\qquad

\qquad

THE HILLS GRAMMAR SCHOOL

TASK 4 Trial Examination 2015
 YEAR 12

MATHEMATICS

 EXTENSION 2Time Allowed:
Three hours (plus five minutes reading time)
Weighting:
40%

Outcomes:

E1, E2, E3, E4, E5, E6, E7, E8, E9

Instructions:

- Approved calculators may be used
- Attempt all questions
- Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- Show all necessary working

MCQ	Question 11	Question 12	Question 13	Question 14	Question 15	Question 16	TOTAL
10	15	15	15				

Section 1 Multiple Choice (10 Marks)

1 The $\int \frac{x}{\sqrt{9-4 x^{2}}} d x$ is:
(A) $-\frac{\sqrt{9-4 x^{2}}}{4}+c$
(B) $\frac{\sqrt{9-4 x^{2}}}{4}+c$
(C) $-\frac{3 \sqrt{9-4 x^{2}}}{2}+c$
(D) $\frac{3 \sqrt{9-4 x^{2}}}{2}+c$

2 The $\int \frac{1}{x^{2}-6 x+13} d x$ is:
(A) $\tan ^{-1} \frac{x-3}{2}+c$
(B) $\frac{1}{2} \tan ^{-1}(x-3)+c$
(C) $\frac{1}{2} \tan ^{-1} \frac{x-3}{2}+c$
(D) $\frac{1}{4} \tan ^{-1} \frac{x-3}{4}+c$

3 The diagram shows the graph of the function $y=f(x)$.

Which of the following is the graph of $y=|f(x)|$?
(A)

(C)

(B)

4 The diagram shows the graph of the function $y=f(x)$.

Which of the following is the graph of $y=\frac{1}{f(x)}$?
(A)

(C)

(B)

(D)

5 Let $z=2+i$ and $w=1-i$. What is the value of $3 z+i w$?
(A) $5-4 i$
(B) $5+4 i$
(C) $7+4 i$
(D) $7-4 i$

6 It is given that $3+i$ is a root of $P(z)=z^{3}+a z^{2}+b z+10$ where a and b are real numbers. Which expression factorises $P(z)$ over the real numbers?
(A) $(z-1)\left(z^{2}+6 z-10\right)$
(B) $(z-1)\left(z^{2}-6 z-10\right)$
(C) $(z+1)\left(z^{2}+6 z+10\right)$
(D) $(z+1)\left(z^{2}-6 z+10\right)$

7 For the ellipse with the equation $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$. What is the eccentricity?
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{9}{16}$

8 Consider the hyperbola with the equation $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$.
What are the coordinates of the vertices of the hyperbola?
(A) $(0, \pm 2)$
(B) $(\pm 2,0)$
(C) $(0, \pm 4)$
(D) $(\pm 4,0)$

9 The area between the curve $y=3 x-x^{2}$, the x-axis, $x=0$ and $x=3$, is rotated about the y-axis to form a solid.

What is the volume of this solid?
(A) $\frac{9 \pi}{4}$ cubic units
(B) $\frac{9 \pi}{2}$ cubic units
(C) $\frac{27 \pi}{4}$ cubic units
(D) $\frac{27 \pi}{2}$ cubic units

10 A particle of mass m is moving in a straight line under the action of a force, $F=\frac{m}{x^{3}}(6-10 x)$. Which of the following is an expression for its velocity in any position, if the particle starts from rest at $x=1$?
(A) $\quad v= \pm \frac{1}{x} \sqrt{\left(-3+10 x-7 x^{2}\right)}$
(B) $\quad v= \pm x \sqrt{\left(-3+10 x-7 x^{2}\right)}$
(C) $\quad v= \pm \frac{1}{x} \sqrt{2\left(-3+10 x-7 x^{2}\right)}$
(D) $\quad v= \pm x \sqrt{2\left(-3+10 x-7 x^{2}\right)}$

Section 2

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$ and $\omega=\sqrt{3}+i$.
(i) Express ω in modulus-argument form. $\quad \mathbf{1}$
(ii) Hence, or otherwise, express $z^{3} \omega$ in modulus-argument form.
(b) Sketch the region in the complex plane where the inequalities $|z+\bar{z}| \leq 1$ and $|z-i| \leq 1$ hold simultaneously.
(c) Evaluate $\int_{0}^{2} t e^{-t} d t$.
(d) The diagram shows the graph of the (decreasing) function $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
(i) $y=|f(x)|$. 1
(ii) $y=\frac{1}{f(x)}$.
(iii) $y^{2}=f(x)$.
(iv) $y=f^{-1}(x)$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Find the square roots of $3+4 i$.
(ii) Hence, or otherwise, solve the equation $z^{2}+i z-1-i=0$.
(b) Use the substitution $t=\tan \frac{\theta}{2}$ to show that $\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \frac{d \theta}{\sin \theta}=\frac{1}{2} \ln 3$.
(c) (i) Given that $\frac{16 x-43}{(x-3)^{2}(x+2)}$ can be written as $\frac{a}{(x-3)^{2}}+\frac{b}{x-3}+\frac{c}{x+2}$
where a, b and c are real numbers, find a, b and c.
(ii) Hence find $\int \frac{16 x-43}{(x-3)^{2}(x+2)} d x$.
(d) In the Argand diagram below, $O A B C$ is a rectangle. O is the origin and the distance $O A$ is four times the distance $A B$. The vertex A is represented by the complex number $z=x+i y$.

Find an expression for the complex number that represents the vertex B.
Leave your answer in the form $a+i b$.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $4 x^{3}-27 x+k=0$ has a double root. Find the possible values of k.
(b) Let α, β and γ be the roots of the equation $x^{3}-5 x^{2}+5=0$.
(i) Find a polynomial equation with integer coefficients whose roots are $\alpha-1, \beta-1$ and $\gamma-1$.
(ii) Find a polynomial equation with integer coefficients whose roots are α^{2}, β^{2} and γ^{2}.
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(c) (i) Let $a>0$. Find the points where the line $y=a x$ and the curve $y=x(x-a)$ intersect.
(ii) Let R be the region in the plane for which $x(x-a) \leq y \leq a x$. Sketch R.
(iii) A solid is formed by rotating the region R about the line $x=-2 a$. Use the method of cylindrical shells to find the volume of the solid.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Find all the 5th roots of -1 in modulus-argument form.

2
(ii) Sketch the 5th roots of -1 on an Argand diagram.
(b) For each integer $n \geq 0$, let

$$
I_{n}=\int_{0}^{1} x^{2 n+1} e^{x^{2}} d x
$$

(i) Show that for $n \geq 1, \quad I_{n}=\frac{e}{2}-n I_{n-1}$
(ii) Hence, or otherwise, calculate I_{2}.
(c) If $5 x^{2}-y^{2}+4 x y=18$ defines a set of points:
(i) Using implicit differentiation show that is has no stationary points.
(ii) Find the vertical tangents.
(iii) Find any intercepts.
(iv) Find the oblique asymptotes.
(v) Sketch the curve.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right), p \neq q$, lie on the same branch of the hyperbola $x y=c^{2}$. The tangents at P and Q meet at the point T.

Find the equation of the tangent to the hyperbola at Q ?
(b) The points at $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ lie on the same branch of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

The tangents at P and Q meet at $T\left(x_{0}, y_{0}\right)$.
(i) Show that the equation of the tangent at P is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$.
(ii) Hence show that the chord of contact, $P Q$, has equation $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$.
(iii) The chord $P Q$ passes through the focus $S(a e, 0)$, where e is the eccentricity of the hyperbola. Prove that T lies on the directrix of the hyperbola.
(c) In an alien universe, the gravitational attraction between two bodies is proportional to x^{-3}, where x is the distance between their centres.

A particle is projected upward from the surface of a planet with velocity u at time $t=0$. Its distance x from the centre of the planet satisfies the equation $\ddot{x}=-\frac{k}{x^{3}}$.
(i) Show that $k=g R^{3}$, where g is the magnitude of the acceleration due to gravity at the surface of the planet and R is the radius of the planet.
(ii) Show that v, the velocity of the particle, is given by $v^{2}=\frac{g R^{3}}{x^{2}}-\left(g R-u^{2}\right)$.
(iii) It can be shown that $x=\sqrt{R^{2}+2 u R t-\left(g R-u^{2}\right) t^{2}}$. (Do NOT prove this.)

Show that if $u \geq \sqrt{g R}$ the particle will not return to the planet.
(iv) If $u<g R$ the particle reaches a point whose distance from the centre of the planet is D, and then falls back.
(1) Use the formula in part (ii) to find D in terms of u, R and g.
(2) Use the formula in part (iii) to find the time taken for the particle to return to the surface of the planet in terms of u, R and g.

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) A flywheel of radius 30 cm makes 30 revolutions per second. Find the velocity and acceleration of a point on the rim.
(b) The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has foci $S(a e, 0)$ and $S^{\prime}(-a e, 0)$ where e is the eccentricity, with corresponding directrices $x=\frac{a}{e}$ and $x=-\frac{a}{e}$. The point $P\left(x_{0}, y_{0}\right)$ is on the ellipse. The points where the horizontal line through P meets the directrices are M and M^{\prime}, as shown in the diagram below.

(i) Show that the equation of the normal to the ellipse at the point P is

$$
\begin{equation*}
y-y_{0}=\frac{a^{2} y_{0}}{b^{2} x_{0}}\left(x-x_{0}\right) \tag{2}
\end{equation*}
$$

(ii) The normal at P meets the x-axis at N. Show that N has coordinates $\left(e^{2} x_{0}, 0\right)$.
(iii) Using the focus-directrix definition of an ellipse, or otherwise, show that $\frac{P S}{P S^{\prime}}=\frac{N S}{N S^{\prime}}$
(iv) Let $\alpha=\angle S^{\prime} P N$ and $\beta=\angle N P S$. By applying the sine rule to $\angle S^{\prime} P N$ and to $\angle N P S$, show that $\alpha=\beta$.
(c) The gravitational force between two objects of masses m and M placed at a distance x apart is proportional to their masses and inversely proportional to the square of their distance, ie $F \propto \frac{M m}{x^{2}}$. A satellite is launched so that it orbits the earth once a day. Take gravity at the earth's surface, $g=9.8 \mathrm{~ms}^{-2}$ and the radius of the earth, $R=6400 \mathrm{~km}$.
(i) Find the angular velocity of the satellite.
(ii) Show that the centripetal force of the satellite $m r \omega^{2}$ is equal to $\frac{\left(6.4 \times 10^{6}\right)^{2} \times 9.8 m}{x^{2}}$.
(iii) Hence find the height of the satellite.
(iv) Find the linear velocity of the satellite.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

$$
\begin{aligned}
& \text { Suggested solution (s) } \text { SECTION D }(H C Q) \\
& 1, \int x\left(9-4 x^{2}\right)^{-\frac{1}{2}} d x=\frac{1}{-8 x}\left(9-4 x^{2}\right)^{\frac{1}{2}} \\
&=-\frac{1}{4} \sqrt{9-4 x^{2}} \\
& \operatorname{part}(A)
\end{aligned}
$$

2

$$
\begin{aligned}
\int \frac{1}{x^{2}-6 x+13} d x & =\int \frac{1}{x^{2}-6 x+9+4} d x \\
& =\int \frac{1}{(x-3)^{2}+4} d x
\end{aligned}
$$

$$
\operatorname{pant}(c)=\frac{1}{2} \tan ^{-1}\left(\frac{x-3}{2}\right)+c
$$

3/ pant (B)
4) $\operatorname{pant}(A)$

5/ $z=2+i \quad w=1-i$

$$
3 z+1 w=6+3 i+i-i^{2}=7+4 i
$$

part (c)
6) $P(z)=z^{3}+a z^{2}+b z+10$

$$
\begin{aligned}
\text { prod }= & -10 \quad \alpha=3+i \quad \beta=3-i \\
& \alpha \beta=10 \\
& \alpha \beta \gamma=-10 \Rightarrow \gamma=-1 \\
\therefore P(z) & \left.=(z+1)\left(z^{2}-6 z+10\right) \operatorname{pant}(D)\right)
\end{aligned}
$$

7) $\quad b^{2}=a^{2}\left(1-e^{2}\right) \quad e<1 e l l i p s e$

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{4-3}{4} \operatorname{pant}_{2=\frac{1}{2}}^{\operatorname{an}}(B)
$$

$8 \frac{x^{2}}{4}-\frac{y^{2}}{3}$ when $y=0 \quad x^{2}= \pm 2$
vertices $(\pm 2,0)$ pant (B)

Shells $\begin{aligned} S V & =2 \pi+h \delta x \\ 3 & =2 \pi x\left(3 x-x^{2}\right) \delta x\end{aligned}$

$$
\begin{aligned}
V & =2 \pi \int_{0}^{3} 3 x^{2}-x^{3} d x \\
& =2 \pi\left[x^{3}-\frac{x^{4}}{4}\right]_{0}^{3}
\end{aligned}
$$

$$
\begin{aligned}
&=2 \pi\left[x^{3}-\frac{x^{4}}{4}\right]_{0}^{3} \\
&=2 \pi\left(27-\frac{81}{4}\right)=\frac{27 \pi}{2} \quad \operatorname{pant}(D)
\end{aligned}
$$

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s) Quastion /1
(a) $(i$

$$
\begin{aligned}
\omega & \left.=2\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)=2 \cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& =2 \cos \frac{\pi}{6} \text { (1) mainte. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
z^{3} & =2^{3} \operatorname{is} 3 \times \frac{\pi}{3}=8 \operatorname{is} \pi \text { (1) Mark } \\
z^{3} \omega & =8 \operatorname{cis} \pi \cdot 2 \cos \frac{\pi}{6} \\
& =16 \cos \frac{7 \pi}{6} \\
& =16 \cos \left(\frac{-5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
|z+\bar{z}| & \leq 1 \\
|2 x| & \leq 1 \\
-\frac{1}{2} \leq x & \leq \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[-t e^{-t}\right]_{0}^{2}+\int_{0}^{2} e^{-t} d t \text { (1) Made }} \\
& =-2 e^{-2}+\left[-e^{-t}\right]_{0}^{2} \\
& =-2 e^{-2}-e^{-2}+1 \\
& =1-3 e^{-2} \text { (1) Maxb. }
\end{aligned}
$$

Suggested Solutions, Marking Scheme and Markers' comments

ii)

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solution (s)

$$
\begin{array}{r}
\text { Suggested solution(s) } \\
\hline(a)(1) \quad a+i b=\sqrt{3+4 i} \\
a^{2}-b^{2}+2 a b i=3+4 i \\
a^{2}-b^{2}=3 \quad a b=2
\end{array}
$$

(1) marip
$a= \pm 2 b= \pm 1$ (1) mank (1)maike
\therefore square reats are $\pm(2+i)$
(ii)

$$
\begin{aligned}
& z^{2}+i z-1-i=0 \\
& z=-i \pm \frac{\sqrt{i^{2}+4(1+i}}{2} \text { Omank } \\
&=-i \pm \sqrt{-1+4+4 i} \\
&=-i \pm \sqrt{3+4 i} \\
&=\frac{i \pm(2+i)}{2} \\
&=\frac{2}{2} \text { or }-\frac{2-2 i}{2} \\
&=1,-1-i \text { (1) mank }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t=\tan \frac{\theta}{2} \\
& d t=\frac{1}{2} \sec ^{2} \frac{\theta}{2} d \theta \\
& d t=\frac{1}{2}\left(1+\tan ^{2} \frac{\theta}{2}\right) d \theta \\
& d \theta=\frac{2}{1+t^{2}} d t \text { derie } \theta
\end{aligned}
$$

when $\theta=\frac{2 \pi}{3} \quad t=\sqrt{3} \quad$ limits
(1) mark

$$
\begin{aligned}
& =\frac{\pi}{2} \quad t=1 \\
& \int_{1}^{\sqrt{3}} \frac{\frac{2}{1+t^{2}}}{\frac{2 t}{1+t^{2}}} d \theta=\int_{1}^{\sqrt{3}} \frac{1}{t} d t=[\ln t]_{1}^{\sqrt{3}}
\end{aligned}
$$

(1) mank
(1) mánla

Suggested solution(s) Qurention iz

$$
\begin{aligned}
& \text { (c) (i) } \frac{16 x-43}{(x-3)^{2}(x+2)} \equiv \frac{a}{(x-3)^{2}}+\frac{b}{(x-3)}+\frac{c}{x+2} \\
& 16 x-43 \equiv a(x+2)+b(x-3)(x+2)+c(x-3)^{2}
\end{aligned}
$$

Let $x=3$

$$
\begin{aligned}
& =3 \\
& 48-43=5 a \Rightarrow a=1 \text { (1) mande }
\end{aligned}
$$

Let $x=-2$

$$
\begin{aligned}
& x=-2 \\
& -32-43=25 c \Rightarrow c=-3 \text { (1) mand }
\end{aligned}
$$

het $x=0$

$$
\begin{aligned}
& -43=2 a-6 b+9 c \\
& -43=2-6 b-27 \\
& 6 b=18 \Rightarrow b=3 \text { (1) mank }
\end{aligned}
$$

(ii)

$$
\begin{array}{r}
\therefore \int \frac{(16 x-43}{(x-3)^{2}(x+2)} d x=\int \frac{1}{(x-3)^{2}}+\frac{3}{x-3}-\frac{3}{x+2} d x \\
\quad=-(x-3)^{-1}+3 \ln (x-3)-3 \ln (x+2) \\
\quad=\frac{-1}{x-3}+3 \ln \left(\frac{x-3}{x+2}\right)+c
\end{array}
$$

(1)maik (1)mark.
(d)

$$
\begin{aligned}
\overrightarrow{A B} & =\frac{1}{4} i \overrightarrow{A O} \\
\overrightarrow{O B} & =\overrightarrow{O A}+\overrightarrow{A B} \quad \text { (i) mark } \\
& =x+i y+\frac{i}{4}(x+i y) \\
& =\left(x-\frac{1}{4} y\right)+i\left(y+\frac{1}{4} x\right)
\end{aligned}
$$

(1) mark

Suggested solutions) Question 13
(a)

$$
\begin{aligned}
& f(x)=4 x^{3}-27 x+16 \\
& p^{\prime}(x)=12 x^{2}-27
\end{aligned}
$$

for decuple root $12 x^{2}-27=0$

$$
x^{2}=\frac{27}{12}=\frac{9}{4}
$$

$$
x= \pm \frac{3}{2}
$$

(1) mark
when $x=\frac{3}{2} \quad P(x)=4 \times \frac{27}{82}-27 \times \frac{3}{2}+k$

$$
\begin{aligned}
& k=27 \\
&=-27 \times \frac{2}{2}+k \\
& x=-\frac{3}{2} \quad P(x)=-\frac{k \times 27}{28}+\frac{27}{2} 73+k \\
&=\frac{\pi}{2} \times 27+k
\end{aligned}
$$

$k=-27^{2}$ (1) mark
(b) $x^{3}-5 x^{2}+5=0$
(i) roots α, β, γ

Equal with roots $\alpha-1, \beta-1, \gamma=1$

$$
\begin{gathered}
y=x-1 \quad x=1+y \\
(1+y)^{3}-5(1+y)^{2}+5=0 \text { (1) mark } \\
y^{3}+3 y^{2}+3 y+1-5-10 y-5 y^{2}+5=0 \\
y^{3}-2 y^{2}-7 y+1=0 \text { (Dak }
\end{gathered}
$$

(ii) for pacts $\alpha^{2}, \beta^{2}, \gamma^{2}$

$$
\begin{aligned}
& y=x^{2} \Rightarrow x=\sqrt{y} \nless 1 \text { mark } \\
& \left(y^{\frac{1}{2}}\right)^{3}-5\left(y^{\frac{1}{2}}\right)^{2}+5=0 \\
& y^{\frac{3 / 2}{2}}-5 y+5=0 \\
& y^{\frac{3}{2}}=5 y-5 \\
& y^{3}=25 y^{2}-50 y+25 \\
& y^{3}-25 y^{2}+50 y-25=0 \text { (marka }
\end{aligned}
$$

(b) (iii) for roots $\alpha^{3}+\beta^{3}+\delta^{3}$

$$
\begin{aligned}
& \alpha^{3}=5 \alpha^{2}+5=0 \\
& \beta^{3}-5 \beta^{2}+5=0 \\
& \gamma^{3}-5 \gamma^{2}+5=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}-5\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+15=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=5\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-15
\end{aligned}
$$

(1) man k

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\beta)^{2}-2(\alpha \beta+\alpha \gamma+\beta 5) \\
& =5^{2}-2 \times 0 \\
& =25 \\
\therefore \alpha^{3}+\beta^{3}+\gamma^{3} & =5 \times 25-15 \\
& =110 \text { (1) mark }
\end{aligned}
$$

(c)
(i) $y=a x$

$$
\begin{equation*}
y=x(x-a)=x^{2}-a x \text { (2) } \tag{11}
\end{equation*}
$$

equate $(1) \geqslant(2)$

$$
\begin{aligned}
& x^{2}=2 a x=0 \\
& x(x-2 a)=0 \\
& x=0,2 a
\end{aligned}
$$

when $x=0, y=0$

$$
x=2 a y=2 a^{2}
$$

pts $(0, \infty)\left(\gamma a, z a^{2}\right)(1)$ mark

Suggested solution(s) Question 13
(c) $S V=\underbrace{2 \pi}+h, S x$ (1)made for r curued sunface area of cyghnder Dary

$$
\begin{aligned}
\delta V & =2 \pi(2 a+x)\left(y_{1}-y_{2} \delta x\right. \text { (Dmank } \\
& =2 \pi(2 a+x)\left(a x-x^{2}+a x\right) \delta x \\
V & =2 \pi \int_{0}^{2 a}(2 a+x)\left(2 a x-x^{2}\right) d x \text { (Dmank } \\
& =2 \pi \int_{0}^{2 a} 4 a^{2} x+2 a x^{2}-3 a^{2}-x^{3} d x \\
& =2 \pi\left[24 a^{2} \frac{x^{2}}{x}-\frac{x^{4}}{4}\right]_{0}^{2 a} \text { (i)manke } \\
& =2 \pi\left[2 a^{2} \times 4 a^{2}-\frac{16 a^{4}}{4}\right] \\
& =2 \pi\left(8 a^{4}-4 a^{4}\right) \\
& =8 \pi a^{4} \text { cu-unita (Dmaxk }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suggested solution(s) Ruest } 14 \\
& \text { (a)(i) } z^{5}=-1=\operatorname{iss}(\pi+2 \pi k) \\
& z=\operatorname{is}\left(\frac{\pi+2 \pi^{k}}{5}\right) \text { (1) mank } \\
& k=0 \\
& k=1 \\
& k=-1 \\
& z=\cos \frac{\pi}{5} \\
& k=2 \\
& z=\cos \frac{3 \pi}{5} \\
& k=-2 \\
& z=\operatorname{is} \frac{5}{5} \\
& \text { (1)marke } \\
& k=-2 \quad z=i s-\frac{3 \pi}{5}
\end{aligned}
$$

comments

(b)

$$
\begin{aligned}
& \left.I_{n}=\int_{0}^{1} x^{2 n+1} e^{x^{2} d x,} \begin{array}{l}
u=x^{2 n}, v=x e^{x} \\
u^{1}=2 n x^{2 n-1}, v=\frac{1}{2} e^{2} \\
I_{n}
\end{array} x^{2} \frac{1}{2} x^{2 n} \cdot e^{x^{2}}\right]_{0}^{1}-\int_{0}^{1} n x^{2 n-1} e^{x^{2}} d o c \\
& =\frac{1}{2} e-n \int_{0}^{1} x^{2 n-1} e^{x^{2}} d x \text { (Dmavbe } \\
& I_{n}=\frac{e}{2}-n I_{n-1}
\end{aligned}
$$

bo (ii)

$$
\begin{aligned}
I_{2} & =\frac{e}{2}-2 I, \\
I_{1} & =\frac{e}{2}-I_{0} \quad \text { (1) mark for } \\
I_{0} & =\int_{0}^{1} x e^{x^{2}} d x \quad \text { patters } \\
& =\left[\frac{1}{2} e^{x^{2}}\right]_{0}^{1}=\frac{1}{2} e-\frac{1}{2} \\
I_{1} & =\frac{e}{2}-\frac{\pi}{2}+\frac{1}{2} \\
I_{2} & =\frac{e}{2}-2 \times \frac{1}{2}=\frac{e}{2}-1 \text { (1) mark }
\end{aligned}
$$

(c) $5 x^{2}-y^{2}+4 x y=18$
(i)

$$
\begin{aligned}
& 10 x-2 y \frac{d y}{d x}+4 y+4 x \frac{d y}{d x}=0 \\
& \frac{d y}{d x}(4 x-2 y)=-10 x-4 y \\
& \frac{d y}{d x}=\frac{10 x+4 y}{2 y-4 x}=\frac{5 x+2 y}{y-2 x}
\end{aligned}
$$

for stat pt $5 x+2 y=0$ (1) mark

$$
\begin{aligned}
& y=-\frac{5}{2} x \\
& 5 x^{2}-\frac{25}{4} x^{2}-4 x \times \frac{5}{2} x=18 \\
& 5 x^{2}-\frac{25}{4} x^{2}-10 x^{2}=18 \\
& \text { no real solutions }
\end{aligned}
$$

(ii) for vent tangents $y-2 x=0$

$$
\begin{gathered}
5 x^{2}-4 x^{2}+4 x \times 2 x=18 \\
13 x^{2}-4 x^{2}=18 \\
x= \pm \sqrt{2} y= \pm 2 \sqrt{2} \text { (1) manila } \\
\end{gathered}
$$

(i) (iii) when $x=0 \quad-y^{2}=18$
\therefore no y intencepto
when $y=0 \quad 5 x^{2}=18$

$$
x= \pm \sqrt{\frac{18}{5}}
$$

(iv) Sor oblique asyenptates

$$
\begin{aligned}
& 5 x-\frac{y}{x}+4 y=\frac{18}{y} \text { Dinade } \\
& \begin{aligned}
\text { as } x & \rightarrow \infty \quad 5 x+4 y>0 \\
& \frac{5 x^{2}}{y}-y+4 x=\frac{18}{y}
\end{aligned} \\
& \operatorname{aos} y \rightarrow \infty \quad-y+4 x \rightarrow 0 \\
& 4 x-y \pm 0 \text { axpmptate } \\
& \text { (1) marda. }
\end{aligned}
$$

(a)

$$
\begin{gathered}
x y=c^{2} \\
y+x \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{y}{x}
\end{gathered}
$$

(1) mark
at $\left(c q, \frac{c}{q}\right)$ equation of tang.

$$
\begin{aligned}
& \frac{y-\frac{c}{q}}{x-c q}=-\frac{c}{q} \\
& \frac{y-\frac{c}{q}}{x-c q}=-\frac{1}{q^{2}} \\
& q^{2} y-c q=-x+c q \\
& x+q^{2} y=z q
\end{aligned}
$$

(1)manke
(b)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{2 x}{a^{2}} \div \frac{2 y}{b^{2}} \\
&=\frac{b^{2} x}{a^{2} y} \quad \text { (Dinarle. }
\end{aligned}
$$

at $P\left(x_{1}, y_{1}\right)$ squat of tangent

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=\frac{b^{2} x_{1}}{a^{2} y_{1}}=b^{2} x_{1}-b^{2} x_{1}^{2} \\
& a^{2} y y_{1}-a^{2} y_{1}^{2}=b^{2} \\
& b^{2} x x_{1}-a^{2} y y_{1}=b^{2} x_{2}^{2}-a^{2} y_{1}^{2} \\
& \frac{x x_{1}-\frac{y y_{1}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}}{\text { ie } \frac{x x_{1}}{a^{2}}-\frac{y^{y_{1}}}{b^{2}}=1} \text { (1) mark }
\end{aligned}
$$

(b) Similarly tangent than Q

$$
\infty \frac{x x_{2}}{a^{2}}-\frac{y y_{z}}{b^{2}}=1
$$

If $T\left(x_{0}, y_{0}\right)$ satisfies both equate
then $\frac{x_{0} x_{2}}{a^{2}}-\frac{y_{0} y_{z}}{b^{2}}=1$ (1) mark

$$
\text { and } \frac{x_{0} x_{1}}{a^{2}}-\frac{y_{0} y_{1}}{b^{2}}=1
$$

then $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$ satisfies
$P \nsim Q$ Dials

* hence it ∞ chord of contact
(iii) If $P Q$ passes thu $S($ ae, 0$)$

$$
\frac{a e x_{0}}{a^{2}}-0=1
$$

$$
x_{0}=\frac{a}{e} \text { which i }
$$ on directrix

(c) $\quad \dot{x}=-\frac{b}{x^{3}}$
(i) U $\uparrow \downarrow g$ when $x=R \quad \ddot{x}=-g$
(ii) $\quad \ddot{x}=-\frac{g R^{3}}{x^{3}}$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=-9 R^{3} x^{-3} \quad(1) \text { mask } \\
& \frac{1}{2} v^{2}=9 \frac{R^{3}}{2} x^{-2}+c
\end{aligned}
$$

when $x=R, v=u$

$$
\begin{array}{r}
\text { en } x=R, v=u \\
\frac{u^{2}}{2}=\frac{g R}{2}+c \\
c=\frac{u^{2}-g R}{2}
\end{array} \quad \text { (D) mark } .
$$

$v^{2}=\frac{g R^{3}}{x^{2}}+u^{2}-g R$ (1) mark.

$$
v^{2}=\frac{g R^{3}}{x^{2}}-\left(g R-u^{2}\right)
$$

(iii) $x=\sqrt{R^{2}+2 u R t-\left(g R-u^{2}\right) t^{2}}$

If $u \geqslant \sqrt{g R}$

$$
u^{2} \geqslant g R
$$

(1) mark

$$
\begin{aligned}
& \geq g R<\sqrt{R^{2}+2 u R t+c t^{2}} \\
& \text { then } x=c \geqslant 0
\end{aligned}
$$

where $c \geqslant 0$ (1)mquth
$\therefore x>R$ particle docs not return
(iv) $j v^{2}=\frac{g R^{3}}{x^{2}}-\left(g R-u^{2}\right)$
when $x=D \quad v=0$

$$
\begin{aligned}
& 0=\frac{g R^{3}}{D^{2}}-\left(g R-u^{2}\right) \\
& \frac{g R^{3}}{D^{2}}=g R-u^{2} \\
& D^{2}=\frac{g R^{3}}{g R-u^{2}} \\
& D=\frac{+\sqrt{\frac{g R^{3}}{g R-u^{2}}}}{*} \text { (1)mark }
\end{aligned}
$$

2) for time taken $x=R$

$$
\begin{aligned}
& R=\sqrt{R^{2}+2 u R t-\left(g R-u^{2}\right) t^{2}} \\
& R^{2}=R^{2}+2 u R t-\left(g R-u^{2}\right) t^{2} \\
& \left(g R-u^{2}\right) t^{2} \not 2 u R t=0 \\
& t\left[\left(g R-u^{2}\right) t-2 u R\right]=0
\end{aligned}
$$

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solution(s)
(a)

$$
\begin{aligned}
\omega & =30 \times 2 \pi \mathrm{xad} / \mathrm{sec}=60 \pi \\
v=\lambda \omega & =1800 \pi \mathrm{~cm} / \mathrm{sec} . \\
a=\lambda \omega^{2} & =30 \times(60 \pi)^{2} \quad \text { marb } \\
& =108,000 \pi^{2} \mathrm{cens}^{-2}
\end{aligned}
$$

(b) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(i)

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{2 x}{a^{2}} \div \frac{2 y}{b^{2}} \\
& =-\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

(1) mank
equat of noumal at P

$$
\begin{aligned}
\frac{y-y_{0}}{x-x_{0}} & =+\frac{y_{0}}{x_{0}} \frac{a^{2}}{b^{2}} \text { (1)mark2 } \\
& \therefore y-y_{0}=\frac{a^{2} y_{0}}{b^{2}-x_{0}}\left(x-x_{0}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\operatorname{tar} y & =0 \\
-y_{0} & =\frac{a^{2}}{b^{2}} \frac{y_{0}}{x_{0}}\left(x-x_{0}\right) \\
-b^{2} x_{0} & =a^{2} x-a^{2} x_{0} \\
a^{2} x & =a^{2} x_{0}-b^{2} x_{0} \\
x & =x_{0}\left(\frac{a^{2}-b^{2}}{a^{2}}\right) \\
x & =e^{2} x_{0} \quad \text { (1) mank }
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \frac{P S}{P M}=e=\frac{P S^{\prime}}{P M^{\prime}} \quad(D \text { mark } \\
& \frac{P S}{P S^{\prime}}=\frac{P M}{P M^{\prime}}=\frac{\frac{a}{e}-x_{0}}{\frac{a}{e}+x_{0}} \\
& \frac{N S}{N S^{\prime}}=\frac{a e^{2}-e^{2} x_{0}}{a e+e^{2} x_{0}}=\frac{\frac{a}{e}-x_{0}}{\frac{a}{e}+x_{0}} \\
& \therefore \frac{P S}{P S^{\prime}}=\frac{N S}{N S^{\prime}}
\end{aligned}
$$

iv) in $\triangle S^{\prime} P N$

$$
\begin{align*}
& \frac{\sin \alpha}{N S^{\prime}}=\frac{\sin P N S^{\prime}}{P S^{\prime}} \tag{1}\\
& \text { in } \triangle S P N \\
& \frac{\sin \beta}{N S}=\frac{\sin P N S}{P S}
\end{align*}
$$

but $\sin P N S=\sin P N S^{\prime}$
(1) mark

$$
\therefore \quad \begin{aligned}
\sin \alpha \frac{P S^{\prime}}{N S^{\prime}} & =\sin \beta \frac{P S}{N S} \\
\sin \alpha \frac{P S^{\prime}}{P S} & =\frac{N S^{\prime} \sin \beta(1) \operatorname{man} \alpha}{N S} \\
\text { ie } \sin \alpha & =\sin \beta \text { from (iii) } \\
i e \alpha & =\beta
\end{aligned}
$$

(c)(i) $\omega=\frac{2 \pi}{24 \times 3600} \doteqdot 7.3 \times 10^{-5} \mathrm{rad}, \mathrm{s}^{-1}$
(ii) $F=k \frac{M m}{x^{2}}$

Suggested Solutions, Marking Scheme and Markers' comments
quit 16
comments
C(ii) (contin) at earths surface

$$
\begin{gathered}
R=6400 \mathrm{bm} F=m g \\
\begin{array}{c}
m g=\frac{k M m}{R^{2}} \quad(1) \operatorname{man} 2 \\
=9 R^{2} \\
=9.8 \times(6400 \times 1000)^{2} \\
=
\end{array} \\
\begin{array}{c}
=9.8 \times\left(6.4 \times 10^{6}\right)^{2} \\
x^{2}
\end{array}
\end{gathered}
$$

(1) mark.
for satellite in uniform motion

$$
\text { if } x w^{2}=\frac{9.8 \times\left(6.4 \times 10^{6}\right)^{2} \text { h }}{x}
$$

(iii) Hence $x^{3}=\frac{9.8 \times\left(6-4 \times 10^{6}\right)^{2}}{\left(7.3 \times 10^{-5}\right)^{2}}$

$$
\begin{aligned}
x & \approx 4.22 \times 10^{7} \mathrm{~m} \\
& =422 \mathrm{G} \text { ben } 0 \text { mark } \\
(i v) \quad v & =x u 0 \text { oookm } \\
& =42200 \times 7.3 \times 10^{-5} \text { ben } 5^{-1} \\
& =3 \text { bens }{ }^{-1}
\end{aligned}
$$

