

# Year 12 Mathematics Extension 2 HSC Trial Examination 2015

### **General Instructions**

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- In questions 11 16, show all relevant reasoning and/or calculations

### Total marks – 100



#### 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section



#### 90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

# DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

# Section I

# 10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Evaluate 
$$\int \frac{dx}{x^2 - 4x + 13}$$
  
(A)  $\frac{1}{3} \tan^{-1}\left(\frac{x-2}{3}\right) + C$   
(B)  $\frac{2}{3} \tan^{-1}\left(\frac{x-2}{3}\right) + C$   
(C)  $\frac{1}{3} \tan^{-1}\left(\frac{2x-4}{3}\right) + C$   
(D)  $\frac{2}{3} \tan^{-1}\left(\frac{2x-4}{3}\right) + C$ 

2. The foci of the hyperbola 
$$\frac{y^2}{8} - \frac{x^2}{12} = 1$$
 are:

- (A)  $(\pm 2\sqrt{5}, 0)$
- (B)  $(\pm\sqrt{30},0)$ )
- (C)  $(0, \pm 2\sqrt{5})$
- (D)  $(0, \pm\sqrt{30}))$

3. The gradient of the curve  $xy - x^2 + 3 = 0$  at the point when x = 1 is:

- (A) –4
- (B) -1
- (C) 1
- (D) 4

4.

The region bounded by the curves  $y = x^2$  and  $y = x^3$  in the first quadrant is rotated about the *y*-axis. The volume of the solid of revolution formed can be found using:

(A) 
$$V = \pi \int_0^1 \left( y^{\frac{1}{3}} - y^{\frac{1}{2}} \right) dy$$

(B) 
$$V = \pi \int_0^1 \left( y^{\frac{1}{2}} - y^{\frac{1}{3}} \right) dy$$

(C) 
$$V = \pi \int_0^1 \left( y^{\frac{2}{3}} - y \right) dy$$

(D) 
$$V = \pi \int_0^1 (x^4 - x^6) dx$$

5. The five fifth roots of  $1 + \sqrt{3}i$  are:

(A) 
$$2^{\frac{1}{5}} cis \left(\frac{2k\pi}{5} + \frac{\pi}{15}\right), k = 0, 1, 2, 3, 4$$

(B) 
$$2^5 \operatorname{cis} \left(\frac{2k\pi}{5} + \frac{\pi}{15}\right), k = 0, 1, 2, 3, 4$$

(C) 
$$2^{\frac{1}{5}} cis \left(\frac{2k\pi}{5} + \frac{\pi}{30}\right), k = 0, 1, 2, 3, 4$$

(D) 
$$2^5 cis \left(\frac{2k\pi}{5} + \frac{\pi}{30}\right), k = 0, 1, 2, 3, 4$$

- 6. The locus of a complex number z is the line 4x 3y 12 = 0What is the minimum value of |z|?
  - (A)  $\frac{12}{5}$ (B) 3 (C) 4 (D) 5

7. The diagram of y = f(x) is drawn below.



Which of the diagrams below best represents  $y = \sqrt{f(x)}$ 











8. An object of mass 5kg is tied to a piece of rope, 3 metres in length, which has a breaking strain of 240N.

The rope is then swung in a horizontal circle. What is the angular velocity of the object at the moment the rope breaks?

- (A) 2
- (B) 4
- (C) 8
- (D) 16

9. What is the remainder when  $P(x) = x^3 + x^2 - x + 1$  is divided by (x - 1 - i)?

- (A) -3i 2
- (B) 3i 2
- (C) 3i + 2
- (D) 2-3*i*
- 10. Solve the inequality:  $\frac{x+1}{x-3} \le \frac{x+3}{x-2}$ .
  - (A) x < 2 and x > 3
  - (B) x < 2 and  $3 < x \le 7$
  - (C) 2 < x < 3
  - (D)  $2 < x < 3 \text{ and } x \ge 7$

## End of Section I

## Section II

### 90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Let  $A = 3 + 3\sqrt{3}i$  and B = -5 - 12i. Find the value of:

| (i)   | $\bar{B}$                     | 1 |
|-------|-------------------------------|---|
| (ii)  | $\frac{A}{B}$                 | 2 |
| (iii) | $\sqrt{B}$                    | 2 |
| (iv)  | The modulus and argument of A | 2 |
| (v)   | $A^4$                         | 1 |

- (b) The roots of the polynomial equation  $2x^3 3x^2 + 4x 5 = 0$  are  $\alpha$ ,  $\beta$  and  $\gamma$ . Find the polynomial equation which has roots:
  - (i)  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$  and  $\frac{1}{\gamma}$ . 2
  - (ii)  $2\alpha, 2\beta$  and  $2\gamma$ . **2**

(c) Find 
$$\int \frac{dx}{\sqrt{9 + 16x - 4x^2}}$$
.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate 
$$\int_{0}^{\frac{\sqrt{\pi}}{2}} 3x \sin(x^{2}) dx$$
.  
(b) (i) Find the values of *A*, *B*, and *C* such that:  

$$\frac{4x^{2} - 3x - 4}{x^{3} + x^{2} - 2x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 2}$$
(ii) Hence evaluate 
$$\int \frac{4x^{2} - 3x - 4}{x^{3} + x^{2} - 2x} dx$$
(c) Solve the equation  $x^{4} - 7x^{3} + 17x^{2} - x - 26 = 0$ , given that  $x = (3 - 2i)$  is a **3** root of the equation.  
(d) (i) Show that the equation of the tangent at the point  $P(ct, \frac{c}{t})$  on the rectangular hyperbola  $xy = c^{2}$  is  $x + t^{2}y - 2ct = 0$ .

(iii) Prove that the area of the triangle *OAB* is a constant, where *O* is the origin. **1** 

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The graph of y = f(x) is shown below.



Draw separate sketches for each of the following:

(i) 
$$y = |f(x)|$$
 1

(ii) 
$$y = \frac{1}{f(x)}$$
 2

(iii) 
$$y^2 = f(x)$$
 **2**

$$(iv) y = e^{f(x)} 2$$

(b) Show that the equation of the normal to the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  at the point **3**  $P(x_1, y_1)$  is given by the equation:  $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$ .

# Question 13 continues on the next page.

- (c) A particle of unit mass is projected vertically upwards. The resistance to the motion is proportional to the square of the velocity. The velocity of projection is *V*.
  - (i) Show that the acceleration is given by:  $\ddot{x} = -(g + kv^2)$ .
  - (ii) Show that the maximum height *H* reached is:

$$H = \frac{1}{2k} \ln\left\{\frac{(g+kV^2)}{(g)}\right\}$$

(iii) Show that *T*, the time taken to reach *H* is:

$$T = \frac{1}{\sqrt{kg}} \tan^{-1}\left(\frac{\sqrt{k}}{\sqrt{g}}\right) V$$

# End of Question 13

2

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Show that: 
$$\frac{\cos A - \cos(A + 2B)}{2\sin B} = \sin(A + B).$$

(b) A mass of 5kg, on the end of a string 0.5 metre long, is rotating in a conical pendulum with angular velocity  $2\pi$  radians per second. Use  $g = 10m / s^2$  and let  $\theta$  be the angle that the string makes with the vertical.

(i) Draw a diagram showing all the forces acting on the mass.

1

2

1

- (ii) By resolving forces, find the tension in the string.
- (iii) Find  $\theta$ , correct to the nearest degree.

(c) A sequence is defined such that 
$$u_1 = 1, u_2 = 1$$
 and  $u_n = u_{n-1} + u_{n-2}$  for  $n \ge 3$ .

Prove by induction that 
$$u_n < \left(\frac{7}{4}\right)^n$$
 for integers  $n \ge 1$ .

(d) Use the method of cylindrical shells to find the volume of the solid generated by revolving the region enclosed by  $y = 3x^2 - x^3$  and the *x* axis around the *y*-axis. **4** 

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Derive the reduction formula:

(b)

$$\int x^n e^{-x^2} dx = -\frac{1}{2} x^{n-1} e^{-x^2} + \frac{n-1}{2} \int x^{n-2} e^{-x^2} dx$$

(ii) Use this reduction formula to evaluate  $\int_{0}^{1} x^{5} e^{-x^{2}} dx$ 



The diagram above shows a solid which has the circle  $x^2 + y^2 = 9$  as its base.

The cross-section perpendicular to the x axis is an equilateral triangle.

(i) Show that the area of a triangle is given by:  $Area = \sqrt{3} (9 - x^2)$  2

2

(ii) Hence or otherwise find the volume of the solid.

# Question 15 continues on the next page.

2

2

- (c) Given that  $x^4 6x^3 + 9x^2 + 4x 12 = 0$ , has a double root at  $x = \alpha$ , find the value of  $\alpha$ .
- (d) If z represents the complex number x + iy, sketch the regions:

(i) 
$$|\arg z| < \frac{\pi}{4}$$
 2

3

(ii)  $Im(z^2) = 4$  2

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the hyperbola with equation  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  where a > b.

- (i) Show that the equation of the tangent at the point  $P(asec \ \theta, btan \ \theta)$  has the equation  $bxsec \ \theta aytan \ \theta = ab$ .
- (ii) Find the equation of the normal at *P*.
- (iii) Find the coordinates of the points *A* and *B* where the tangent and normal respectively cut the *y*-axis. **2**

2

- (iv) Show that *AB* is the diameter of the circle that passes through the foci of the hyperbola. **3**
- (b) Five letters are chosen from the letters of the word *CHRISTMAS*.
   2 These five letters are then placed alongside one another to form a five letter arrangement.
   Eind the number of distinct five letter arrangements which are possible, considering

Find the number of distinct five letter arrangements which are possible, considering all choices.

# Question 16 continues on the next page.

(c) In the diagram below, *PA* and *PB* are tangents to the circle. The chord *AQ* is parallel to the tangent *PB*. *PCQ* is a secant to the circle and chord *AC* produced meets *PB* at *D*.



i) Show that  $\triangle CDP$  is similar to  $\triangle PDA$ .

ii) Show that  $PD^2 = AD \times CD$  and hence, or otherwise, prove that AD bisects **2** *PB*.

2

# End of Examination.

**BLANK PAGE** 

# STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:  $\ln x = \log_e x$ , x > 0

| Multiple Choice Worked Solutions |                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| No                               | Working                                                                                                                                                                                                                                                                                                                                                                                   | Answer |  |  |
| 1                                | $\int \frac{dx}{x^2 - 4x + 13} = \int \frac{dx}{x^2 - 4x + 4 + 9}$<br>= $\int \frac{dx}{(x - 2)^2 + 9}$<br>= $\frac{1}{3} \tan^{-1} \left(\frac{x - 2}{3}\right) + C$                                                                                                                                                                                                                     | Α      |  |  |
| 2                                | $\frac{y^2}{8} - \frac{x^2}{12} = 1$<br>$a = 2\sqrt{2}, b = 2\sqrt{3}$<br>$b^2 = a^2 (e^2 - 1)$<br>$(2\sqrt{3})^2 = (2\sqrt{2})^2 (e^2 - 1)$<br>$12 = 8(e^2 - 1)$<br>$\frac{12}{8} = e^2 - 1$<br>$e^2 = \frac{20}{8} = \frac{10}{4}$<br>$e = \frac{\sqrt{10}}{2}$<br>Foci = $(0, \pm ae) = (0, \pm 2\sqrt{2}(\frac{\sqrt{10}}{2})) = (0, \pm\sqrt{20}) = (0, \pm 2\sqrt{5})$              | С      |  |  |
| 3                                | $ \begin{array}{l} xy - x^2 + 3 = 0 \\ x \frac{dy}{dx} + y - 2x = 0 \\ x \frac{dy}{dx} = 2x - y \\ \frac{dy}{dx} = \frac{2x - y}{x} \end{array} \qquad $                                                                                                           | D      |  |  |
| 4                                | y<br>y<br>y<br>y<br>y<br>y = x <sup>3</sup> $\rightarrow x = y^{\frac{1}{3}}$<br>y = x <sup>2</sup> $\rightarrow x = y^{\frac{1}{2}}$<br>$y = x^{2} \rightarrow x = y^{\frac{1}{2}}$<br>$V = \pi \int_{0}^{1} \left[ \left( y^{\frac{1}{3}} \right)^{2} - \left( y^{\frac{1}{2}} \right)^{2} \right] dy$<br>$= \pi \int_{0}^{1} \left( y^{\frac{2}{3}} - y \right) dy$<br>$\rightarrow x$ | С      |  |  |
| 5                                | $z^{5} = 1 + \sqrt{3}i$ $R = \sqrt{1^{2} + (\sqrt{3})^{2}} = 2$ $Arg \ z: \ tan^{-1} (\sqrt{3}) = \frac{\pi}{3}$ $z = 2^{\frac{1}{5}} cis \left(\frac{2k\pi}{5} + \frac{\pi}{15}\right), k = 0, 1, 2, 3, 4$                                                                                                                                                                               | Α      |  |  |

# 2015 Extension 2 Trial solutions

| 6  | z  represents the length of the vector from                                                          | Α |
|----|------------------------------------------------------------------------------------------------------|---|
|    | the origin to z.                                                                                     |   |
|    | Hence the minimum distance from the origin                                                           |   |
|    | to z is the perpendicular distance from $(0, 0)$                                                     |   |
|    | to $4x - 3y - 12 = 0$                                                                                |   |
|    | $d = \left  \frac{0+0-12}{\sqrt{4^2 + (-3)^2}} \right  = \left  \frac{12}{5} \right  = \frac{12}{5}$ |   |
| 7  | Graph A                                                                                              | Α |
| 8  | $F = mr\omega^2$                                                                                     |   |
|    | $240 = 5 \times 3 \times \omega^2$                                                                   |   |
|    | $240 = 15\omega^2$                                                                                   | В |
|    | $16 = \omega^2$                                                                                      |   |
|    | $\omega = 4$                                                                                         |   |
| 9  | $P(x) = x^{3} + x^{2} - x + 1$ is divided by $(x - 1 - i)$                                           |   |
|    | Let $x = 1 + i$                                                                                      |   |
|    | $x^{2} = (1+i)^{2} = 1 + 2i + i^{2} = 2i$                                                            |   |
|    | $x^{3} = 2i(1+i) = 2i + 2i^{2} = 2i - 2$                                                             |   |
|    |                                                                                                      | В |
|    | Remainder = $P(1 + i) = 2i - 2 + 2i - (1 + i) + 1$                                                   |   |
|    | =4i-1-1-i                                                                                            |   |
|    | = 3i - 2                                                                                             |   |
| 10 | x+1 $x+3$                                                                                            |   |
|    | $\overline{x-3} \leq \overline{x-2}$                                                                 |   |
|    | $x \neq 3 \text{ or } 2$                                                                             |   |
|    | Then $(x+1)(x-2) = (x+3)(x-3)$                                                                       |   |
|    | $x^2 - 2x + x - 2 = x^2 - 9$                                                                         | D |
|    | $x^2 - x - 2 = x^2 - 9$                                                                              |   |
|    | -x = -7                                                                                              |   |
|    | x = 7                                                                                                |   |
|    | By inspection,                                                                                       |   |
|    | $2 < x < 3 \cap x \ge 7$                                                                             |   |

| 1.  | A 🌰            | B 🔿 | C () | DO  |
|-----|----------------|-----|------|-----|
| 2.  | $A \bigcirc$   | вO  | С 🔴  | D 🔿 |
| 3.  | $A \bigcirc$   | B 🔿 | C 🔿  | D 🔴 |
| 4.  | $A \bigcirc$   | вO  | С 🔴  | D 🔿 |
| 5.  | A $lacksquare$ | вO  | C () | D 🔿 |
| 6.  | $A \bigcirc$   | B 🔿 | С 🔴  | D 🔿 |
| 7.  | A ●            | вO  | C () | D 🔿 |
| 8.  | $A \bigcirc$   | В   | C 🔿  | D 🔿 |
| 9.  | $A \bigcirc$   | В 🔴 | C 🔿  | D 🔿 |
| 10. | A 🔿            | вO  | C () | D 🔴 |

| Question 11 |                                                                                                                                                                                                                                                                                                                                                                               | 2015  |                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
|             | Solution                                                                                                                                                                                                                                                                                                                                                                      | Marks | Allocation of marks         |
| (a)         | $A = 3 + 3\sqrt{3}i \text{ and } B = -5 - 12i.$<br>(i) $\bar{B} = -5 - 12i$<br>= -5 + 12i                                                                                                                                                                                                                                                                                     | 1     | Answer                      |
|             | (ii) $\frac{A}{B} = \frac{3+3\sqrt{3}i}{-5-12i}$<br>$\frac{A}{-3} = \frac{3+3\sqrt{3}i}{-5+12i} \times \frac{-5+12i}{-5+12i}$                                                                                                                                                                                                                                                 | 2     | 1 – correct product         |
|             | $= \frac{-5-12i}{-5-12i} = \frac{-15+36i-15\sqrt{3}i-36\sqrt{3}}{25-144i^2} = \frac{(-15-36\sqrt{3})+(36-15\sqrt{3})i}{169}$                                                                                                                                                                                                                                                  |       | 1 – correct answer          |
|             | (iii) $\sqrt{B} = \sqrt{-5 - 12i}$<br>Let $(x + iy)^2 = -5 - 12i$<br>$\therefore x^2 + 2ixy - y^2 = -5 - 12i$<br>$\therefore x^2 - y^2 = -5$ (1)<br>and $2xy = -12$                                                                                                                                                                                                           | 2     | 1 – working                 |
|             | $(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + 4ixy$<br>= (-5) <sup>2</sup> + (-12) <sup>2</sup><br>= 169<br>$\therefore x^{2} + y^{2} = 13 - \dots (2)$<br>(1) + (2)<br>$2x^{2} = 8 \rightarrow x^{2} = 4 \rightarrow x = \pm 2$<br>(2) - (1)<br>$2y^{2} = 18 \rightarrow y^{2} = 9 \rightarrow y = \pm 3$<br>Since $2xy = -12$<br>$\sqrt{B} = \sqrt{-5 - 12i} = \pm (2 - 3i)$ |       | 1 – Answer                  |
|             | (iv) Modulus $(r) = \sqrt{(3)^2 + (3\sqrt{3})^2} = \sqrt{36} = 6$<br>Argument: $tan \theta = \frac{3\sqrt{3}}{3} = \sqrt{3}$ , $\theta = \frac{\pi}{3}$                                                                                                                                                                                                                       | 2     | 1 - modulus<br>1 - argument |
|             | (v) $A^4 = \left(6 \operatorname{cis} \frac{\pi}{3}\right)^4 = 1296 \operatorname{cis} \frac{4\pi}{3} = 1296 \operatorname{cis} \frac{-2\pi}{3}$                                                                                                                                                                                                                              | 1     | Correct answer              |

| Question 11                                                                                                                                                                                                                                                                                                                                                                                                       |       | 2015                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|--|
| Solution                                                                                                                                                                                                                                                                                                                                                                                                          | Marks | Allocation of marks                                                        |  |
| (b) (i) $2x^3 - 3x^2 + 4x - 5 = 0$<br>Let $X = \frac{1}{x}$ , $\therefore x = \frac{1}{x}$<br>Therefore equation is $2\left(\frac{1}{x}\right)^3 - 3\left(\frac{1}{x}\right)^2 + 4\left(\frac{1}{x}\right) - 5 = 0$<br>i.e. $\frac{2}{X^3} - \frac{3}{X^2} + \frac{4}{x} - 5 = 0$<br>Multiply by $X^3$<br>$2 - 3X + 4X^2 - 5X^3 = 0$<br>ie $5x^3 - 4x^2 + 3x - 2 = 0$                                             | 2     | <ul> <li>1 – correct substitution</li> <li>1 – correct equation</li> </ul> |  |
| (ii)) $2x^3 - 3x^2 + 4x - 5 = 0$<br>Let $X = 2x$ $\therefore x = \frac{x}{2}$<br>Therefore equation is<br>$2\left(\frac{X}{2}\right)^3 - 3\left(\frac{X}{2}\right)^2 + 4\left(\frac{X}{2}\right) - 5 = 0$<br>$2\left(\frac{X^3}{8}\right) - 3\left(\frac{X^2}{4}\right) + \frac{4X}{2} - 5 = 0$<br>$\frac{X^3}{4} - \frac{3X^2}{4} + 2X - 5 = 0$<br>$X^3 - 3X^2 + 8X - 20 = 0$<br>i.e. $x^3 - 3x^2 + 8x - 20 = 0$ | 2     | 1 – correct substitution<br>1 – correct equation                           |  |

| Question 11 |                                                                                                                                                                              | 2015  |                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|
|             | Solution                                                                                                                                                                     | Marks | Allocation of marks      |
| (c)         | $\int \frac{dx}{\sqrt{9 + 16x - 4x^2}}$                                                                                                                                      |       |                          |
|             | $9 + 16x - 4x^2 = 9 - 4(x^2 - 4x)$                                                                                                                                           | 3     |                          |
|             | $= 9 - 4(x^2 - 4x + 4) + 16$                                                                                                                                                 |       |                          |
|             | $= 25 - 4(x - 2)^{2}$ $\int \frac{dx}{\sqrt{9 + 16x - 4x^{2}}} = \int \frac{dx}{\sqrt{25 - 4(x - 2)^{2}}}$ $= \frac{1}{5} \int \frac{dx}{\sqrt{1 - \frac{4}{5}(x - 2)^{2}}}$ |       | 1 – correct manipulation |
|             | $\sqrt{1-\frac{1}{25}(x-2)^2}$                                                                                                                                               |       |                          |
|             | $u = \frac{1}{5} + c$                                                                                                                                                        |       |                          |
|             | $du = \frac{2}{5}dx$                                                                                                                                                         |       |                          |
|             | $dx = \frac{5}{2} du$                                                                                                                                                        |       |                          |
|             | $= \frac{1}{5} \int \frac{\frac{5}{2} du}{\sqrt{1-u^2}}$                                                                                                                     |       | 1 – correct substitution |
|             | $= \frac{1}{2} \int \frac{du}{\sqrt{1-u^2}}$                                                                                                                                 |       |                          |
|             | $= \frac{1}{2} \sin^{-1} u$                                                                                                                                                  |       |                          |
|             | $=\frac{1}{2}sin^{-1}\left(\frac{2(x-2)}{5}\right)$                                                                                                                          |       | 1 – correct answer       |

| Question 12 |          | 201 | 2015  |                     |
|-------------|----------|-----|-------|---------------------|
|             | Solution | Ma  | larks | Allocation of marks |

| Que | Question 12                                                                                                                                                                                                                   |       | 2015                                                 |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------|--|
|     | Solution                                                                                                                                                                                                                      | Marks | Allocation of marks                                  |  |
| (a) |                                                                                                                                                                                                                               | 3     |                                                      |  |
|     | $\int_{-\infty}^{\frac{\sqrt{\pi}}{2}} 3x \sin(x^2) dx$                                                                                                                                                                       |       | USING A SUBSTITUTION                                 |  |
|     | Substitute $u = x^{2}$<br>$\frac{du}{dx} = 2x$<br>du = 2x dx                                                                                                                                                                  |       | 1 – changing limits and variable                     |  |
|     | $\frac{-du = 3x  dx}{x = 0 \implies u = 0^2 = 0}$                                                                                                                                                                             |       |                                                      |  |
|     | $x = \frac{\sqrt{\pi}}{2} \Rightarrow u = \left(\frac{\sqrt{\pi}}{2}\right) = \frac{\pi}{4}$                                                                                                                                  |       |                                                      |  |
|     | $\int_{0}^{\frac{\sqrt{\pi}}{2}} 3x \sin(x^2)  dx = \int_{0}^{\frac{\pi}{4}} \frac{3}{2} \sin u  du$                                                                                                                          |       |                                                      |  |
|     | $= \frac{3}{2} \int_{0}^{\frac{\pi}{4}} \sin u  du$ $= \frac{3}{2} \Big[ -\cos u \Big]_{0}^{\frac{\pi}{4}}$                                                                                                                   |       | 1 – integral including<br>correct limits             |  |
|     | $= -\frac{3}{2} \left( \cos\left(\frac{\pi}{4}\right) - \cos(0) \right)$ $= -\frac{3}{2} \left(\frac{1}{\sqrt{2}} - 1\right)$ $= -\frac{3}{2} \left(\frac{1 - \sqrt{2}}{\sqrt{2}}\right)$ $= \frac{3\sqrt{2} - 3}{2\sqrt{2}}$ |       | 1 – substitution and<br>simplification to get answer |  |
|     | $= \frac{6-3\sqrt{2}}{4}$ $\frac{\sqrt{\pi}}{\int_{0}^{2} 3x \sin(x^{2}) dx}$                                                                                                                                                 |       | WITHOUT A<br>SUBSTITUTION                            |  |
|     | $=-\frac{3}{2}\left[\cos\left(x^2\right)\right]_{0}^{\frac{\sqrt{\pi}}{2}}$                                                                                                                                                   |       | 1 Correct integration                                |  |
|     | $=-\frac{3}{2}\left[\cos\frac{\pi}{4}-\cos 0\right]$                                                                                                                                                                          |       | 1 correct working                                    |  |
|     | $=-\frac{3}{2}\left(\frac{1}{\sqrt{2}-1}\right)$                                                                                                                                                                              |       | Correct answer                                       |  |

| Que | Question 12                                                                                                                                                                                                                                                                                                                             |       | 2015                                                    |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|--|
|     | Solution                                                                                                                                                                                                                                                                                                                                | Marks | Allocation of marks                                     |  |
| (b) | (i) $\frac{4x^2 - 3x - 4}{x^3 + x^2 - 2x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 2}$<br>$\therefore 4x^2 - 3x - 4 = A(x - 1)(x + 2) + Bx(x + 2) + Cx(x - 1)$                                                                                                                                                                    | 2     | 1 - Working                                             |  |
|     | When $x = 0$ , $-4 = -2A$ $\therefore A = 2$<br>$x = -2$ , $18 = 6C$ $\therefore C = 3$<br>$x = 1$ , $-3 = 3B$ $\therefore B = -1$<br>$\therefore \frac{4x^2 - 3x - 4}{x^3 + x^2 - 2x} = \frac{2}{x} - \frac{1}{x - 1} + \frac{3}{x + 2}$                                                                                               |       | 1 – correct values                                      |  |
|     | (ii) $\int \frac{4x^2 - 3x - 4}{x^3 + x^2 - 2x} = \int \left(\frac{2}{x} - \frac{1}{x - 1} + \frac{3}{x + 2}\right) dx$                                                                                                                                                                                                                 |       | 1 – correct integral                                    |  |
|     | $= 2\ln x - \ln(x-1) + 3\ln(x+2) + c$                                                                                                                                                                                                                                                                                                   |       |                                                         |  |
| (c) | $x^{4} - 7x^{3} + 17x^{2} - x - 26 = 0$<br>(3 - 2 <i>i</i> ) is a factor<br>$\therefore$ (3 + 2 <i>i</i> ) is also a factor since coefficients are real<br>$\therefore$ $x^{2} - 6x + 13$ is a factor.<br>By division,<br>$x^{4} - 7x^{3} + 17x^{2} - x - 26 = (x^{2} - 6x + 13)(x^{2} - x - 2)$<br>$= (x^{2} - 6x + 13)(x - 2)(x + 1)$ | 3     | 1 – using conjugate theorem<br>Method 1<br>1 – division |  |
|     | Therefore solution to $x^4 - 7x^3 + 17x^2 - x - 26 = 0$ is:<br>$x = 3 \pm 2i, -1$ and 2<br>OR USE SUMS AND PRODUCTS OF ROOTS                                                                                                                                                                                                            |       | I – answer<br>Method 2                                  |  |
|     | $\alpha = 3 - 2i, \ \beta = 3 + 2i, \ \gamma = ?, \ \delta = ?$ $\sum \alpha = 6 + \gamma + \delta \rightarrow \gamma + \delta = 1$ $\prod \alpha = 13\gamma\delta = -26 \rightarrow \gamma\delta = -2$ $\delta = -\frac{2}{\gamma}$ so $\gamma - \frac{2}{\gamma} = 1$ $\gamma^{2} - \gamma - 2 = 0$ $\gamma = 2, -1$                  |       | 1 correct use of sums and<br>products                   |  |
|     | : roots are $3-2i, 3+2i, 2, -1$                                                                                                                                                                                                                                                                                                         |       |                                                         |  |

| Question 12 |                                                                                                                                                                                                                                                                                                                                                                             | 2015  |                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|
|             | Solution                                                                                                                                                                                                                                                                                                                                                                    | Marks | Allocation of marks                                |
| (d)         | (i) $xy = c^2$ $P\left(ct, \frac{c}{t}\right)$<br>By implicit differentiation<br>$y + x \frac{dy}{dx} = 0$<br>$\frac{dy}{dx} = -\frac{y}{x}$<br>At $P\left(ct, \frac{c}{t}\right)$<br>$\frac{dy}{dx} = -\frac{c}{t} \div ct$<br>$= -\frac{1}{t^2}$<br>$y - y_1 = m(x - x_1)$<br>$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$<br>$t^2y - ct = -x + ct$<br>$x + t^2y - 2ct = 0$ | 2     | 1 – gradient of tangent<br>1 – equation of tangent |
|             | (ii) When $y = 0$ , $x + 0 - 2ct = 0$<br>x = 2ct<br>$\therefore A(2ct, 0)$<br>When $x = 0, 0 + t^2y - 2ct = 0$<br>$y = \frac{2ct}{t^2} = \frac{2c}{t}$<br>$\therefore B\left(0, \frac{2c}{t}\right)$                                                                                                                                                                        | 2     | One mark for each coordinate                       |
|             | (iii) Now $OA = 2ct$<br>$OB = \frac{2c}{t}$<br>Area Triangle OAB $= \frac{1}{2} (2ct) \left(\frac{2c}{t}\right)$<br>$= 2c^2$ which is a constant as c is a constant.                                                                                                                                                                                                        | 1     | Correct area                                       |



| Que | Question 13                                                                                                                                                                                                                                                                                                    |       | 2014                                                                             |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|--|
|     | Solution                                                                                                                                                                                                                                                                                                       | Marks | Allocation of marks                                                              |  |
|     | (iv)<br>(-0.4, 1.49)<br>(-1, 1)<br>(-1, 1)<br>(1.5, -0.007)                                                                                                                                                                                                                                                    | 2     | 1 – correct behaviour<br>$x \to \infty$<br>1 - correct graph all coords<br>shown |  |
| (b) | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-2b^2x}{2a^2y}$ At $P(x_1, y_1)$ $\frac{dy}{dx} = \frac{-b^2x_1}{a^2y_1}$ Normal $m = \frac{a^2y_1}{b^2x_1}$                                                                                 | 3     | 1 – gradient of normal                                                           |  |
|     | $y - y_{1} = m(x - x_{1})$ $y - y_{1} = \frac{a^{2}y_{1}}{b^{2}x_{1}}(x - x_{1})$ $b^{2}x_{1}y - b^{2}x_{1}y_{1} = a^{2}y_{1}x - a^{2}y_{1}x_{1}$ $a^{2}y_{1}x - b^{2}x_{1}y = a^{2}y_{1}x_{1} - b^{2}x_{1}y_{1}$ $(\div x_{1}y_{1})$ $\therefore \frac{a^{2}x}{x_{1}} - \frac{b^{2}y}{y_{1}} = a^{2} - b^{2}$ |       | 1 use of equation<br>1 – completion of proof                                     |  |
| (c) | (i)<br>$m\ddot{x} = -mg - mkv^{2}$ $\ddot{x} = -g - kv^{2}$ $\ddot{x} = -(g + kv^{2})$                                                                                                                                                                                                                         | 1     | Correct answer                                                                   |  |

| Que | estion 13                                                                                                                                                                                                          | 2014  |                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|
|     | Solution                                                                                                                                                                                                           | Marks | Allocation of marks     |
|     | (ii) $v \frac{dv}{dx} = -(g + kv^2)$<br>$\frac{dv}{dx} = \frac{-(g + kv^2)}{v}$                                                                                                                                    | 4     |                         |
|     | $\frac{dx}{dv} = -\frac{v}{(g+kv^2)}$ $x = \int -\frac{v}{(g+kv^2)} dv$ $x = -\frac{1}{2k} \int \frac{2kv}{(g+kv^2)} dv$ $x = -\frac{1}{2k} \ln(a+kv^2)$                                                           |       | 1 – Evaluating integral |
|     | at x = 0, v = V                                                                                                                                                                                                    |       |                         |
|     | $0 = -\frac{1}{2k}\ln(g + kV^2) + C$<br>$\therefore C = \frac{1}{2k}\ln(g + kV^2)$                                                                                                                                 |       |                         |
|     | $x = -\frac{1}{2k}\ln(g + kv^2) + \frac{1}{2k}\ln(g + kV^2)$                                                                                                                                                       |       |                         |
|     | $x = \frac{1}{2k} \ln \left\{ \frac{(g+kV^2)}{(g+kv^2)} \right\}$                                                                                                                                                  |       |                         |
|     | Maximum height is obtained when $v = 0$ .<br>$H = \frac{1}{2k} \ln \left\{ \frac{(g + kV^2)}{g} \right\}$ (iii)                                                                                                    |       | 1 expression for H      |
|     | $\frac{dv}{dt} = -(g + kv^2)$ $\frac{dt}{dv} = \frac{-1}{(g + kv^2)}$ $t = \int \frac{-1}{(g + kv^2)} dv$                                                                                                          |       |                         |
|     | $= -\frac{1}{k} \int \frac{1}{\frac{g}{k} + v^2} dv$                                                                                                                                                               |       |                         |
|     | $t = -\frac{1}{k} \times \frac{1}{\sqrt{\frac{g}{k}}} \tan^{-1}\left(\frac{v}{\sqrt{\frac{g}{k}}}\right) + C_1$                                                                                                    |       | 1 evaluating integral   |
|     | $t = -\frac{1}{k} \times \frac{\sqrt{k}}{\sqrt{g}} \tan^{-1}\left(\frac{\sqrt{k}\nu}{\sqrt{g}}\right) + C_1$ $A = -\frac{1}{k} \times \frac{\sqrt{k}}{\sqrt{g}} \tan^{-1}\left(\frac{\sqrt{k}\nu}{g}\right) + C_1$ |       |                         |
|     |                                                                                                                                                                                                                    |       |                         |

| Question 13                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 2014                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|--|
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks | Allocation of marks |  |
| At t = 0, v = V                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                     |  |
| $0 = -\frac{1}{\sqrt{kg}} \tan^{-1} \left(\frac{\sqrt{k}}{\sqrt{g}}\right) V + C_1$ $C_1 = \frac{1}{\sqrt{kg}} \tan^{-1} \left(\frac{\sqrt{k}}{\sqrt{g}}\right) V$ $t = -\frac{1}{\sqrt{kg}} \tan^{-1} \left(\frac{\sqrt{k}}{\sqrt{g}}\right) v + \frac{1}{\sqrt{kg}} \tan^{-1} \left(\frac{\sqrt{k}}{\sqrt{g}}\right) V$ Maximum height reached when $v = 0$ , i.e. $T = \frac{1}{\sqrt{kg}} \tan^{-1} \left(\frac{\sqrt{k}}{\sqrt{g}}\right) V$ |       | 1 expression for T  |  |

| Que | stion 14                                                                                                                                                                                                                                                                      | 2014  |                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|
|     | Solution                                                                                                                                                                                                                                                                      | Marks | Allocation of marks             |
| (a) | $LHS = \frac{\frac{\cos A - \cos(A + 2B)}{2 \sin B}}{\frac{\cos A - \cos(A + 2B)}{2 \sin B}} = \frac{\sin(A + B)}{\frac{2 \sin B}{2 \sin B}}$ $= \frac{\frac{\cos A - (\cos A \cos 2B - \sin A \sin 2B)}{2 \sin B}}{\cos A - \cos A (1 - 2\sin^2 B) + 2\sin A \sin B \cos B}$ | 3     | 1 -Using cosine double<br>angle |
|     | $= \frac{2 \sin B}{2 \sin B}$ $= \frac{\cos A - \cos A + 2\sin^2 B \cos A + 2\sin A \sin B \cos B}{2 \sin B}$ $= \frac{2\sin^2 B \cos A + 2\sin A \sin B \cos B}{2 \sin B}$ $= \frac{2 \sin B (\sin B \cos A + \sin A \cos B)}{2 \sin B}$ $= \sin B \cos A + \sin A \cos B$   |       | 1 – working                     |
|     | $= \sin A \cos B + \sin B \cos A$<br>= $\sin(A + B)$<br>= $RHS$<br>$\therefore \frac{\cos A - \cos(A + 2B)}{2 \sin B} = \sin(A + B)$                                                                                                                                          |       | 1 – completion of proof         |
| (b) | (i)<br>$\sin \alpha = \frac{R}{0.5}$<br>$R = 0.5 \sin \alpha$<br>$mg \sqrt{R}$                                                                                                                                                                                                | 1     | diagram                         |
|     | (ii) $T\sin\theta = 5 \times (2\pi)^2 \times 0.5\sin\theta$<br>$T = 5 \times 4\pi^2 \times 0.5$<br>= 98.696<br>$= 99N$ (nearest newton) OR $10\pi^2N$                                                                                                                         | 2     | 1 – substitution<br>1 - answer  |
|     | (iv) $T\cos\theta = mg$<br>= (5) (10)<br>= 50<br>$\cos\theta = \frac{50}{T}$<br>$= \frac{50}{98.696}$<br>$\theta = 59.562$<br>$= 60^{\circ}$ (nearest degree)                                                                                                                 | 1     | Correct working to answer       |

| Que | stion 14                                                                                                                                                                                                                                                                                                                                                      | 2014  |                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------|
|     | Solution                                                                                                                                                                                                                                                                                                                                                      | Marks | Allocation of marks                          |
| (d) | Solution<br>$ \frac{V}{2} = 2\pi xy \partial x $ $ = 2\pi x (3x^{2} - x^{3}) \partial x $ $ V = \lim_{\partial x \to \infty} \sum_{0}^{3} 2\pi x (3x^{2} - x^{3}) \partial x $ $ Volume = \int_{a}^{b} 2\pi xy  dx $ $ = \int_{0}^{3} 2\pi x (3x^{2} - x^{3})  dx $ $ = 2\pi \int_{0}^{3} (3x^{3} - x^{4})  dx $ $ = 2\pi \int_{0}^{3} (3x^{3} - x^{4})  dx $ | 4     | 2 – establishing integral<br>1 – integrating |
|     | $= 2\pi \left[\frac{3\pi}{4} - \frac{\pi}{5}\right]_{0}$ $= \frac{243\pi}{10} \text{ cubic units}$                                                                                                                                                                                                                                                            |       | 1 - answer                                   |

| Que | stion 15                                                                                                                                                                                                      | 2014  |                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------|
|     | Solution                                                                                                                                                                                                      | Marks | Allocation of marks                |
| (a) | $\int x^n e^{-x^2} dx$                                                                                                                                                                                        |       |                                    |
|     | (i)<br>Let $u = x^{n-1}$ $u' = xe^{-x^2}$                                                                                                                                                                     | 2     |                                    |
|     | $u' = (n-1)x^{n-2} \qquad v = -\frac{1}{2}e^{-x^2}$                                                                                                                                                           |       |                                    |
|     | $\int x^n e^{-x^2} dx = uv - \int vu'$                                                                                                                                                                        |       | 2 – integration by parts to        |
|     | $= -\frac{1}{2} x^{n-1} e^{-x^2} + \frac{n-1}{2} \int x^{n-2} e^{-x^2} dx$                                                                                                                                    |       | derive reduction formula           |
|     | (ii)                                                                                                                                                                                                          | 2     |                                    |
|     | $\int_0^1 x^5 e^{-x^2} dx = \left[ -\frac{1}{2} x^4 e^{-x^2} \right]_0^1 + \frac{4}{2} \int_0^1 x^3 e^{-x^2} dx$                                                                                              | 2     | 1 – first use of reduction formula |
|     | $= \frac{-1}{2e} + 2\int_0^1 x^3 e^{-x^2} dx$                                                                                                                                                                 |       |                                    |
|     | $= \frac{-1}{2e} + 2\left\{ \left[ -\frac{1}{2} x^2 e^{-x^2} \right]_0^1 + 1 \int_0^1 x e^{-x^2} dx \right\}$                                                                                                 |       |                                    |
|     | $= \frac{-1}{2e} - 2\left(\frac{1}{2e}\right) + 2\left[-\frac{1}{2}x^{0}e^{-x^{2}}\right]_{0}^{1} + \frac{1-1}{2}\int x^{1-2}e^{-x^{2}}dx$ $= \frac{-1}{2e} - \frac{1}{e} + \left[-e^{-x^{2}}\right]_{0}^{1}$ |       |                                    |
|     | $= \frac{-1}{\frac{2e}{2e}} - \frac{1}{\frac{e}{2e}} - \frac{1}{\frac{e}{2e}} + 1$ $= \frac{-1}{\frac{2e}{2e}} - \frac{2}{\frac{2e}{2e}} - \frac{2}{\frac{2e}{2e}} + 1$                                       |       | 1 – simplifying to an answer       |
|     | $=1-\frac{5}{2e}$                                                                                                                                                                                             |       |                                    |
| (b) | (1)                                                                                                                                                                                                           |       |                                    |
|     | $x^{2} + y^{2} = 9$ $y = \sqrt{9 - x^{2}}$ $sin 60 = \frac{1}{l}$ $h = l sin 60$                                                                                                                              | 2     | 1 – expression for <i>h</i>        |
|     | $\therefore l = 2\sqrt{9 - x^2} \qquad h = \frac{\sqrt{3}}{2} l$ $\boxed{QR  4 = -\frac{1}{2} \sin 60^\circ}$                                                                                                 |       |                                    |
|     | $=\frac{\sqrt{3}}{4}l^2$                                                                                                                                                                                      |       | ·                                  |

| (c) | Let $f(x) = x^4 - 6x^3 + 9x^2 + 4x - 12$<br>$f'(x) = 4x^3 - 18x^2 + 18x + 4$<br>Double root when $f'(x) = f(x) = 0$<br>Test $x = \pm 1$ and $x = \pm 2$ (factors of 4)<br>When $x = 2$ ,<br>$f'(x) = 4(2^3) - 18(2^2) + 18(2) + 4$ | 3 | 1 – using double root<br>theorem and finding the<br>derivative |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------|
|     | f(2) = 4(2) - 18(2) + 18(2) + 4<br>= 32 - 72 + 36 + 4 = 72 - 72 = 0<br>$f(2) = (2^4) - 6(2^3) + 9(2^2) + 4(2) - 12$                                                                                                                |   | 1 – testing for roots of $f'(x)$                               |
|     | = $16 - 48 + 36 + 8 - 12 = 60 - 60 = 0$<br>$\therefore f'(2) = f(2) = 0$<br>$\therefore (x - 2)$ is a repeated factor.<br>$\therefore \alpha = 2$ is a double root.                                                                |   | 1 – testing in $f(x)$ and<br>stating the value of $\alpha$     |
|     |                                                                                                                                                                                                                                    |   |                                                                |
| (d) | (i) $\arg z = \theta$                                                                                                                                                                                                              | 2 |                                                                |
|     | where $\tan\theta = \frac{y}{2}$                                                                                                                                                                                                   |   |                                                                |
|     | $\frac{x}{  z  } = \frac{\pi}{  z  }$                                                                                                                                                                                              |   |                                                                |
|     | then $-\frac{\pi}{4} < \arg(z) < \frac{\pi}{4}$                                                                                                                                                                                    |   |                                                                |
|     | $ \underbrace{ \begin{array}{c} y \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                            |   | 1 – Graph<br>1 – showing main features                         |
|     |                                                                                                                                                                                                                                    |   |                                                                |



| Que | stion 16                                                                                                                                                                                                                                                                                                     | 2014  |                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|
|     | Solution                                                                                                                                                                                                                                                                                                     | Marks | Allocation of marks                  |
| (a) | (i) $x = a \sec \theta$ $y = b \tan \theta$<br>$\frac{dx}{d\theta} = a \sec \theta \tan \theta$ $\frac{dy}{d\theta} = b \sec^2 \theta$<br>$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$<br>$= \frac{b \sec^2 \theta}{a \sec \theta \tan \theta}$                                              | 2     |                                      |
|     | $= \frac{b \sec \theta}{a \tan \theta}$<br>$y - y_1 = m(x - x_1)$<br>$y - b \tan \theta = \frac{b \sec \theta}{a \tan \theta} (x - a \sec \theta)$<br>$ay \tan \theta - a b \tan^2 \theta = bx \sec \theta - a b \sec^2 \theta$<br>$- ay \tan \theta + bx \sec \theta = a b (\sec^2 \theta - \tan^2 \theta)$ |       | 1 – deriving gradient of<br>tangent  |
|     | Since $sec^2\theta - tan^2\theta = 1$                                                                                                                                                                                                                                                                        |       | 1 – using equation to complete proof |
|     | bxsec $\theta$ – aytan $\theta$ = ab                                                                                                                                                                                                                                                                         |       |                                      |
|     | (ii) from (i) $m(tangent) = \frac{b \sec \theta}{a \tan \theta}$                                                                                                                                                                                                                                             | 2     |                                      |
|     | $\therefore m (normal) = -\frac{a t a n \theta}{b s e c \theta}$                                                                                                                                                                                                                                             |       | 1 – deriving gradient of<br>normal   |
|     | $y - y_1 = m(x - x_1)$<br>$y - btan \theta = -\frac{atan \theta}{bsec \theta} (x - asec \theta)$<br>$bysec \theta - b^2 tan \theta sec \theta = -axtan \theta + a^2 tan \theta sec \theta$                                                                                                                   |       |                                      |
|     | By dividing by $tan \theta sec \theta$                                                                                                                                                                                                                                                                       |       |                                      |
|     | $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$                                                                                                                                                                                                                                                  |       | 1 – equation of normal               |
|     | (iii) Tangent:<br>$bxsec \theta - aytan \theta = ab$                                                                                                                                                                                                                                                         | 2     |                                      |
|     | When $x = 0$ $y = \frac{-b}{\tan \theta}$ $\therefore A\left(0, \frac{-b}{\tan \theta}\right)$                                                                                                                                                                                                               |       | 1 for A                              |
|     | Normal:<br>$\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$                                                                                                                                                                                                                                       |       |                                      |
|     | When $x = 0$ $y = \frac{(a^2 + b^2) \tan \theta}{b}$ $\therefore B\left(0, \frac{(a^2 + b^2) \tan \theta}{b}\right)$                                                                                                                                                                                         |       | 1 for B                              |

| Question 16                                                                                                                                                                                                                                                           | 2014  |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|
| Solution                                                                                                                                                                                                                                                              | Marks | Allocation of marks          |
| (v) Focus of hyperbola = S (ae, 0)<br>If AB is diameter of circle then angle ASB must be right<br>angled.<br>$m(AS) = \frac{0 - \frac{-b}{tan \theta}}{\frac{ae - 0}{ae - 0}}$ $= \frac{b}{tan \theta} \div ae$ $= \frac{b}{aetan \theta}$                            | 3     | 1 – gradients                |
| $m(BS) = \frac{0 - \frac{(a^2 + b^2)\tan\theta}{b}}{ae - 0}$ $= -\frac{(a^2 + b^2)\tan\theta}{b} \div ae = -\frac{(a^2 + b^2)\tan\theta}{abe}$ $m(AS) \times m(BS) = \frac{b}{aetan\theta} \times -\frac{(a^2 + b^2)\tan\theta}{abe}$ $= \frac{-(a^2 + b^2)}{a^2e^2}$ |       | 1 - working                  |
| Now $e^2 - 1 = \frac{b^2}{a^2}$<br>$e^2 = \frac{b^2}{a^2} + 1$<br>$= \frac{b^2 + a^2}{a^2}$<br>$\therefore m(AS) \times m(BS) = \frac{-(a^2 + b^2)}{a^2} \div \frac{b^2 + a^2}{a^2}$<br>$= \frac{-(a^2 + b^2)}{a^2} \times \frac{a^2}{b^2 + a^2}$<br>= -1             |       | 1<br>1 showing perpendicular |
| Therefore AB is diameter of circle passing through <i>S</i> , the foci of the hyperbola.                                                                                                                                                                              |       |                              |

| Question 16 |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2014  |                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------|
|             | Solution                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks | Allocation of marks                                                                                   |
| (b)         | The letter 'S' occurs twice in CHRISTMAS<br><b>Case 1</b> : No S: Consider the letters CHRITMA<br>Number of selections = ${}^{7}C_{5}$ and the possible<br>arrangements of this selection is 5!<br>Number with no S is ${}^{7}C_{5} \times 5! = 2520$<br><b>Case 2:</b> One 'S'so 4 from the remaining 7letters = ${}^{7}C_{4}$ and the<br>arrangements of this selection is 5!.<br>Number with 1 S is ${}^{7}C_{4} \times 5! = 4200$ | 2     | 1 working                                                                                             |
|             | Case 3: Two 'S' so 3 from the remaining 7 letters = ${}^{7}C_{3}$ and<br>the<br>Arrangements of this selection is $\frac{5!}{2!}$ .<br>Number with 2 'S''s is ${}^{7}C_{3} \times \frac{5!}{2!} = 2100$<br>Total number of distinct arrangements<br>= 2520 + 4200 + 2100<br>= 8820                                                                                                                                                    |       | 1 correct answer                                                                                      |
| (c)         | $\angle PAD = \angle AQC$ (alternate segment theorem)<br>$\angle AQC = \angle CPD$ (alternate angles AQ parallel to PB)                                                                                                                                                                                                                                                                                                               | 2     | 1 – correct use of a circle geometry theorem                                                          |
|             | (i) ∴ ∠ <i>CPD</i> = ∠ <i>PAD</i><br>∠ <i>CDP</i> = ∠ <i>PDA</i> (common angle)<br>∴ triangle <i>CDP</i> is similar to triangle <i>PDA</i> (equiangular)                                                                                                                                                                                                                                                                              |       | 1 – correct proof                                                                                     |
|             | (ii)<br>triangle <i>CDP</i> is similar to triangle <i>PDA</i><br>$\therefore \frac{CD}{PD} = \frac{PD}{AD}$ (ratio of corresponding sides in similar triangles)<br>$\therefore PD^2 = AD \times CD$<br>$DB^2 = DC \times DA$ (product of intercepts on secant equals square of<br>i.e $DB^2 = PD^2$<br>PD = DB<br>$\therefore AD$ bisects <i>PB</i>                                                                                   | 2     | <ul> <li>1 – correctly establishes</li> <li>result</li> <li>1-correctly establishes result</li> </ul> |