2!\times 3!\times 3!}-\frac{11!}{3!\times 3!}$
(D) $\frac{11!}{2!\times 3!\times 3!}$

Q5. When the polynomial $P(x)$ is divided by $x^{2}+x-2$, the remainder is $4 x-1$. The remainder when $P(x)$ is divided by $x+2$ is:
(A) $4 x^{2}+7 x-2$
(B) $4 x-1$
(C) $\quad-9$
(D) $\quad-7$

Q6. The general solution to $\sin 2 \theta=\sqrt{3} \sin \theta$ is:
(A) πn or $2 \pi n \pm \frac{\pi}{6}, n$ is an integer
(B) πn or $2 \pi n \pm \frac{\pi}{3}, n$ is an integer
(C) $2 \pi n$ or $\pi n \pm \frac{\pi}{6}, \quad n$ is an integer
(D) $2 \pi n$ or $\pi n \pm \frac{\pi}{3}, \quad n$ is an integer

Q7. Let $x=0.8$ be a first approximation to the root of the equation $3 \ln x+x=\cos 2 x$. What is the second approximation to the root using Newton's method to 3 significant figures?
(A) 0.742
(B) 0.776
(C) 0.981
(D) 0.985

Q8. An inverse function exists for the monotonic increasing part of this function

$$
f(x)=\frac{4}{\sqrt{4-x^{2}}}
$$

For what x values is this?
(A) $-2 \leq x \leq 2$
(B) $x \leq-2$
(C) $x \geq 2$
(D) $0<x<2$

Q9. The points A, B and P are collinear. If P divides the interval $A B$ internally in the ratio $2: 3$, then B divides $A P$:
(A) $3: 2$ internally
(B) $2: 5$ internally
(C) 5:3 externally
(D) 5:1 externally

Q10. The motion of a particle moving along the x-axis executes simple harmonic motion. The maximum speed of the particle is 3 metres per second and the period of motion is $\frac{\pi}{3}$ seconds. Which of the following could be the displacement equation for this particle?
(A) $x=\frac{1}{2} \sin 6 t$
(B) $\quad x=3 \cos \frac{\pi}{2} t$
(C) $x=3 \cos \pi t$
(D) $\quad x=\frac{1}{2}+\sin 6 t$

Section II

60 Marks

Attempt Questions 11-14
Allow about $\mathbf{1}$ hour and 45 minutes for this section
Answer each question in a SEPARATE booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
a) Differentiate $\tan ^{-1}\left(4+x^{3}\right) \quad 1$
b) Find $\int \frac{2}{\sqrt{25-2 x^{2}}} d x$
c) From a group of 4 teachers and 10 students a committee of 3 is to be chosen.
i) If the committee only contain students, how many different committees are possible?
ii) What is the probability that at least one teacher is chosen to be on the committee?
d) Use the substitution $u=e^{4 x}+9$ to evaluate

$$
\int_{0}^{\ln 2} \frac{3 e^{4 x}}{\sqrt{e^{4 x}+9}} d x
$$

Leave your answer in exact form.

Question 11 (continued)
e) The two functions $y=2 \ln (x+1)$ and $y=\ln \left(x^{2}+3\right)$ meet at the point T.
i) Find the coordinates of T.
ii) Find the acute angle between the tangents to the curve at T to the nearest minute.
f) i) Find the quotient and the remainder obtained by dividing 2 $P(x)=x^{3}-m x^{2}-m x+9$ by $A(x)=x-3$.
ii) Hence, or otherwise, find a value of the constant m such that $P(x)$ 1 is divisible by $A(x)$.
iii) Find all the zeroes of $P(x)$ for this value of m. 1

End of Question 11

a) The series $1+\frac{4}{\sqrt{3}} \sin x \cos x+\frac{16}{3} \sin ^{2} x \cos ^{2} x+\frac{64}{3 \sqrt{3}} \sin ^{3} x \cos ^{3} x+\ldots \ldots \ldots$ has a limiting sum.
i) Show that $-\frac{\sqrt{3}}{2}<\sin 2 x<\frac{\sqrt{3}}{2}$

1
ii) Hence, or otherwise, find the values of x, where $\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$
b) Find the term independent of x in the expansion of $\left(x^{2}-\frac{1}{2 x^{5}}\right)^{14}$
c) Find the exact volume of the solid formed if the curve $y=\cos x+1$ is rotated about the x-axis from $x=0$ to $x=\frac{\pi}{2}$
d) The velocity, $v \mathrm{~cm} / \mathrm{s}$, of a particle moving along the x-axis is given by $v^{2}=56-20 x-4 x^{2}$.
i) Show that this particle is undergoing simple harmonic motion.
ii) Find the period, the amplitude and the centre of the motion.
e) The function $(k-1) x^{3}+(k+4) x^{2}+(k-6) x-k=0$ has roots α, β and γ and their product is $\frac{4}{5}$
i) Find the sum of its roots.
ii) Hence, or otherwise, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.

End of Question 12

a) Prove by mathematical induction for all positive integers n that,
$a^{3 n-1}-1$ is divisible by $a-1$ where a is an integer.
b) $\quad \triangle A B C$ is inscribed inside a circle. Two tangents from the point D intersect with the circle at points A and C. The point E is on the line $A B$ and it is joined to point C, such that $B E=C E$. The point E is also joined by a line to the point D. This information is in the diagram below.

Copy or trace the diagram into your writing booklet.
i) Prove that $\angle B C E=\angle A C D$.
ii) Prove that $A D C E$ is a cyclic quadrilateral.
iii) Hence, or otherwise, prove that $B C \| E D$.

Question 13 (continued)
c) By expanding $[x+(1-x)]^{n}$, for all real numbers x and all positive integers n,
i) \quad Show that $\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1}(1-x)+\ldots \ldots+\binom{n}{n}(1-x)^{n}=1 \quad 1$
ii) Deduce that $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$
d) $\quad P\left(2 a p, a p^{2}\right), Q\left(2 a q, a q^{2}\right)$ are the end points of a focal chord of the parabola $x^{2}=4 a y$.
i) Show that the distance between P and Q is $2 a+a\left(p^{2}+\frac{1}{p^{2}}\right)$
ii) A circle is drawn with $P Q$ is its diameter. Prove that the directrix of the parabola $x^{2}=4 a y$ is a tangent to this circle.

End of Question 13

a) Kirk is standing on a balcony and spots Spock walking along a street below. Kirk decides to launch a flour bomb down onto Spock when he stops to buy a pastry. The balcony is 70 metres above the street. Kirk launches the flour bomb at a velocity of 50 metres per second at an angle of θ to the horizontal.
i) Derive the equations for the horizontal and vertical displacements after time t seconds. Assume that gravity is $9.8 \mathrm{~ms}^{-2}$.
ii) If Spock is 1.88 metres tall and standing approximately 300 metres horizontally from where Kirk is standing on the balcony above, determine the possible values of θ to the nearest minute which allow Kirk to hit Spock with the flour bomb.
iii) If it takes 8 seconds for Kirk to hide himself to avoid being seen by Spock, which value of θ should Kirk use? Justify your answer.
b) A cylindrical can, with radius 0.5 m and height 1 m is held above a bowl as shown in the diagram below. Initially the can was full and the bowl was empty. Water has dripped from the bottom of the can into the bowl. After t minutes, the height of the water in the can is H metres and the height of the water in the bowl is h metres.

If the flow rate of the water is $0.25 \mathrm{~m}^{3} / \mathrm{min}$ and the volume of water in the bowl is given by πh^{2} cubic metres.
i) Show that $H=1-\frac{t}{\pi}$ metres.
ii) Show that $h=\sqrt{\frac{t}{4 \pi}}$ metres.
iii) At the moment of time $t=t_{1}$ minutes, the height of the water in the two containers is equal. Prove that t_{1} satisfies the quadratic equation $4 t_{1}{ }^{2}-9 \pi t_{1}+4 \pi^{2}=0$.
iv) Find the value of t_{1} minutes in terms of π and hence explain why t_{1} only has one value.

End of Paper

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Student Number:

\qquad

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A \quad B
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

2014 Mathematics Extension 1 Trial Solutions

Markers:
Q11. Katyal
Q12. Chirgwin
Q13. Young
Q14. Clarke

Section 1:

Q1. D	Q2. B	Q3. D	Q4. B	Q5. C
Q6. A	Q7. B	Q8. D	Q9. C	Q10. A

a) $\frac{d}{d x} \tan ^{-1}\left(4+x^{3}\right)=\frac{3 x^{2}}{1+\left(4+x^{3}\right)^{2}}$
b) $\int \frac{2}{\sqrt{25-2 x^{2}}} d x=\sqrt{2} \sin ^{-1} \frac{\sqrt{2 x}}{5}+c$
c) (i) ${ }^{10} C_{0} \times{ }^{10} C_{3}=120$ ways
(ii)

$$
\begin{aligned}
& 14 C_{3}-{ }^{10} C_{3}=244 \\
& \text { probability }=\frac{244}{364}=\frac{61}{91}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { d) } \begin{aligned}
& u=e^{4 x}+9, \quad \frac{d u}{d x}=4 e^{4 x} \\
& \int \frac{3}{4} \frac{d u}{u^{1 / 2}}=\frac{3}{4}\left[\frac{u^{1 / 2}}{1 / 2} v\right]_{10}^{25} \\
&=\frac{3}{2}(5-\sqrt{10})
\end{aligned}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \text { e) } \begin{aligned}
y= & 2 \ln (x+1), \quad y=\ln \left(x^{2}+3\right) \\
(x+1)^{2} & =x^{2}+3 \\
\text { (i) } 2 x & =2 \\
x & =1, y=2 \ln 2 \quad T(1, \ln 4) O R \\
& T(1,2 \ln 2)
\end{aligned}
\end{aligned}
$$

(ii) for $y=2 \ln (x+1)$

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =\left.\frac{2}{x+1}\right|_{x=1}=1 \\
\text { for } y & =\ln \left(x^{2}+3\right) & \tan \theta & =\left|\frac{m_{1}-m_{2} \mid}{1+m_{1} m_{2}}\right| \\
\frac{d y}{d x} & =\left.\frac{2 x}{x^{2}+3}\right|_{x=1} & & =\frac{1}{3} \\
& =\frac{1}{2}
\end{array}
$$

Quotient: $x^{2}+(3-m) x+(9-4 m)$
Remainder: 36-12 m
(ii) Remainder $=0 \quad \therefore \quad m=3$
(iii)

$$
\begin{aligned}
x^{3}-3 x^{2}-3 x+9 & =(x-3)\left(x^{2}-3\right) \\
& =(x-3)(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$

the roots are $3, \pm \sqrt{3}$.

Exam Maths Ext MATHEMATICS : Question.1.2.
b) $\left(x^{2}-\frac{1}{2 x^{5}}\right)^{14}$

$$
\begin{aligned}
& { }^{14} C_{k}\left(x^{2}\right)^{14-k}\left(\frac{1}{2} x^{-5}\right)^{k} \\
= & { }^{14} C_{k} x^{28-2 k} \times\left(\frac{1}{2}\right)^{k} \times x^{-5 k} \\
= & { }^{14} C_{k}\left(\frac{1}{2}\right)^{k} x^{28-7 k}
\end{aligned}
$$

$$
\begin{aligned}
28-7 k & =0 \\
k & =4
\end{aligned}
$$

\therefore term independent of x is

$$
{ }^{14} C_{4}\left(\frac{1}{2}\right)^{4}=62 \frac{9}{16}
$$

c) $V=\pi \int_{0}^{\pi / 2} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{\pi / 2}\left(\cos ^{2} x+2 \cos x+1\right) d x \\
& =\pi \int_{0}^{\pi / 2}\left(\frac{1}{2} \cos 2 x+\frac{1}{2}+2 \cos x+1\right) d x \\
& =\pi \int_{0}^{\pi / 2}\left(\frac{1}{2} \cos 2 x+2 \cos x+\frac{3}{2}\right) d x \\
& =\pi\left[\frac{1}{4} \sin 2 x+2 \sin x+\frac{3}{2} x\right]_{0}^{\pi / 2} \\
& =\pi\left[\frac{1}{4} \sin \pi+2 \sin \frac{\pi}{2}+\frac{3}{2} \times \frac{\pi}{2}\right] \\
& =2 \pi+\frac{3 \pi^{2}}{4}
\end{aligned}
$$

d) i) $V^{2}=56-20 x-4 x^{2}$

$$
\begin{aligned}
& \frac{1}{2} v^{2}=28-10 x-2 x^{2} \\
& \ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-10-4 x \\
& \ddot{x}=-4\left(x+\frac{5}{2}\right)
\end{aligned}
$$

It is in simple harmonic motion as it is in the form of $\ddot{x}=-n^{2}\left(x-x_{0}\right)$.
ii) $n=2$, perot $=\frac{2 \pi}{n}=\pi$,

The particle oscillates between two end points where it stops, $V=0$

$$
\begin{aligned}
& 56-20 x-4 x^{2}=0 \\
& x^{2}+5 x-14=0 \\
& (x+7)(x-2)=0 \\
& x=-7, x=2
\end{aligned}
$$

\therefore amplitude is 4.5
centre of motion is -2.5 .
e)

$$
\text { i) } \begin{aligned}
&(k-1) x^{3}+(k+4 x^{2}+(k-6) x-k=0 \\
& \alpha \beta \gamma=-\frac{d}{a} \\
& \frac{k}{k-1}=\frac{4}{5} \\
& 5 k=4 k-4 \\
& k=-4 \\
& \alpha+\beta+\gamma=-\frac{k+4}{k-1} \\
& \therefore \alpha+\beta+\gamma=0 \\
& \text { ii) } \begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(k+\beta+\gamma)-2(\alpha \beta+\beta \gamma+\alpha \sigma) \\
& =0-2 \times \frac{k-6}{k-1} \\
& =-4
\end{aligned}
\end{aligned}
$$

Exam	MATHEMATICS : Question.
$13 a$	Suggested Solutions
Prove true for $n=1$	
$a^{2}-1=(a+1)(a-1)$ which is divisible by $a-1$	

Assume true for $n=k$
$a^{3 k-1}-1=m(a-1)$ where m is an integer
Prove true for $n=k+1$

$$
\begin{aligned}
& a^{3(k+1)-1}-1 \\
= & a^{3 k+3-1}-1 \\
= & a^{3 k-1+3}-1 \\
= & a^{3} \cdot a^{3 k-1}-a^{3}+a^{3}-1 \\
= & a^{3}\left(a^{3 k-1}-1\right)+a^{3}-1 \\
= & a^{3}(m(a-1))+a^{3}-1 \\
= & a^{3}(m(a-1))+(a-1)\left(a^{2}+a+1\right) \\
= & (a-1)\left(a^{3} m+a^{2}+a+1\right)
\end{aligned}
$$

which is divisible by $a-1$

$$
\therefore \text { True for } n=k+1
$$

Since true for $n=1$ and true for $n=k$ and true for $n=k+1$ then true for $n=2$ and so on.

i. $\angle A C D=\angle A B C$ (angle between a tangent and a chord equals the angle at the circumference in the alternate segment)
some students did not write the last line
$\triangle C B E$ is isosceles since $B E=C E$
$\angle E B C=\angle E C B$ (equal angles in isosceles A)
$\therefore \angle A C D=\angle B C E$.
ii. Let $\angle A B C=\angle B C E=\angle A C D=x$ (from)
$\angle B E C=180-2 x$ (angle sum $\triangle B C E$)
$\angle C E A=2 x$ (adjacent supplementary angles)
$A D=C D$ (tangents to a circle from an external point) are equal
$\therefore \triangle A C D$ is isosceles
$\therefore \angle C A D=x$ (equal angles in isosceles \triangle)

$$
\begin{aligned}
& \angle C D A=180-2 x(\angle \text { sum } \triangle D A C) \\
& \angle A D C+\angle A E C=180
\end{aligned}
$$

$\therefore A D C E$ is a cyclic quadrilateral since opposite angles are supplementary
iii. $\angle A C D=\angle A E D=x$
(chord subtends equal angles to circumference in the same segment)
$\therefore B C \| E D$ since corresponding angles are equal

$$
\begin{aligned}
& \text { ci. }\binom{n}{0} x^{n}(1-x)^{0}+\binom{n}{1} x^{n-1}(1-x)+\binom{n}{2} x^{n-2}(1-x)^{2}+\cdots+\binom{n}{n} x^{0}(1-x)^{n}=\left.(x+(1-x))\right|^{n} \\
& \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1}(1-x)+\binom{n}{2} x^{n-2}(1-x)^{2}+\cdots+\binom{n}{n}(1-x)^{n}=1
\end{aligned}
$$

ii. Sub $x=\frac{1}{2}$ (from part (ii)

$$
\begin{aligned}
& \binom{n}{0}\left(\frac{1}{2}\right)^{n}+\binom{n}{1}\left(\frac{1}{2}\right)^{n-1}\left(\frac{1}{2}\right)+\binom{n}{2}\left(\frac{1}{2}\right)^{n-2}\left(\frac{1}{2}\right)^{2}+\ldots+\binom{n}{n}\left(\frac{1}{2}\right)^{n}=1 \\
& \binom{n}{0} 2^{-n}+\binom{n}{1} 2^{-n}+\binom{n}{2} 2^{-n}+\cdots+\binom{n}{n} 2^{-n}=1 \\
& {\left[\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}\right] 2^{-n}=1} \\
& \binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}
\end{aligned}
$$

use part (1) to solve part (ii)

214(a) i) Vertical Equation

$$
d y^{2}=-g
$$

$$
\text { 果 }=\operatorname{sos} \sin \theta+t-\frac{1}{2} \times 9 \cdot 8 \times t^{2}+c
$$

But when $x=0 y=10=c=0$

$$
y=50 \sin \theta+x^{2}-4 x+4+t^{2}+20
$$

a) ii) Horizonal Equations

$$
\begin{aligned}
\frac{d x}{d t} & =50 \cos \theta \\
x & =50 \cos \theta \times t+c
\end{aligned}
$$

But when $t=0 \quad x=0 \therefore c=0$

$$
=0.519816086 \text { or } 1.180864186
$$

$$
x=50 \cos \theta i t
$$

ii)

$$
\begin{aligned}
& \left.1.88=50 \sin \theta+\frac{6}{\cos \theta}-4 \cdot 9+\left(\frac{6}{i \cos \theta}\right)^{2}+70\right) \\
& -68.12=300 \operatorname{Ton} \theta-16 \cdot 4\left(1+\tan ^{2} \theta\right) \\
& \cdots 80.8=300 \operatorname{Tan} a-176.4-176.4 \text { Ton }^{2} \theta \\
& -176 \cdot 4 \operatorname{Tan}^{2} \theta+300 \operatorname{Tan} a-108.28=0 \\
& \text { Let } a=\tan a \\
& -176.4 a^{2}+300 a-108.28=0 \\
& w=\frac{-300 \pm \sqrt{300^{2}-4 x+1.76 .4 x-108.28}}{2 x-176.4} \\
& \text { subonito (ii) }
\end{aligned}
$$

$$
\begin{aligned}
& V(t)^{t}=\pi r^{2}(H) \\
& d y==\frac{t}{4} d t \\
& d t \\
& -\frac{t}{4}=\frac{\pi}{4} d t \\
& d=\pi t \\
& d H \\
& d t \\
& d t \\
& d t \\
& H(t)=\frac{d}{\pi} \\
& H
\end{aligned}
$$

ii) Again $V_{0}($ of water in bul $=$ Rate of flow \times tame
$1=c$ since $H=1$ when

$$
H(x)=1-\frac{*}{\pi}
$$

$$
\left.\begin{array}{c}
\left.(V) \pi h^{2}=0.25 \times t\right)(0) \\
4 \pi h^{2}=t^{2} \\
h^{2}=\frac{t}{4 \pi} \\
h=\sqrt{\frac{t}{4 \pi}}
\end{array}\right\}(1)
$$

iv) Continived

Amount of Wales in con

$$
\begin{aligned}
& =\pi r^{2}+H \\
& =\pi r^{2} \\
& =\pi \times 0.5^{2} \\
& =\frac{\pi}{4} m^{3}
\end{aligned}
$$

$$
\begin{gathered}
\therefore V=\frac{\pi}{4} 0.25+t \\
\pi \geq t \\
t<\pi
\end{gathered}
$$

Now $\quad t=\frac{\pi(9 \pm \sqrt{17})}{8}$

$$
\begin{aligned}
& =\pi k 0.609 \text { or } 1.64 \pi \\
\therefore t & =0.609 \pi \text { since } t<\pi
\end{aligned}
$$

(IV)

$$
\left.\begin{array}{c}
4=h \quad \therefore \\
1-\frac{t_{1}}{\pi}=\sqrt{\frac{t_{i}}{4 \pi}} \\
1-\frac{t_{1}}{\pi}-\frac{t_{1}}{\pi}+\frac{t_{1}^{2}}{\pi^{2}}=\frac{t_{1}}{4 \pi} \\
1-\frac{2 t_{1}}{\pi}+\frac{t_{1}^{2}}{\pi^{2}}=\frac{x_{1}}{4 \pi} \\
\pi^{2}-9 \pi t_{1}+44 t_{1}^{2}=\pi \cdot t_{1} \\
t_{1}^{2}-9 \pi t_{1}+4 \pi^{2}=0
\end{array}\right\}
$$

$$
\begin{aligned}
t & =\frac{9 \pi \pm \sqrt{(-9 \pi)^{2}-4 \times 4 \times 4 \pi^{2}}}{2 \times 4} \\
& =\frac{9 \pi \pm \sqrt{177^{2}}}{8} \\
& =\frac{9 \pi+\sqrt{17 \times \pi}}{8} \\
& =\pi \frac{(9 \pm \sqrt{17})}{8}
\end{aligned}
$$

$$
=-20 \times x
$$

$$
\begin{aligned}
& \text { ie }(l-H) \times \pi \times(0.5)^{2}=0.25 \mathrm{~m} / \mathrm{min}+t \\
& (1-1 t) \times \pi \times(0.25)=0.25+t \frac{\pi}{4}-\frac{\mu t}{4}=\frac{t}{4} \\
& \pi-\pi H=t \\
& -\pi H=x-\pi \\
& A t=\frac{\pi-x}{\pi} \\
& =1-\frac{t}{\pi}
\end{aligned}
$$

$14 i$

$$
\begin{aligned}
& d V / d t=\frac{1}{4} \\
& V=\pi r^{2}(l-1 t) \\
& =\frac{\pi}{4}(1-t) \\
& \frac{d V}{d t}=\frac{d V}{d h}+\frac{d t}{d t} \\
& \frac{1}{4}=\frac{-\pi}{4} \times \frac{d H}{d t} \\
& \frac{d t}{d t}=\frac{-1}{\pi} \\
& A=\int-\frac{1}{U} d t \\
& ' H=-\frac{1}{\pi} t+c
\end{aligned}
$$

Vis also
But wher $t=0 \quad V=\frac{\pi}{4} \quad \therefore c=\frac{\pi}{4}$
but $t=1$ uhter $A=0 \therefore c=1$

$$
H=1-\frac{t}{\pi}
$$

i4ii)

$$
\begin{aligned}
& \frac{d V}{d t}=0.25 \quad V=A^{2} \\
& \frac{d i}{d / h}=2 \pi \\
& \frac{d V}{d t}=\frac{d V}{d t a} \times \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{d t}{d t}+\frac{d h}{d v} \quad \frac{d h}{d t}=\frac{\frac{1}{4}}{3 \pi h} \\
& \frac{1}{4}=2 \pi / 2+\frac{d / h}{d t} \\
& \frac{1}{8 \pi h}=\frac{d / 2}{d t} \\
& \frac{d t}{d h}=8 \pi h \\
& t=S \text { sithach } \\
& t=h_{0}^{2}+c \\
& \int 2 \pi h d n=S \frac{1}{6} d h \\
& \pi h^{2}=\frac{t}{4}+c \\
& \therefore t=4 \pi h^{2} \\
& h^{2}=\frac{t}{4 \pi} \\
& n=\sqrt{\frac{X}{2}} \quad A>0 \\
& \text { Since thrm } t=0 \quad h=0 \quad c=0
\end{aligned}
$$

$$
\begin{aligned}
t & =4 \pi h^{2} \\
\frac{t}{4 \pi} & =h^{2} \\
h & =\sqrt{\frac{t}{4 \pi}}
\end{aligned}
$$

