

2014 HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions 11 − 16, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the booklets provided

Total marks-100

SECTION I

Pages 2-5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

SECTION II

Pages 6-11

90 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section

Student Name: ______ Teacher Name: _____

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 What is $-\sqrt{3} + i$ expressed in modulus-argument form?

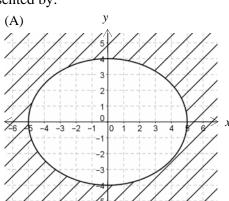
(A)
$$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

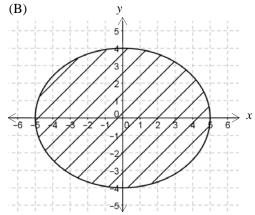
(B)
$$2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

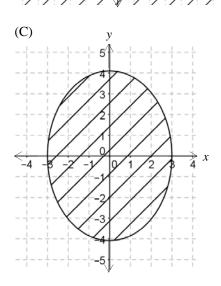
(C)
$$\sqrt{2}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

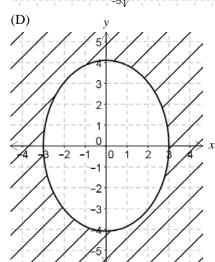
(D)
$$2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

2 The sketch of the locus of an equation $|z-3|+|z+3| \le 10$ where z=x+iy can best be represented by.









Which of the following expressions is equivalent to $\int_{0}^{2} \sqrt{4-x^{2}} dx$.

(A)
$$\pi$$

(B)
$$2\pi$$

(C)
$$4\pi$$

(D)
$$8\pi$$

4 Which expression is equal to $\int \frac{1}{\sqrt{4x^2 - 8x + 5}} dx?$

(A)
$$\frac{1}{2}\sin^{-1}2(x-3)+C$$

(B)
$$\frac{1}{2}\cos^{-1}2(x-3)+C$$

(C)
$$\frac{1}{2} \ln \left(x - 1 + \sqrt{x^2 - 2x + \frac{5}{4}} \right) + C$$

(D)
$$\frac{1}{2} \ln \left(x - 1 + \sqrt{x^2 - 2x - \frac{5}{4}} \right) + C$$

If a,b,c,d, and e are real numbers and $a \neq 0$, then the polynomial equation $ax^7 + bx^5 + cx^3 + dx + e = 0$ has.

- (A) only one real root.
- (B) at least one real root.
- (C) an odd number of nonreal roots
- (D) no real roots

Suppose that a function y = f(x) is given with $f(x) \ge 0$ for $0 \le x \le 4$. If the area bounded by the curves y = f(x), y = 0, x = 0, and x = 4 is revolved about the line y = -1, then the volume of the solid of revolution is given by.

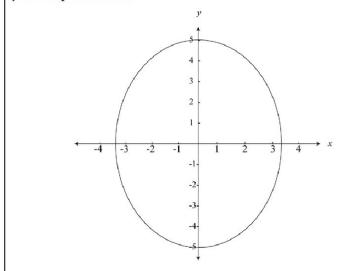
(A)
$$\pi \int_{0}^{4} [f(x-1)^{2}-1]dx$$

(B)
$$\pi \int_{0}^{4} \left[\left(f(x) - 1 \right)^{2} - 1 \right] dx$$

(C)
$$\pi \int_{0}^{4} \left[f(x+1)^{2} - 1 \right] dx$$

(D)
$$\pi \int_{0}^{4} \left[\left(f(x) + 1 \right)^{2} - 1 \right] dx$$

A conic is graphed using technology, and is shown below. The distance between the *x*-intercepts is $2\sqrt{11}$ units, and the distance between the *y*-intercepts is 10 units.



7 The equation of the graph shown above is.

(A)
$$\frac{x^2}{25} + \frac{y^2}{44} = 1$$

(B)
$$\frac{x^2}{44} + \frac{y^2}{25} = 1$$

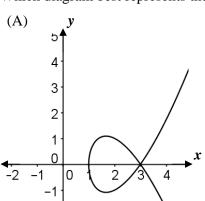
(C)
$$\frac{x^2}{25} + \frac{y^2}{11} = 1$$

(D)
$$\frac{x^2}{11} + \frac{y^2}{25} = 1$$

8 If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is

(A)
$$-2$$

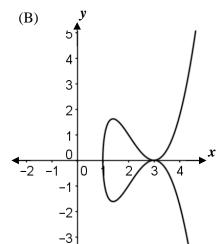
9 Which diagram best represents the graph $y^2 = (x-1)(x-3)^2$?

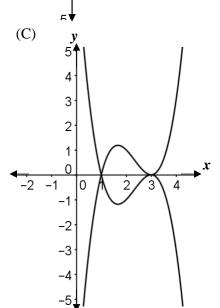


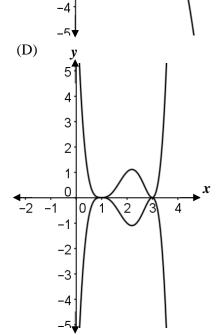
-2

-3

-4







- A person is standing on the outer edge of a circular disc that is spinning. His relative position on the disc remains unchanged. Which description below best describes the situation?
 - (A) The person is experiencing a force that is pushing him away from the centre of the disc.
 - (B) The person is experiencing a force that is pushing him towards the centre of the disc.
 - (C) The person is experiencing a force tangential to the edge of the disk in the direction of the motion of the disk.
 - (D) The person is experiencing a force tangential to the edge of the disk in the direction of the opposite direction to the motion of the disk.

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) If
$$z_1 = 3 + 4i$$
, $z_2 = 1 - i$, find

(i)
$$\overline{z_1}\overline{z_2}$$

(ii)
$$\left| \frac{z_1}{z_2} \right|$$

(iii)
$$\sqrt{z_1}$$

b) Sketch separately the following loci in an Argand plane and state the cartesian equations in each case.

(i)
$$\operatorname{Re}\left(\frac{z-2}{2}\right) = 0$$

(ii)
$$\arg(z+2) = -\frac{\pi}{6}$$

c) (i) Express
$$\frac{1+2x^2}{(2+x^2)(1+x^2)}$$
 in the form $\frac{A}{2+x^2} + \frac{B}{1+x^2}$

(ii) Use the substitution
$$t = \tan x$$
 and your answer from part (i) to find $\int \frac{(1+\sin^2 x)dx}{1+\cos^2 x}$ (Leave your answer in term of t)

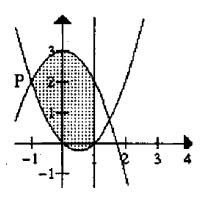
Question 12 (15 marks) Use a SEPARATE writing booklet.

a) If
$$\arg z_1 = \theta$$
 and $\arg z_2 = \phi$, show that $\arg \left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$

- b) The equation $z^2 + (1+i)z + k = 0$ has root 1-2i. Find the other root, and the value of k.
- c) Let α, β, γ be the roots (none of which is zero) of $x^3 + 3px + q = 0$
 - (i) Find expressions for $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \alpha\gamma$ and $\alpha\beta\gamma$
 - (ii) Find an expression for $\frac{\alpha\beta}{\gamma} + \frac{\beta\gamma}{\alpha} + \frac{\gamma\alpha}{\beta}$
 - (iii) Find an expression for $\frac{\alpha\beta}{\gamma} \cdot \frac{\beta\gamma}{\alpha} + \frac{\alpha\beta}{\gamma} \cdot \frac{\gamma\alpha}{\beta} + \frac{\beta\gamma}{\alpha} \cdot \frac{\gamma\alpha}{\beta}$
 - (iv) Hence obtain a monic equation whose roots are $\frac{\alpha\beta}{\gamma}, \frac{\beta\gamma}{\alpha}, \frac{\gamma\alpha}{\beta}$
- d) Show that $\int_{0}^{1} \frac{dx}{9-x^2} = \frac{1}{6} \ln 2$

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) The shaded region bounded by $y=3-x^2$, $y=x^2-x$ and x=1 is rotated about the line x=1. The point P is the intersection of $y=3-x^2$ and $y=x^2-x$ in the second quadrant.



i) Find the x coordinate of P.

1

ii) Use the method of cylindrical shells to express the volume of the resulting solid of revolution as an integral [DO NOT SOLVE THE INTEGRAL]

3

b) (i) If
$$u_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$$
, where $n \ge 0$, show that $\frac{1}{n!} = e(u_{n-1} - u_n)$

(ii) Hence find the value of u_4

2

3

c) If a,b,c are positive real numbers;

i) Show that
$$a^2 + b^2 \ge 2ab$$

1

ii) Hence prove
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$

2

d) If
$$z_1, z_2$$
 are two complex numbers such that $|z_1 + z_2| = |z_1 - z_2|$, show that $\arg z_1 - \arg z_2 = \frac{\pi}{2}$

3

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) f(x) is defined by the equation $f(x) = x^2 \left(x - \frac{3}{2}\right)$, on the domain $-2 \le x \le 2$.

Note: each sketch should take about a third of a page.

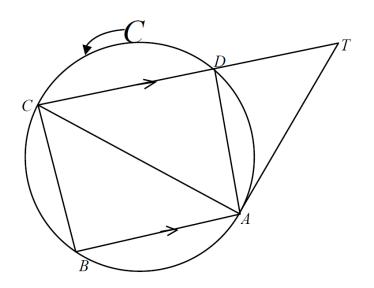
i) Draw a neat sketch of f(x), labelling all intersections with coordinate axes and turning points

ii) Sketch
$$y = \frac{1}{f(x)}$$

iii) Sketch
$$y = \sqrt{f(x)}$$

iv) Sketch
$$y = \ln(f(|x|))$$

b) The points *A*, *B*, *C* and *D* lie on the circle *C*. From the exterior point *T*, a tangent is drawn to point *A* on *C*. The line *CT* passes through *D* and *TC* is parallel to *AB*.



- i) Copy or trace the diagram onto your page.
- ii) Prove that $\triangle ADT$ is similar to $\triangle ABC$.

3

The line BA is produced through A to point M, which lies on a second circle. The points A, D, T also lie on this second circle and the line DM crosses AT at O.

- iii) Show that $\triangle OMA$ is isosceles. 2
- iv) Show that TM = BC.

Question 15 (15 marks) Use a SEPARATE writing booklet.

- a) Given that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$, find $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$
- b) The hyperbola H has an equation xy = 9. $P\left(3p, \frac{3}{p}\right)$, where p > 0, and $Q\left(3q, \frac{3}{q}\right)$, where q > 0, are two distinct arbitrary points on H.
 - (i) Prove that the equation of the tangent at P is $x + p^2y = 6p$
 - (ii) The tangents at P and Q intersect at T. Find the coordinates of T.
 - (iii) The chord PQ produced passes through the point (0,6). Given that the equation of this chord is x + pqy = 3(p+q) find;
 - (a) Find the equation of the locus of T 3
 - (b) Give a geometrical description of this locus
- c) A light inextensible string of length 3L is threaded through a smooth vertical ring which is free to turn. The string carries a particle at each end. One particle A of mass m is at rest at a distance L below the ring. The other particle B of mass M is rotating in a horizontal circle whose centre is A.
 - (i) Find m in terms of M.
 - (ii) Find the angular velocity of B in terms of g and L

- a) Use mathematical induction to prove that for all n where n can be any positive integer that (a-b) is a factor of $a^n - b^n$
 - 3

- b) A car travels around a banked circular track of radius 90 metres at 54 km/h.
 - (i) Draw a diagram showing all the forces acting on the car

1

Show that the car will have tendency to slip sideways if the angle at which (ii) the banked track is banked is $\tan^{-1} \left(\frac{1}{4} \right)$.

3

A second car of mass 1.2 tonnes travels around the same bend at 72 km/h. (iii) Find the sideways frictional force exerted by the road on the wheels of the car in Newtons. You may assume gravity = 10 m/s^2 . (Answer correct to 1decimal place) 3

c) (i) Using $\tan(2\theta + \theta) = \tan 3\theta$, show that $\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$

2

(ii) Find the value of x for which $3\tan^{-1} x = \frac{\pi}{2} - \tan^{-1} 3x$, where $\tan^{-1} x$ and $\tan^{-1} 3x$ both lie between 0 and $\frac{\pi}{2}$

3

End of Exam

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

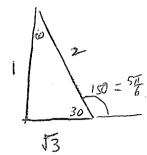
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x$, x > 0

Multiple Choice



2 cis 5%

sum of focal lengths is a constant = 2a

1.a = 5

$$\frac{\pi r^2}{4}$$

$$= \frac{4\pi}{4}$$

$$= \pi.$$

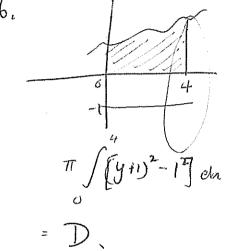
$$\int \frac{dx}{\sqrt{4(x^2-2x^4\frac{5}{2})}}$$

 $=\frac{1}{2}\int_{\sqrt{2x^2-2x+\frac{x}{2}}}^{\sqrt{2x^2-2x+\frac{x}{2}}}dx$

$$= \frac{1}{2} \sqrt{\frac{1}{(2\ell-1)^2 + (\sqrt{\frac{3}{2}})^2}}$$

= $\frac{1}{2} \ln \left((x-1) + \sqrt{x^2 + 2x + \frac{1}{2}} \right) + c$

pairs since real coefficient so since the degree of polynomial is odd there must be at least I real root,



$$3+2y+y^{2}=2$$

$$y^{2}+2y+1=0$$

$$(y+1)^{2}=0$$

d > 6x+y.2+2x dy 2ydy=0

$$2x\frac{dy}{dx} + 2y\frac{dy}{dx} = -2y - 6x$$

dy (2 # 2y) = -2y-6x

 $\frac{dy}{dx} = -\frac{2y - 6x}{2xi+7y}$

10. B.

. not defined

Question 11

$$a(i)$$
 $\overline{Z_1Z_2}$
 $\overline{Z_1Z_2} = (3+41)(1-i)$
 $= 3-3i+4i-4i^2$
 $= 7+i$
 $\overline{Z_1Z_2} = 7-i$

(ii)
$$\left| \frac{Z_{1}}{Z_{2}} \right|$$
 or $\left| \frac{Z_{1}}{|Z_{2}|} \right| = \frac{\sqrt{9+16}}{\sqrt{1+1}}$
 $= \frac{Z_{1}}{|Z_{2}|} = \frac{3+4i'}{|-i|} \times \frac{1+i'}{|+i|}$
 $= \frac{3+3i'+4i+4i'^{2}}{|+1|}$
 $= \frac{-1+7i'}{2}$
 $= -\frac{1}{2} + \frac{7}{2}i'$
 $= \frac{-\frac{1}{2}}{4} + \frac{49}{4}i'$
 $= \sqrt{\frac{9}{4}} + \frac{49}{4}i'$

$$= \sqrt{30}$$

$$= \sqrt{$$

$$x^{2} - (3x)^{2} = 3$$

$$x^{4} - 3x^{2} - 4 = 0$$

$$(5x^{2} + 1)(x^{2} - 4) = 0$$

メニュュ

= 5

= 5/2

b (i)
$$Re\left(\frac{z-2}{2}\right)=0$$

$$\operatorname{Re}\left(\frac{72}{2}\right)=0 \Rightarrow \frac{x-2}{2}=0$$

$$M = \tan \frac{5\pi}{6} = -\frac{1}{3} \times \frac{\sqrt{3}}{3} = -\frac{\sqrt{3}}{3}$$

$$=\frac{2}{\sqrt{3}} \times \sqrt{\frac{5}{3}}$$

: equation is
$$y = -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$$

$$C(i) = \frac{1}{1+2t^{2}} = A(Hx^{2}) + B(2+x^{2})$$

$$= A+Bx^{2} + 2B+Bx^{2}$$

$$= A+2B+(B+B)x^{2}$$

$$A+2B=1 - (1)$$

$$A+B=2 - (2)$$

$$B=-1$$

$$S=3$$

$$\frac{3}{2+x^{2}} + \frac{-1}{1+x^{2}}$$

$$(ii) = \int \frac{(1+\sin^{2}x)}{1+\cos^{2}x} dx$$

$$= \int \frac{3-\cos 2x}{3+\cos 2x} dx$$

$$= \int \frac{3-\cos 2x}{3+\cos 2x} dx$$

$$= \int \frac{3+\frac{1-t^{2}}{1+t^{2}}}{3+\frac{1-t^{2}}{1+t^{2}}} \frac{1}{(1+t^{2})} dt$$

$$= \int \frac{3+\frac{1-t^{2}}{3+(1-t^{2})}}{(2+t^{2})(1+t^{2})} dt$$
From part (i)
$$= \int \frac{3}{2+t^{2}} dt - \int \frac{1}{1+t^{2}} dt$$

$$= \frac{3}{\sqrt{2}} tax^{2} - tax^{-1} t + C$$

 $= \frac{3}{\sqrt{2}} \tan \frac{1 \tan x}{\sqrt{2}} - x + c$

Question 12
a) Let
$$Z_1 = r_1(\cos \alpha + i \sin \alpha)$$
 and $Z_2 = r_2(\cos \beta + i \sin \beta)$

$$\frac{Z_1}{Z_2} = r_1(\cos \beta + i \sin \alpha)$$

$$\frac{Z_2}{Z_2} = r_1(\cos \beta + i \sin \alpha)$$

$$\frac{Z_3}{Z_2} = r_2(\cos \beta + i \sin \alpha)$$

$$\frac{Z_4}{Z_2} = r_3(\cos \beta + i \sin \alpha)$$

$$\frac{Z_4}{Z_2} = r_4(\cos \beta + i \sin \alpha)$$

$$\frac{Z_4}{Z_4} = r_4(\cos \beta +$$

c)
$$x^3 + 3px + q = 0$$

(ii)
$$\alpha\beta + \beta\beta + \gamma\alpha + \beta\beta = (\alpha\beta)^{2} + (\beta\beta)^{2} + (\beta\alpha)^{2}$$

$$= (\alpha\beta + \beta\beta + \gamma\alpha)^{2} - 2(\alpha\beta \cdot \beta\beta + \alpha\beta \cdot \beta\alpha + \beta\beta \cdot \beta\alpha)$$

$$= (3\rho)^{2} - 2(\alpha\beta\beta^{2} + \alpha^{2}\beta\beta^{2} + \beta^{2}\beta\alpha)$$

$$= (3\rho)^{2} - 2(\alpha\beta\beta^{2} + \alpha\beta^{2} + \beta\beta^{2} +$$

(iii)
$$\alpha \beta^{3} \gamma + \alpha^{3} \beta \gamma + \alpha \beta^{3}$$

$$= \alpha \beta \delta \left(\lambda^{2} + \beta^{2} + \gamma^{2} \right)$$

$$= \alpha^{2} + \beta^{2} + \gamma^{2}$$

$$= \alpha^{2} + \beta^{2} + \gamma^{2} + \gamma^{2} + \gamma^{2}$$

$$= \alpha^{2} + \beta^{2} + \gamma^{2} + \gamma^{2$$

=-6p

(IV) (i)
$$\Rightarrow$$
 grum of roots $-\frac{3\rho^2}{9}$
(ii) \Rightarrow sum of root -6ρ

product of roots
$$\frac{\propto \beta}{\gamma} \times \frac{\beta \gamma}{\alpha} \times \frac{\gamma}{\beta} = \alpha \beta \gamma$$

$$= -9$$

$$x^{3} - \frac{9p^{2}}{9}x^{2} - 6px + 9 = 0$$

(d)
$$\int_{0}^{1} \frac{dx}{q-x^{2}} = \frac{1}{6} \ln 2.$$

$$\int_{0}^{1} \frac{1}{(3-x)(3+x)} dx.$$

$$\int_{0}^{1} \frac{1}{(3-x)(3+x)} = \int_{0}^{1} \frac{a}{(3+x)} + \frac{b}{(3+x)} dx$$

$$= a(3+x) + b(3-x)$$

$$Let x = 3 = 1 = 6b$$

$$a = \frac{1}{6} =$$

Alternative approach: Lut
$$x = 3 \sin \theta$$

 $dx = 3 \cos \theta d\theta$
 $\int \frac{dx}{9-x^2} = \int_{3}^{1} \sec \theta d\theta$
 $= 0 \int_{3}^{1} \int \frac{\sec \theta}{\tan \theta + \sec \theta} d\theta$
 $= \frac{1}{3} \left[\ln \left(\tan \theta + \sec \theta \right) \right] \int_{2\sqrt{2}}^{2\sqrt{2}} d\theta$
 $= \frac{1}{3} \left[\ln \left(\frac{1}{2\sqrt{2}} + \frac{3}{2\sqrt{3}} \right) \right] = \frac{1}{3} \left[\ln \sqrt{2} \right] = \frac{1}{3} \ln \sqrt{2}$

Question 13

a(1),
$$P: 3-x^2-x$$

 $2x^2-x-3=0$
 $(3x+1)(2x-3)=0$
 $\therefore x=-1, \frac{3}{2}$
 $\therefore x \text{ coord of } P \text{ is } -1$
(as $P \text{ is in } 2nd \text{ quadrant}$)

(ii)
$$\frac{2\pi(1-x)}{2\pi(1-x)} - \frac{3\pi}{3}$$

$$\lambda = (3-x^2) - (x^2-x)$$

$$= 3+x-2x^2$$
Volume $SV = \int_{Ah} h$.
$$\int_{V=2\pi(1-x)} (3+x-2x^2) \int_{X} x$$

$$V = \int_{x \to 0} \int_{x^2-1} 2\pi (3-2x-3x^2+2x^3) \int_{X} x$$

$$= 2\pi \int_{x^2-1} (3-2x-3x^2+2x^3) \int_{x^2-1} x$$

$$b(i) \quad U_{n} = \frac{1}{n!} \int_{x}^{1} \frac{u}{2} \frac{du}{dn} = n \cdot x^{n-1} dx$$

$$U_{n} = \frac{1}{n!} \left\{ \int_{x}^{2} \frac{x}{2} \frac{y}{2} - \int_{x}^{1} \frac{1}{2} \frac{x}{2} \frac{x^{n-1}}{2} dx \right\}$$

$$= \frac{1}{n!} \left\{ \int_{x}^{2} \frac{x}{2} \frac{y}{2} - \int_{x}^{1} \frac{1}{2} \frac{x}{2} \frac{x^{n-1}}{2} dx \right\}$$

$$= \frac{1}{n!} + \left(\frac{1}{n-1} \right) \int_{x}^{1} \frac{1}{2} \frac{x}{2} \frac{x^{n-1}}{2} dx$$

$$U_{n} = \frac{1}{n-1} + U_{n-1}$$

$$\frac{1}{n!} = -e \left(U_{n-1} - U_{n} \right)$$

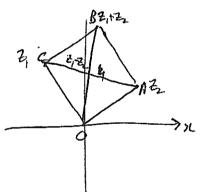
$$(ii) \quad U_{n} = U_{n-1} - \frac{1}{n-1} \frac{1}{2} \frac{$$

$$(a-b)^{2} > 0$$

 $a^{2}-2ab+b^{2} > 0$
 $a^{2}+b^{2} > 2ab$

$$3 + \frac{a^2 + b^2}{ab} + \frac{a^2 + c^2}{ac} + \frac{b^2 + c^2}{cb}$$

d)



Since | Z1+Z2 = | Z1-Z2 |

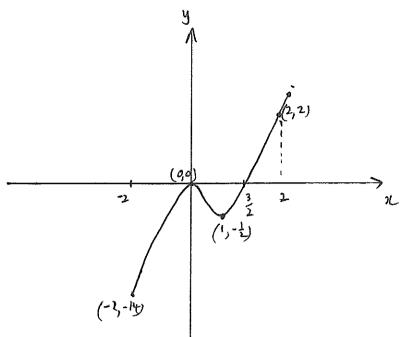
OABC is a parallelogram with equal diagonals

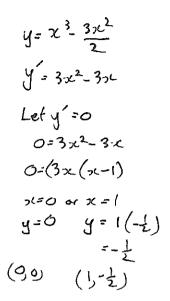
: LAOC is a right angle

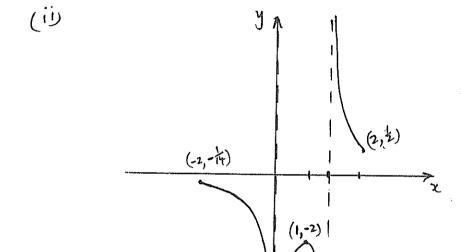
or ong 2, - ang 2, = TT

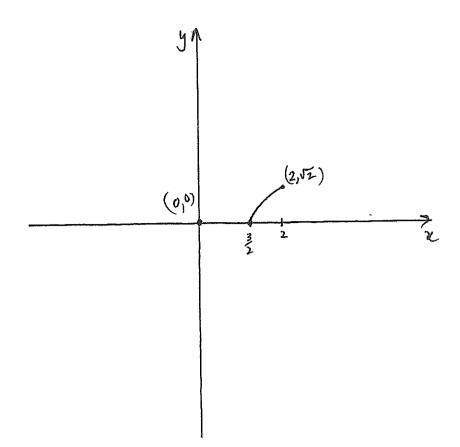
Question 14

(i)

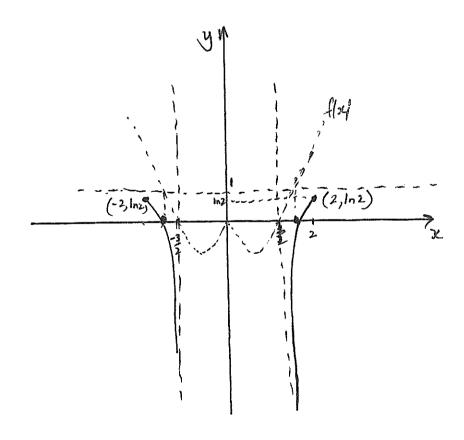




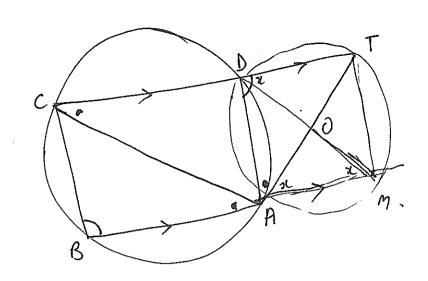




(iv)



b(i)



(i) In AADT and AABC

LTAD = LDCA (angle in the alternate segment)

LDCA = LCAB (alternate angles on parallel lines DC and AB are Equal)

: LTAD = LCAB . (angle)

LTDA = LCBA (exterior angle of a cylic quadrilateral is equal to the interior opposite angle)

DADTHIAABC (Two angles in one trangle are equal to two angles in the other.

Let LTDM =>C (ii) LTAM=x (angle in the same segment are equal) Catternade angles on parallel lines TD and LOMA = TC AM are equal)

. LOAM = LOMA

isosceles. I A OMA IS

(opposite angles of a cyclic quadriladeal one equal is equal to interest opposite)
(opposite angles of a cyclic quadrilateral (iV)LTMA = L CDA LEDA = 180 Z CBA are spplementary : LCBA = 180 - LTMA

: CB //TM since cointenor angles are supplementary .. TMBC is a parallelogram

Question 15

(a)
$$\int_{1+\cos^2 x}^{\pi} dx = \int_{1+\cos^2 x}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1+\cos^2 x} dx$$

$$= \int_{1+\cos^2 x}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1+\cos^2 x} dx - \int_{1+\cos^2 x}^{\pi} \frac{x \sin x}{1+\cos^2 x} dx$$

$$\therefore 2 \int_{1+\cos^2 x}^{\pi} \frac{x \sin x}{1+\cos^2 x} dx - \int_{1+\cos^2 x}^{\pi} \frac{x \sin x}{1+\cos^2 x} dx$$

$$= -\frac{\pi}{2} \left[\tan^{-1}(\cos x) \right]_{0}^{\pi} \sin x dx$$

$$= -\frac{\pi}{2} \left[\tan^{-1}(\cos x) \right]_{0}^{\pi} \sin x dx$$

$$= -\frac{\pi}{2} \left[\tan^{-1}(x) - \tan^{-1}(1) \right]$$

$$= \frac{\pi^2}{4}$$

$$= -\frac{3}{2} \int_{2}^{2} \frac{dx}{x^2} dx$$

$$= -\frac{3}{2} \int_{2}^{2} \frac{dx}{x^2} dx$$

$$= -\frac{3}{2} \int_{2}^{2} \frac{dx}{x^2} dx$$

$$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dp}{dx}$$

$$= -\frac{3}{p^2} \times \frac{1}{3}$$

$$= -\frac{1}{p^2}$$

$$y - \frac{3}{p} = -\frac{1}{p^2} (x - 3p)$$

$$p^2y - 3p = -x + 3p$$

$$x + p^2y = 6p$$

(i)
$$x + p^2 y = 6p - 6$$

 $x + q^2 y = 6q - 2$

$$(P+q)y=6$$

 $y=\frac{6}{P+q}$

$$x + \frac{6p^2}{p+q} = 6p$$

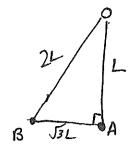
$$x = 6p - \frac{6p^2}{p+q}$$

$$x = \frac{6pq}{p+q}$$
 $y = \frac{6}{p+q}$

$$T\left(3,\frac{6}{\rho+q}\right)$$

vertical line passing through n=3.

C,



verticaly
$$T_{5in30} = M_g$$

$$\frac{1}{2}T = M_g$$
or $\frac{1}{2}m_g = M_g$

$$m = 2M.$$

avestion 16

(a) Test for n=1 ·-b

a-b is a factor of a'-b'

Assume true for n=k

ak-bk=(a-b)f where f is an integer

Test forn=k+1

$$a^{k+1} - b^{k+1} = a^{k+1} - a^k b + a^k b - b^{k+1}$$

$$= a^k (a-b) + b (a^k - b^k)$$

$$= a^k (a-b) + b (a$$

since [amtbf] is another polynomial in a end b, we have show what we set out to prove.

N-Normal real

Filling mg-weight N-Normal reaction F - Frictional force

(i) Vertically Nosa = fsind +mg

Nosa-Fsind=mg -(1) Horizontaly Nsind + fcosa= mv2 -(2)

From (1) $N\cos\alpha\sin\alpha - F\sin^2\alpha = mg\sin\alpha$ (3) and (2) $N\sin\alpha\cos\alpha + F\cos^2\alpha = \frac{mv^2}{r}\cos\alpha$ (4)

F(cos2 + sin2x) = mv cos a - mg sind F = mut cos & - my sind, *

no sideway slip when
$$f = 0$$

if $mg \sin \lambda = \frac{mv^2}{r} \cos \lambda$
 $\tan \lambda = \frac{v^2}{rg}$
 $v = \frac{5 + x \log 0}{60 \log m} \sin^{-1} (= 90)$
 $\tan \lambda = \frac{15 \times 15}{90 \times 10}$
 $= \frac{215}{900}$
 $= \frac{1}{4}$
 $x = \tan^{-1}(\frac{1}{4})$
 $= \frac{1200}{\sqrt{17}} \frac{\sqrt{2} \times 1000}{(60 \times 60)} = \frac{1}{40} - \frac{10}{4}$
 $= \frac{4500}{\sqrt{17}} \left(\frac{900 - 10}{150} \right)$
 $= \frac{4500}{\sqrt{17}} \left(\frac{800 - 450}{150} \right)$
 $= \frac{4500}{\sqrt{17}} \times \frac{370}{150}$
 $= \frac{2263.665}{2.37} \times \frac{370}{2}$

(i)
$$\tan(2\alpha+\alpha) = \frac{\tan 2\alpha + \tan \alpha}{1 - \tan 2\alpha + \tan \alpha}$$

$$= \left(\frac{2\tan \alpha}{1 - \tan^2 \alpha} + \tan \alpha\right) \div \left(1 - \frac{2\tan^2 \alpha}{1 - \tan^2 \alpha}\right)$$

$$= \left(\frac{2\tan \alpha + \tan \alpha - \tan^3 \alpha}{1 - \tan^2 \alpha}\right) \div \left(\frac{1 - \tan^2 \alpha - 2\tan^2 \alpha}{1 - \tan^2 \alpha}\right)$$

$$= 3\tan \alpha - \tan^3 \alpha$$

$$= 3\tan \alpha - \tan^3 \alpha$$

(ii) Let
$$0 = \tan^{1}x$$

$$\vdots 30 = 3 \tan^{1}x$$

$$= \frac{\pi}{2} - \tan^{1}3x$$

$$\tan^{1}3x = \frac{\pi}{2} - 30$$

$$\tan(\tan^{1}3x) = \tan(\frac{\pi}{2} - 30)$$

$$3x = \cot 30$$

$$3x = \frac{1 - 3\tan^{2}0}{3\tan 0 - \tan^{3}0} \quad (fom(i))$$

$$3x = \frac{1 - 3x^{2}}{3x - x^{3}} \quad (o = \tan^{1}x \Rightarrow x = \tan 0)$$

$$3x(3x - x^{3}) = 1 - 3x^{2}$$

$$9x^{2} - 3x^{4} = 1 - 3x^{2}$$

$$3x^{4} - 12x^{2} + 1 = 0$$

$$\therefore x^{2} = 6 \pm \sqrt{333}$$

$$\therefore x = \sqrt{6 \pm \sqrt{33}}$$