Name:	

St George Girls High School

Trial Higher School Certificate Examination

2014

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen.
- Write your student number on each booklet.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.

Total Marks - 70

Section I – Pages 2 – 5

10 marks

- Attempt Questions 1 10.
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II – Pages 6 – 9 60 marks

- Attempt Questions 11 14.
- Allow about 1 hour 45 minutes for this section.
- Begin each question in a new booklet.
- Show all necessary working in Questions 11 – 14.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

10 marks Marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1. If p(x) = (x + 2)(x + k) and if the remainder is 12 when p(x) is divided by x 1, then k =
 - (A) 2
 - (B) 3
 - (C) 6
 - (D) 11
- 2. In the diagram drawn below PB = 12 cm and BA = 20 cm.

P divides *AB* externally in the ratio

Diagram not to scale

- (A) 3:5
- (B) 3:8
- (C) 5:3
- (D) 8:3

Section I (cont'd)

3. If the function f is defined by $f(x) = x^5 - 1$, then f^{-1} , the inverse function of f, is defined by $f^{-1}(x) =$

$$(A) \quad \frac{1}{\sqrt[5]{x}+1}$$

(B)
$$\frac{1}{\sqrt[5]{x+1}}$$

(C)
$$\sqrt[5]{x+1}$$

(D)
$$\sqrt[5]{x} - 1$$

- 4. The coefficient of x^2 in the expansion of $(2x-3)^5$ is equal to:
 - (A) -1080
 - (B) -540
 - (C) -10
 - (D) 1080
- 5. Which of the following is always true of the perpendicular bisectors of non-parallel chords in the same circle?
 - (A) The perpendicular bisectors never intersect
 - (B) The perpendicular bisectors are always parallel
 - (C) The perpendicular bisectors are always perpendicular to each other
 - (D) The perpendicular bisectors always intersect at the centre of the circle
- 6. What is the domain and range of $y = 3 \sin^{-1}(2x)$?
 - (A) Domain: $-\frac{1}{2} \le x \le \frac{1}{2}$. Range $-\frac{1}{3} \le y \le \frac{1}{3}$
 - (B) Domain: $-\frac{1}{2} \le x \le \frac{1}{2}$. Range $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$
 - (C) Domain: $-2 \le x \le 2$. Range $-\frac{1}{3} \le y \le \frac{1}{3}$
 - (D) Domain: $-2 \le x \le 2$. Range $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$

Section I (cont'd)

- 7. If $x = t^3 t$ and $y = \sqrt{3t + 1}$, then $\frac{dy}{dx}$ at t = 1 is:
 - (A) $\frac{1}{8}$
 - (B) $\frac{3}{8}$
 - (C) $\frac{3}{4}$
 - (D) $\frac{8}{3}$
- 8. Which graph best represents $y = x^4 x^3 2x^2$?

(B)

Section I (cont'd)

9. If $y = \sin^{-1}\left(\frac{5}{x}\right)$, x > 5, then $\frac{dy}{dx}$ is equal to

(A)
$$\frac{-5}{\sqrt{x^2-25}}$$

(B)
$$\frac{x}{\sqrt{x^2-25}}$$

(C)
$$\frac{-5}{x\sqrt{x^2-5}}$$

(D)
$$\frac{-5}{x\sqrt{x^2-25}}$$

10.

Water is draining from a cone-shaped funnel at the constant rate of $600\ cm^3/\ min.$

The cone has height 50 cm and base radius 10 cm.

Let h cm be the depth of water in the funnel at time t min.

The rate of **decrease** of h, in cm/min, is given by

- (A) 12
- (B) $\frac{100\pi}{3}$
- (C) $\frac{15000}{\pi h^2}$
- (D) $24\pi h^2$

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

Marks

- a) The polynomial $4x^3 2x^2 + 3x 5$ has roots α , β and γ . 1 Find $\alpha\beta + \alpha\gamma + \beta\gamma$.
- b) Find the remainder when $P(x) = 3x^2 2x + 1$ is divided by x 3.
- c) The graphs of $y = 8 x^3$ and x 2y + 13 = 0 intersect at the point (1, 7). 3 Find the size of the acute angle between the tangent to the curve and the line at the point of intersection. (answer to the nearest minute)
- d) Find the exact value of $\cos[\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)]$.
- e) Find $\lim_{x\to 0} \frac{\sin 3x}{2x}$.
- f) Find $\int \cos^2 2x \, dx$.
- g) Differentiate $\cos^{-1}(6x^2)$.
- h) Solve $\frac{4}{6-x} \le 1$.

Question 12 (15 marks) Use a SEPARATE writing booklet

Marks

a) Use the substitution $u = 5 - x^2$ to evaluate

3

$$\int_0^2 \frac{x}{(5-x^2)^3} \ dx \ .$$

b) What is the coefficient of x^3 in the expansion of $(4x - \frac{2}{x})^5$?

3

c) Prove the identity $\frac{\cos x - \cos 2x}{\sin 2x + \sin x} = \csc x - \cot x$.

3

d) Use mathematical induction to prove that $9^n - 3$ is divisible by 6 for all positive integers n.

3

- e) For the polynomial $P(x) = x^3 + 5x^2 + 17x 10$
 - (i) Show it has a root that lies between 0 and 2.

1

(ii) Use one application of Newton's method with an initial estimate of 1, to find a better approximation the root.

2

Question 13 (15 marks) Use a SEPARATE writing booklet

Marks

3

4

a)

Two circles touch externally at *T*. *XY* is the common tangent.

PTQ and *RTS* are straight lines. Prove that *PR* is parallel to *SQ*.

b) The angular elevation of a hill at a place P due south of it is 37° and at a place Q due west of P the elevation is 23° as shown in the diagram below. If the distance from P to Q is 3 km, find the height of the hill to the nearest 10 metres.

- c) A particle is projected from a point $\it O$ on a horizontal plane with an initial velocity of 60 metres/second at an angle of 30° to the horizontal. Assume acceleration due to gravity is $10~\rm m/s^2$.
 - (i) Write down the equation (in exact form) for velocity and displacement of the particle in both the horizontal and vertical directions.
 - (ii) Find the range of the particle.
 - (iii) At the same time a second particle is projected in the opposite direction with an initial velocity of 50 metres/second from a point on the same horizontal level as *O*. Find the angle of projection of the second particle if the particles collide (to the nearest degree).

4

2

2

Question 14 (15 marks) Use a SEPARATE writing booklet

Marks

- a) $P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$.
 - (i) Find the coordinates of M, the mid point of PQ.

1

(ii) Show pq = -4 if PQ subtends a right angle at the origin.

2

(iii) Using your answers to parts (i) and (ii), find the equation of the locus of M as P and Q move on the parabola if $\angle POQ = 90^{\circ}$.

2

b) A particle moves in such a way that its displacement x cm from the origin O after time t seconds is given by:

$$x = \sqrt{3}\cos 3t - \sin 3t.$$

(i) Show that the particle moves in simple harmonic motion.

2

(ii) Evaluate the period of the motion.

2

(iii) Find the time when the particle first passes through the origin.

3

c) By equating the coefficient of x^n on both sides of the identity

3

$$(1+x)^n(1+x)^n = (1+x)^{2n}$$
,

Show that

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots + \binom{n}{n-1}^2 + \binom{n}{n}^2 = \frac{(2n)!}{(n!)^2}.$$

$$P(1) = 12$$
 $12 = 3(1+k)$
 $k = 3$

2)
$$AP : PB = 32 : 12$$

= 8 : 3

4)
$$(2x-3)^5 = \sum_{i=0}^{5} {}^{5}C_{i}(2x)^{5-i}(-3)^{i}$$

$$x^2: 5-i=2 : i=3$$

$$5 C_3 2^2 (-3)^3 = 10 \times 4 \times -27$$

6)
$$y = 3 \sin^{-1}(2\pi)$$

7)
$$x = t^3 - t$$

$$\frac{dx}{dt} = 3t^2 - 1$$

$$\frac{dx}{dt} = \frac{3}{2}(3t + 1)^{-1/2}$$

$$\frac{dy}{dx} = \frac{3}{2}(3t + 1)^{-1/2}$$

$$\frac{dy}{dx} = \frac{3}{2}(3t + 1)^{-1/2}$$

$$x = \frac{3}{2}(3t + 1)^{-1/2}$$

8)
$$\chi \rightarrow \infty$$
 $\gamma \rightarrow \infty$ $\gamma \rightarrow \infty$ $\gamma \rightarrow \infty$ $\gamma = \chi^{2}(\chi^{2} - \chi^{-2})$

$$= \chi^{2}(\chi^{2} - \chi^{-2})(\chi^{2} + 1)$$

$$= \chi^{2}(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} + 1)$$

$$= \chi^{2}(\chi^{2} - \chi^{2})(\chi^{2} + 1)$$

$$= \chi^{2}(\chi^{2} - \chi^{2})(\chi^{2} + 1)$$

$$= \chi^{2}(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2})(\chi^{2} - \chi^{2})(\chi^{2} - \chi^{2})(\chi^{2})(\chi^{2} - \chi^{2})(\chi^{2})(\chi^{2} - \chi^{2})(\chi^{2})(\chi^{2})(\chi^{$$

: 150 so

a)
$$d\beta + d\delta + \beta\delta = \frac{c}{a}$$

$$= \frac{3}{4}$$

b)
$$P(3) = 27 - 6 + 1$$
= 22

d)
$$\cos\left(\sin^{-1}\left(-\frac{1}{2}\right)\right) = \cos\left(-\frac{\pi}{2}\right)$$

e)
$$\lim_{x\to 0} \frac{\sin 3x}{2x} = \lim_{x\to 0} \frac{\sin 3x}{3x \times \frac{2}{3}}$$

$$= \frac{3}{2} \lim_{n \to 0} \frac{\sin 3x}{3n} = \frac{3}{2}$$

$$y = \beta - n^{3}$$

 $y' = -3n^{2}$
at $n = 1$ $m = -3$ ten $\beta = -3$

$$x - 2y + 13 = 0$$
 $m = \frac{1}{2}$ tend = $\frac{1}{2}$

$$\theta = 4an^{-1}(-3) - 4an^{-1}(\frac{1}{2})$$
= 81°521

$$u = 5 - n^2$$

$$du = -2n dx$$

$$n=2$$
 $u=1$

$$\int_0^2 \frac{x}{(5-n^2)^3} dx$$

$$= -\frac{1}{2} \int_{0}^{2} \frac{-2x}{(5-x^{2})^{3}} dx$$

$$\frac{1}{2} \int_{5}^{1} \frac{du}{u^{3}}$$

$$= \frac{1}{2} \int_{1}^{5} u^{-3} du$$

$$= \frac{1}{2} \left[-\frac{1}{2} \alpha^{-2} \right]_{1}^{5}$$

$$= - \neq \left[5^{-2} - 1^{-2} \right]$$

$$= -\frac{1}{4} \left(\frac{1}{25} - 1 \right)$$

$$= -\frac{1}{4} \times -\frac{24}{25}$$

$$b) \left(4x - \frac{2}{x}\right)^5 =$$

b)
$$(4x - \frac{2}{x})^5 = \sum_{i=0}^{5} 5c_i (4n)^{5-i} (-\frac{2}{x})^i$$

$$\chi^3$$
: $\chi^{5-i} \cdot (\chi^{-i})^i = \chi^3$

$$5 - \hat{c} - \hat{c} = 3$$

$$5C_14^4.(-2)^1 = 5 \times 256 \times -2$$

= -2560

c)
$$\frac{\cos x - \cos 2x}{\sin x + \sin x}$$
 $\frac{\cos x - \left[2\cos^2 x - \cos x + \sin x\right]}{2\sin x \cos x + \sin x}$
 $\frac{-\left(2\cos^2 x - \cos x - i\right)}{\sin x}$
 $\frac{-\left(2\cos^2 x - \cos x - i\right)}{\sin x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{\cos x - \left(2\cos x + i\right)}{\cos x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{\cos x - \left(2\cos x + i\right)}{\cos x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{\cos x - \left(2\cos x + i\right)}{\cos x}$
 $\frac{\cos x - \left(2\cos x + i\right)}{\cos x}$
 $\frac{1 - \cos x}{\sin x}$
 $\frac{1 - \cos x$

e)(1)
$$f(x) = x^{3} + 5n^{2} + 17n - 10$$

 $f(2) = f + 20 + 34 - 10$
 $= 52$
... noot between $x = 0$ and $x = 2$
So use $x = 1$ at $a = a = a + 10n + 17$
 $= 1 - \frac{13}{30}$ $f'(x) = 3n^{2} + 10n + 17$
 $= \frac{17}{30}$

....

Q14

a)
$$P(2p, p^2)$$
 $Q(2q, q^2)$ $x^2 = 4y$

(i) $P(2p+2q)$ p^2+p^2 where M is midpoint fold

If $(p+q)$, p^2+p^2

(ii) $P(p+q)$, p^2+p^2

(iv) $P(p+q)$, p^2+p^2

(iv) $P(p+q)$, p^2+p^2

(iv) $P(p+q)$, p^2+p^2

(iv) $P(p+q)$, $P(p+q)$

(iv) $P(p+q)$

(

b)
$$x = \sqrt{3} \cos 3t - \sin 3t$$

(i) $\dot{x} = -3\sqrt{3} \sin 3t - 3 \cos 3t$
 $\ddot{x} = -9\sqrt{3} \cos 3t + 9 \sin 3t$
 $= -9 (\sqrt{3} \cos 3t - \sin 3t)$

2 = J3 cos 3+ - sin 3+

i,

. Motion is SHM with n=3 centre of median x20.

$$(u) T = \frac{2\pi}{3}$$

(iii)
$$\sqrt{3} \cos 3t - \sin 3t = \sin 3t$$

$$\sqrt{3} \cos 3t = \sin 3t$$

$$3t = \sqrt{3} \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \sin 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t = \cos 3t$$

$$- \cos 3t = \cos 3t$$

First passes through origin after $\frac{\pi}{9}$ sec. e) $(1+x)^n = (1+x)^{2n}$

= (^Co+ ^C, x+^C,x+^C,x^)(^Co+^C,x+--- ?x^)

eo-eff et 2": "6" (1 + "6, "6-, + "6, "6-2 + ··· + "6, "6, "6, "6")

$$= (^{n}C_{-})^{2} + (^{n}C_{-})^{2} + \cdots + (^{n}C_{n-1})^{2} + (^{n}C_{n})^{2}$$

could of n' in Rus $2nC_n = \frac{(2n)!}{n! n!}$

$$\frac{1}{n!} \left(\frac{n}{n} \right)^2 + \left(\frac{n}{n!} \right)^2 + \cdots + \left(\frac{n}{n!} \right)^2 = \frac{(2n)!}{n! n!}$$