STUDENT NAME:	
---------------	--

TEACHER: ____

Founded 1982

THE HILLS GRAMMAR SCHOOL

TASK 4 Trial Examination 2015 YEAR 12

MATHEMATICS EXTENSION 2

Time Allowed: Three hours (plus five minutes reading time)

Weighting: 40%

Outcomes: E1, E2, E3, E4, E5, E6, E7, E8, E9

Instructions:

- Approved calculators may be used
- Attempt all questions
- Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- Show all necessary working

MCQ	Question 11	Question 12	Question 13	Question 14	Question 15	Question 16	TOTAL
10	15	15	15	15	15	15	100

Section 1 Multiple Choice (10 Marks)

1 The
$$\int \frac{x}{\sqrt{9-4x^2}} dx$$
 is:

(A)
$$-\frac{\sqrt{9-4x^2}}{4}+c$$

(B)
$$\frac{\sqrt{9-4x^2}}{4} + c$$

(C)
$$-\frac{3\sqrt{9-4x^2}}{2} + c$$

(D)
$$\frac{3\sqrt{9-4x^2}}{2} + c$$

2 The
$$\int \frac{1}{x^2 - 6x + 13} dx$$
 is:

(A)
$$\tan^{-1} \frac{x-3}{2} + c$$

(B)
$$\frac{1}{2} \tan^{-1}(x-3) + c$$

(C)
$$\frac{1}{2} \tan^{-1} \frac{x-3}{2} + c$$

(D)
$$\frac{1}{4} \tan^{-1} \frac{x-3}{4} + c$$

The diagram shows the graph of the function y = f(x). 3

Which of the following is the graph of y = |f(x)|?

(A)

(B)

(C)

(D)

4 The diagram shows the graph of the function y = f(x).

Which of the following is the graph of $y = \frac{1}{f(x)}$?

(A)

(B)

(C)

(D)

- 5 Let z = 2+i and w = 1-i. What is the value of 3z+iw?
- (A) 5-4i

(B) 5 + 4i

(C) 7 + 4i

- (D) 7-4i
- 6 It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where a and b are real numbers. Which expression factorises P(z) over the real numbers?
 - (A) $(z-1)(z^2+6z-10)$

(B) $(z-1)(z^2-6z-10)$

- (C) $(z+1)(z^2+6z+10)$
- (D) $(z+1)(z^2-6z+10)$
- 7 For the ellipse with the equation $\frac{x^2}{4} + \frac{y^2}{3} = 1$. What is the eccentricity?
 - (A) $\frac{1}{4}$

(B) $\frac{1}{2}$

(C) $\frac{3}{4}$

- (D) $\frac{9}{16}$
- 8 Consider the hyperbola with the equation $\frac{x^2}{4} \frac{y^2}{3} = 1$.

What are the coordinates of the vertices of the hyperbola?

(A) $(0,\pm 2)$

(B) $(\pm 2,0)$

(C) $(0,\pm 4)$

(D) $(\pm 4,0)$

9 The area between the curve $y = 3x - x^2$, the x-axis, x = 0 and x = 3, is rotated about the y-axis to form a solid.

What is the volume of this solid?

(A) $\frac{9\pi}{4}$ cubic units

(B) $\frac{9\pi}{2}$ cubic units

(C) $\frac{27\pi}{4}$ cubic units

- (D) $\frac{27\pi}{2}$ cubic units
- 10 A particle of mass m is moving in a straight line under the action of a force, $F = \frac{m}{x^3}(6-10x)$.

Which of the following is an expression for its velocity in any position, if the particle starts from rest at x = 1?

(A)
$$v = \pm \frac{1}{x} \sqrt{(-3 + 10x - 7x^2)}$$

(B)
$$v = \pm x\sqrt{(-3+10x-7x^2)}$$

(C)
$$v = \pm \frac{1}{x} \sqrt{2(-3+10x-7x^2)}$$

(D)
$$v = \pm x\sqrt{2(-3+10x-7x^2)}$$

Section 2 Marks

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Let
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
 and $\omega = \sqrt{3} + i$.

- (i) Express ω in modulus-argument form. 1
- (ii) Hence, or otherwise, express $z^3\omega$ in modulus-argument form.
- (b) Sketch the region in the complex plane where the inequalities $|z+\overline{z}| \le 1$ and $|z-i| \le 1$ hold simultaneously.
- (c) Evaluate $\int_{0}^{2} te^{-t} dt$.

(d) The diagram shows the graph of the (decreasing) function y = f(x).

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = |f(x)|$$
. 1

(ii)
$$y = \frac{1}{f(x)}$$
.

(iii)
$$y^2 = f(x)$$
. 2

(iv)
$$y = f^{-1}(x)$$
.

3

3

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Find the square roots of 3 + 4i.
 - (ii) Hence, or otherwise, solve the equation $z^2 + iz 1 i = 0$.
- (b) Use the substitution $t = tan \frac{\theta}{2}$ to show that $\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \frac{d\theta}{\sin \theta} = \frac{1}{2} \ln 3.$
- (c) (i) Given that $\frac{16x-43}{(x-3)^2(x+2)}$ can be written as $\frac{a}{(x-3)^2} + \frac{b}{x-3} + \frac{c}{x+2}$

where a, b and c are real numbers, find a, b and c.

(ii) Hence find $\int \frac{16x-43}{(x-3)^2(x+2)} dx$.

(d) In the Argand diagram below, OABC is a rectangle. O is the origin and the distance OA is four times the distance AB. The vertex A is represented by the complex number z = x + iy.

Find an expression for the complex number that represents the vertex B. Leave your answer in the form a+ib.

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) The equation $4x^3 27x + k = 0$ has a double root. Find the possible values of k.
- (b) Let α , β and γ be the roots of the equation $x^3 5x^2 + 5 = 0$.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 1$, $\beta 1$ and $\gamma 1$.
 - (ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 and γ^2 .
 - (iii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.
- (c) (i) Let a > 0. Find the points where the line y = ax and the curve y = x(x-a) intersect.
 - (ii) Let R be the region in the plane for which $x(x-a) \le y \le ax$. Sketch R. 1
 - (iii) A solid is formed by rotating the region R about the line x = -2a. Use the method of cylindrical shells to find the volume of the solid. 5

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Find all the 5th roots of -1 in modulus-argument form.
 - (ii) Sketch the 5th roots of -1 on an Argand diagram.
- (b) For each integer $n \ge 0$, let

$$I_n = \int_0^1 x^{2n+1} e^{x^2} dx .$$

- (i) Show that for $n \ge 1$, $I_n = \frac{e}{2} nI_{n-1}$
- (ii) Hence, or otherwise, calculate I_2 .
- (c) If $5x^2 y^2 + 4xy = 18$ defines a set of points:
 - (i) Using implicit differentiation show that is has no stationary points. 2
 - (ii) Find the vertical tangents.
 - (iii) Find any intercepts.
 - (iv) Find the oblique asymptotes. 2
 - (v) Sketch the curve. 1

2

1

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) The points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$, $p \neq q$, lie on the same branch of the hyperbola $xy = c^2$. The tangents at P and Q meet at the point T.

Find the equation of the tangent to the hyperbola at Q?

(b) The points at $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on the same branch of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

The tangents at P and Q meet at $T(x_0, y_0)$.

(i) Show that the equation of the tangent at P is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$.

(ii) Hence show that the chord of contact, PQ, has equation $\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$.

(iii) The chord PQ passes through the focus S(ae,0), where e is the eccentricity of the hyperbola. Prove that T lies on the directrix of the hyperbola.

(c) In an alien universe, the gravitational attraction between two bodies is proportional to x^{-3} , where x is the distance between their centres.

A particle is projected upward from the surface of a planet with velocity u at time t = 0. Its distance x from the centre of the planet satisfies the equation $\ddot{x} = -\frac{k}{x^3}$.

- (i) Show that $k = gR^3$, where g is the magnitude of the acceleration due to gravity at the surface of the planet and R is the radius of the planet.
- (ii) Show that v, the velocity of the particle, is given by $v^2 = \frac{gR^3}{x^2} (gR u^2)$. 3
- (iii) It can be shown that $x = \sqrt{R^2 + 2uRt (gR u^2)t^2}$. (Do NOT prove this.)

Show that if $u \ge \sqrt{gR}$ the particle will not return to the planet.

- (iv) If u < gR the particle reaches a point whose distance from the centre of the planet is D, and then falls back.
 - (1) Use the formula in part (ii) to find D in terms of u, R and g.
 - (2) Use the formula in part (iii) to find the time taken for the particle to return tothe surface of the planet in terms of u, R and g.

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) A flywheel of radius 30cm makes 30 revolutions per second. Find the velocity and acceleration of a point on the rim.
- 2
- (b) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has foci S(ae,0) and S'(-ae,0) where e is the eccentricity, with corresponding directrices $x = \frac{a}{e}$ and $x = -\frac{a}{e}$. The point $P(x_0, y_0)$ is on the ellipse. The points where the horizontal line through P meets the directrices are M and M', as shown in the diagram below.

(i) Show that the equation of the normal to the ellipse at the point P is

$$y-y_0 = \frac{a^2 y_0}{b^2 x_0} (x - x_0).$$

- (ii) The normal at P meets the x-axis at N. Show that N has coordinates $(e^2x_0, 0)$.
- (iii) Using the focus-directrix definition of an ellipse, or otherwise, show that $\frac{PS}{PS'} = \frac{NS}{NS'}$
- (iv) Let $\alpha = \angle S'PN$ and $\beta = \angle NPS$. By applying the sine rule to $\angle S'PN$ and to $\angle NPS$, show that $\alpha = \beta$.

- (c) The gravitational force between two objects of masses m and M placed at a distance x apart is proportional to their masses and inversely proportional to the square of their distance, ie $F \propto \frac{Mm}{x^2}$. A satellite is launched so that it orbits the earth once a day. Take gravity at the earth's surface, $g = 9.8ms^{-2}$ and the radius of the earth, R = 6400km.
 - (i) Find the angular velocity of the satellite. 1
 - (ii) Show that the centripetal force of the satellite $mr\omega^2$ is equal to $\frac{(6.4 \times 10^6)^2 \times 9.8m}{x^2}$.
 - (iii) Hence find the height of the satellite.
 - (iv) Find the linear velocity of the satellite.

END OF ASSESSMENT

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Suggested solution(s) SECTIONI (MCQ)	comments
$\int x \left(9 - 4x^{2} \right)^{\frac{1}{2}} d\alpha = \frac{1}{-8x^{\frac{1}{2}}} \left(9 - 4x^{2} \right)^{\frac{1}{2}}$ $= -\frac{1}{4} \sqrt{9 - 4x^{2}}$	
$part(A)$ $\frac{1}{5c^{2}-6x+13}dc = \int \frac{1}{x^{2}-6x+9+4}$	
$= \int_{1\alpha - 35 + 4}^{1} d\alpha$	
$part(c) = \frac{1}{2} + an^{-1}(\frac{3c-3}{2}) + c.$	
3 pant(B)	
4 part (A)	
5. $Z=2+i w=1-i$ 3Z+iw=6+3i+i-i=7+4i	
part(e)	
6 $P(z) = z^3 + az^2 + bz + 10$ pred = -10 $x = 3 + i$ $\beta = 3 - i$	
$P(2) = (2+1)(2^2-62+10) part(0)$	
$7 b^2 = a^2(1-e^2)$ e c1 ellipse $e^2 = \frac{a^2 - b^2}{a^2} = \frac{4-3}{4}$ part (B)	
8 $\frac{x^2}{4} - \frac{4^2}{3}$ when $y = 0$ $x = \pm 2$ vertices $(\pm 2, 0)$ part(B)	>
Shells $SV = 2\pi T + h \leq \alpha$ $= 2\pi T \times (3x - x^2) \leq x$ $= 2\pi T \times (3x - x^2) \leq x$ $= 2\pi T \times (3x - x^2) \leq x$	
$= 2\pi \left[2x^{3} - 2x^{4} \right]^{3}$ $= 2\pi \left(27 - 81 \right) = 2\pi \left(27 - 81 \right)$	

Suggested solution(s) SECT 1	comments
$10, F = \frac{m}{x^3} \left(6 - 10x\right)$	
$\hat{x} = \frac{6 - 10x}{x^3} = 6x^{-3} - 10x^{-2}$	
$\frac{1}{2}V^2 = \frac{6x^{-2} + 10x^{-1} + c}{1}$	
V2= -6x-2+20x-1+2e.	
when $x = 1$, $V = 0$ $0 = -6 + 20 + 20 \Rightarrow 20 = -14$	
112 - 6 DE + 200c - 14	
$= 1 (-6 + 20 \times -14 \times)$	
$V = \pm \frac{1}{2} \sqrt{2(-3 + 10x - (x^2))}$	
part (c)	

Suggested solution(s) Quastion 11	comments
(a) (i) $w = 2(\sqrt{3} + \frac{1}{2}) = 2(\omega + i \sin x)$	•
$= 2 \cos \overline{L} \text{D mark.}$ (ii) $Z^3 = 2^3 \cos 3x \overline{L} = 8 \cot T \text{D}$	Cark
$\frac{2^{3}\omega = 8\omega_{0}\pi, 2\omega_{0}T}{= 16\omega_{0}TT} \qquad \text{O Mank}$ $= 16\omega_{0}(-5T) + i\sin(-5T)$	
$= 16 \cos(-57) + i \sin(-57)$ (b) $ 2 + 2 \le 1$	
12×1 ≤ 1	
-1 = x = 1 (1) Mank	
Mark.	
(a) $\frac{1}{2}$ $\frac{1}{4}$	
· = [-te-t]2 + Se-tdt O Mark	
$= -2e^{-2} + \left[-e^{-t} \right]_0^2$	1
$= -2e^{-2} - e^{-2} + 1$ $= 1 - 3e^{-2} $ Mark	

Suggested solution(s)	comments
$y^{2} = f(x)$ $y = -\frac{1}{2}\sqrt{f(x)}$	
1 2 3 4	
-2 -3	
y=for Same scole	
Dreflection 4 2 1	
1 2 4 6 8 10 2	

Suggested solution(s) Question 12	comments
(a)(i) a + ib = \(\frac{3+4i}{}	
a² - b² + 2abi = 3 + 4i Duark	
$a^{2}-b^{2}=3$ $ab=2$ mark $a=\pm 2$ $b=\pm 1$ Omarke	
$a = \pm 2$ $b = \pm 1$ Umarke	
square roots are ±(2+i)	
(ii) $z^2 + iz - 1 - i = 0$	
$Z = -i \pm \sqrt{i^2 + 4(1+i)}$ Quade	
$= -i \pm \sqrt{-1 + 4}i$	
= -i ± \sqrt{3+4i}	
$= -\frac{i}{2} \pm (2 + i)$	
$= \frac{2}{2} \text{ or } -\frac{2-2i}{2}i$ $= 1, -1-i \text{ O mank}$	
(b) t = tan =	:
$dt = \frac{1}{2} \sec^2 \frac{Q}{2} dQ$	
dt = ½ (1 + tan 2) do	
$d\theta = \frac{2}{1+t^2} dt deviv g$	
when $\theta = 2 \pm t = \sqrt{3}$ limits Durank	
$= \frac{\pi}{2} t = 1$	
13 2 do 13 dt = tln t] 3	
$ \int_{\frac{1}{1+t^2}}^{3} = \frac{\pi}{2} t = 1 $ $ \int_{\frac{2t}{1+t^2}}^{2} d\theta = \int_{\frac{1}{t}}^{1} dt = \left[\ln t\right]_{\frac{3}{t}}^{3} = \frac{1}{2}\ln 3 $	
$\frac{1}{1+t^2} = \ln \sqrt{3} = \frac{1}{2} \ln 3$	
Umania Umania	

Suggested solution(s) Question 12	comments
$(c)(i) \frac{16x-4^{3}}{(\alpha-3)^{2}(\alpha+2)} = \frac{a}{(\alpha-3)^{2}} + \frac{b}{(\alpha-3)} + \frac{c}{\alpha+2}$	- 72-
$16x - 43 = a(\alpha + 2) + b(\alpha - 3)(\alpha + 2) + c(\alpha - 3)(\alpha + 2)$	-3)
het x=3 48-43 = 5a > a = 1 1 mark	
$het x = -2 -32-43 = 250 \Rightarrow c = -3 \text{ Omails}$	
het = 0 -43 = $2a - 6b + 9e$	
-43 = 2 - 66 - 27 $66 = 18 \implies b = 3$ Dinalle	
(ii) : $\int \frac{16x - 43}{(x - 3)^2 (x + 2)} dx = \int \frac{1}{(x - 3)^2} + \frac{3}{x - 3} - \frac{3}{x + 2}$	la
$= -(3c-3)^{-1}+3\ln(3c-3)-3\ln(6c-3)$	-2)
$= \frac{-1}{x-3} + 3 \ln \left(\frac{x-3}{x+2}\right) + C$ Dinark Dinark.	
(d)	
AB = LiAO	
OB = OA + AB Omerk	
$= x + iy + \frac{i}{4}(x + iy)$	
= (5c- 4y) + i(y+ 1x) (1) mark	

Suggested solution(s) Question 13	comments
(a) Pa=4 x3-27x +k	
$P(x) = 12x^2 - 27$	
for decible root 122-27=0	
$x^2 = 27 = 9$	
$x = \pm \frac{3}{2}$ Quark	
when $0 = \frac{3}{2} P(6) = 4 \times \frac{27}{82} - 27 \times \frac{3}{2} + k$	
= -27×z +6	
k= 27	
$x = -\frac{3}{2} P(x) = -4x\frac{27}{28} + \frac{273+6}{2}$	
$= \frac{3}{2} \times 27 + k$	
k=-27 Dmark	
(b) $a^3 - 5x^2 + 5 = 0$	
(i) roots &, B, &	
Egnat with roots x-1, \$-1, 8=1	
y = x - 1 $x = 1 + y$ D mark $(1+y)^3 - 5(1+y)^2 + 5 = 0$ D mark	
(1+y) - 5(1+y) = 13 - 12	
$y^{3} + 3y^{2} + 3y + 1 - 5 - 10y - 5y^{2} + 5 = 0$	
(ii) for rests α^2 , β^2 , δ^2	
(ii) for nexts &, B, 8	
$y = x^2 \Rightarrow x = \sqrt{y}$ mark	
$(y^{\frac{1}{2}})^{3} - 5(y^{\frac{1}{2}})^{2} + 5 = 0$	
$y^{3}z - 5y + 5 = 0$ $y^{3}z - 5y - 5$	
$y^3 = 25y^2 - 50y + 25$	
$y^{3} = 25y^{2} - 50y + 25$ $y^{3} - 25y^{2} + 50y - 25 = 0$ $y^{3} - 25y^{2} + 50y - 25 = 0$	ark

Suggested solution(s) Buest 15	comments
Suggested solution(s) Buest 13 (b)(iii) for roots x 3 + B 3 + 8 3	
1 = 5 × +5=0	
$\beta^3 - 5\beta^2 + 5 = 0$	
$\beta^{3} - 5\beta^{2} + 5 = 0$ $\gamma^{3} - 5\gamma^{2} + 5 = 0$	
$4^{3}+\beta^{3}+\gamma^{3}-5(x^{2}+\beta^{2}+\gamma^{2})+15=0$	
$\alpha(\beta^3 + \beta^3 + \beta^3 = 5(\alpha^2 + \beta^2 + \delta^3) - 15$ Omark	
$\alpha^{2} + \beta^{2} + \delta^{2} = (\alpha + \beta + \delta)^{2} - 2(\alpha\beta + \alpha\delta + \delta)^{2}$	85)
$= 5^2 - 2 \times 0$ $= 25$	
=25 $\therefore x^3 + \beta^3 + \delta^3 = 5 \times 25 - 15$ =110 D mark	
(c) (i) $y = ax$ $y = x(x-a) = x^2 - ax$	
o grave (1)	
$x^2 = 2a0c = 0$ $3c(3c - 2a) = 0$	
x = 0, 2a	
when $x = 0$, $y = 0$ $x = 30$ $x = 30$	
when $x = 0$, $y = 0$ $x = 2a y = 2a^{2}$ pts $(0, 0)$ $(2a, 2a^{2})$ (1) mark	
y = x(xa). $y = x(xa)$. () mark	

Suggested Solutions, Marking Scheme and Markers' comments	
Suggested solution(s) Buestien 13	comments
(c) SV = 2TT+h, Sx Oman's fort curved surface over of oxfunder sony SV = 2TT (2a+x) (y,-y, 5x Oman's	_
curved surface area of aglinder long	
SV = 2TT (2a + 2c) (y, -y2) Son O mark	
$= 2\pi \left(2\alpha + \alpha\right) \left(\alpha x - x^2 + \alpha x\right) \delta x$	
$V = 2\pi \int (2\alpha + \alpha)(2\alpha - \alpha^2) d\alpha$ Dmark	
$= 2\pi \int_{0}^{2\alpha} 4\alpha^{2}x + 2\alpha x^{2} - 2\alpha x^{2} - x^{3} d\alpha$	
= 2TT [2402 2 - 24] 0 mark	
$= 2\pi \left[2a^{2} \times 4a^{2} - \frac{16a^{4}}{4} \right]$	
= 2TT (8-a 4 - 4a 4)	
= 8TT a * cu. units Omark	

Suggested solution(s) Queest 14	comments
$Z = cio(\frac{T + 2\pi k}{5})$ O mark	
k=0 == cos=	
$R = 1 \qquad Z = 000 3T \qquad Dimension$	
k = 0 $k = 1$ $k = -1$	
Z= UST	
k = -2 z = uio - 3I	
4)	
Umark	
THE X	
1 TE 1 X	
-1 (ST + 1	
() ()	
- *-1	
(b) $I_n = (x^{2n+1} e^{x} dx)$ Om	6.6
, ,	2
$0 \qquad u = x^{2h}, V = xe^{x}$	77
$u = 2x, V = 3ce$ $u = 2nx^{2n-1}, V = \frac{1}{2}e$	X
1 1 7	
T = 1 = 2h x2 = (1 = 2n-1 x foc	
$I_n = \begin{bmatrix} 1 & x^{2n} & e^{x^2} \end{bmatrix} - \int n x^{2n-1} e^{x^2} dsc$	
= 1/2 - n/22n-1e x doc Omank	
- 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
U T	
$I_{n} = e - n I_{n-1}$	
2	

Suggested solution(s) Quest 14	comments
(ii) $I_2 = \frac{1}{2} - 2I$	
I, = e - Io Omark for	
$I_0 = \int x e^{x^2} dx$ pattern	
$= \left[\frac{1}{2}e^{x^{2}}\right]_{0}^{2} = \frac{1}{2}e^{-\frac{1}{2}}$	
I,= 是-是+主	
I2 = = -2x====-1 Omark	
(c) $5x^2 - y^2 + 4xy = 18$	
(i) 10x-2ydy+4y+4xdy=0	
$\frac{\mathrm{deg}}{\mathrm{doc}}(4x - 2y) = -10x - 4y$	
$\frac{dy}{dx} = \frac{10x + 4y}{2y - 4x} = \frac{5x + 2y}{y - 2x}$	
for stat pt $5x + 2y = 0$ Umark $y = -\frac{5}{2}x$	
$5x^2 - \frac{25x^2 - 4x \times 5x}{4} = 18$	
5x²-25x²-10x²=18 (Timank teal no solutions	
(ii) for vert. targents y-2x = 0 y=2x () mark	
$5x^2 - 4x^2 + 4xx2x = 18$	
$13a^{2}-4x^{2}=18$	

Suggested solution(s) Duestion 15	comments
(a) $scy = c^2$	
y + x dy = 0	
di di	
dy = - I () mark at (cq; e) equation of tang.	
y - eg = - eg >1 - eg = eg	
$\frac{y-c_q}{5c-c_q}=-\frac{1}{q^2}$	
$q^{2}y-cq=-xc+cq$ $x+q^{2}y=2eq$ Omark	
(b) $\frac{3c^2}{a^2} - \frac{y^2}{b^2} = 1$	
201 - 2cy dy = 0	
$\frac{dy}{dc} = \frac{2x}{a^2} \div \frac{2y}{b^2}$	
$= \frac{b^2 z_1}{a^2 y} Ounork.$	
at P(x, sy) equat of tangent	
$\frac{y-y_1}{2x-x_1} = \frac{b^2x_1}{a^2y_1}$	
$a^{2}yy_{1}-a^{2}y_{1}^{2}=b^{2}xx_{1}-b^{2}x_{1}$	
$b^{2} \propto x_{1} - a^{2} y y_{1} = b \propto_{1} - a y_{1}$	
$\frac{50000}{a^2} - \frac{yy_1}{b^2} = \frac{300}{a^2} - \frac{y^2}{b^2}$	
ie $\frac{3CX}{a^2} - \frac{yy_1}{b^2} = 1$ (1) mark	

Suggested solution(s) (5	comments
(b) similarly targent than a	
$\frac{3c}{a^2} \frac{3c}{b^2} = 1$	
If T(xo yo) satisfies both equats	
then 30,302 - yoyz = 1 Dmark	
and $\frac{x_0 x_1}{a^2} - \frac{y_0 y_1}{b^2} = 1$	
then $x = -yy_0 = 1$ satisfies $a^2 b^2 P = Q D_{mark}$ a hence it is chord of contact	
(iii) If Pa passes thru S(ae, 0)	
$\frac{ae \times o - 0}{a^2} = \frac{a}{e} \text{which } x$ $x_0 = \frac{a}{e} \text{on directrice}$	
$(c) \dot{z} = -\frac{k}{z^3}$	
(i) U \uparrow \downarrow g when $z = R$ $zi = -g$ $-g = -\frac{k}{R^3} \Rightarrow k = gR^3$ Du	rank
(ii) $\dot{x} = -\frac{g R^3}{3}$	
$\frac{d(\frac{1}{2}V^2)}{doc} = -gR^3 oc^{-3} \text{(1) mash}$ $\frac{d}{doc} = gR^3 oc^{-2} + c$	
when $x = R$, $v = u$ $\frac{u^2}{2} = \frac{gR}{2} + C$ $C = \frac{u^2 - gR}{2}$	

Suggested solution(s) 15	comments
v2= 9 R3 + u2-9 R O mark.	
$V^{2} = \frac{gR^{3}}{x^{2}} - (gR - u^{2})$	
(iii) $x = \sqrt{R^2 + 2uRt - (gR - u^2)t^2}$	
If u ≥ JgR Dmark u² ≥ gR =	
then $x = \sqrt{R^2 + 2uRt + ct^2}$ where $c \ge 0$ Ome	erle
:- x > R particle docs not return	
$(iv)i V^2 = gR^3 - (gR - u^2)$	
when $x = D$ $V = 0$	
$O = \frac{gR^3}{D^2} - \left(gR - u^2\right)$	
$\frac{gR^3}{D^2} = gR - u^2$	
$D^2 = \frac{gR}{gR - u^2}$	
$D = + \sqrt{\frac{gR^3}{gR - u^2}}$ Durank	
2, for time taken or = R	
$R = \sqrt{R^2 + 2uRt - (gR - u^2)t^2}$ $R^2 = R^2 + 2uRt - (gR - u^2)t^2$	
$(qR-u^2)t^2 \neq 2uRt = 0$	
$t / (qR - u^2) t - 2uR = 0$	
t-0 or t = 2uR Omark	

Suggested solution(s) Quelot 16	comments
(a) w = 30 x 2 T rad/sec = 60#	
V = 100 = 1800TT con/sec.	
$rac{1}{2} = 30 \times (60\pi)$	
$= 108,000\pi^{2} \text{ cm s}^{-2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{232}{a^2} + \frac{24}{b^2} \frac{dy}{dx} = 0$	
$\frac{dy}{dx} = \frac{-2x}{a^2} = \frac{2y}{b^2}$	
$=-\frac{b^2}{a^2}\frac{\alpha}{y}$ D'mark	
equat of normal at P	
$\frac{y-y_0}{2c-x_0}=\pm \frac{y_0}{2c_0}\frac{a^2}{b^2}$ Omarla	
$y - y_0 = \frac{a^2 y_0}{b^2 x_0} \left(\mathcal{D} (-x_0) \right)$	
(ii) for $y = 0$ = $\frac{a^2}{b^2} \frac{y_0}{x_0} \left(x_0 - x_0 \right)$ may	
$-b^{2}x_{0} = a^{2}x - a^{2}x_{0}$ $a^{2}x = a^{2}x_{0} - b^{2}x_{0}$	
$\sim - \propto (\alpha^2 - b^2)$	
$x = e^2 x_0 \text{O mark}$	

Suggested solution(s) Queat 16	comments
$ iii)$ $\frac{PS}{PM} = e = \frac{PS'}{PM'}$ Omark	
$\frac{PS}{PS'} = \frac{PM}{PM'} = \frac{9}{\frac{2}{e} - \frac{1}{20}}$	
$\frac{NS}{NS'} = \frac{\alpha e^{2} - e^{2}x_{0}}{\alpha e + e^{2}x_{0}} = \frac{\frac{q}{e} - x_{0}}{\frac{q}{e} + x_{0}}$	
$\frac{PS}{PS} = \frac{NS}{NS},$	
iv) in $\Delta 5PN$ $\frac{\sin x}{N51} = \frac{\sin PN5}{P5}$	
in A SPN	
Sinp = SinfNS (2) NS PS Omark but sin PNS = sin PNS'	
: sind PS = sin B PS NS	
sin & PS = NS sinf Omans	
ie sin x = sin β fron(iii) ie x = β	
(c) $w = \frac{2\pi}{24\times3600} = 7.3\times10^{-5} \text{ rad, 5}^{-1}$	
(ii) $F = k \frac{Mm}{\pi^2}$	

Suggested solution(s)	comments
Suggested solution(s) qubot 16 (ii) (contin) at earths surface	Comments
R = 6400 km $F = mq$	
$mg = \frac{R M m}{R^2}$ (1) mark	
$mg = \frac{k Mm}{R^2}$ O marke $kM = g R^2$	
= 9.8 x (6400 × 1000)	
$= 9.8 \times (6.4 \times 10^6)$	
$F = 9.8 \times (6.4 \times 10^6)^2 m$	
26 3 OV	nark.
for satellite in uniform motion 2 = 9.8×(6.4×10 ⁶) br	
$w \propto w^2 = 9.8 \times (6.4 \times 10^6) \text{ br}$	
(iii) Hence $3c^3 = \frac{9-8\times(6-4\times10^6)^2}{(7-3\times10^{-5})^2}$	
2C = 4.22 × 10 m	
= 42232 ben Onark	
$-R \approx 3600$ ckm	
$= 42200 \times 7.3 \times 10^{-5} \text{ km s}^{-1}$ $= 3.6 \text{ km s}^{-1}$	
= 3. bins	