Some HSC Conics Questions

 a) 2015 HSC Question 13a)The hyperbolas $H_{1}: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $H_{2}: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ are shown in the
diagram. diagram.

Let $P(a \sec \theta, b \tan \theta)$ lie on H_{1} as shown in the diagram.

Let Q be the point $(a \tan \theta, b \sec \theta)$
(i) Verify that the coordinates of $Q(a \tan \theta, b \sec \theta)$ satisfy the equation for H_{2}

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =\frac{a^{2} \tan ^{2} \theta}{a^{2}}-\frac{b^{2} \sec ^{2} \theta}{b^{2}} \\
& =\tan ^{2} \theta-\sec ^{2} \theta \\
& =-1
\end{aligned}
$$

$\therefore Q$ lies on H_{2}
(ii) Show that the equation of the line $P \mathrm{Q}$ is $b x+a y=a b(\tan \theta+\sec \theta)$

$$
\begin{aligned}
m_{P Q} & =\frac{b \tan \theta-b \sec \theta}{a \sec \theta-\operatorname{atan} \theta} \\
& =-\frac{b}{a}
\end{aligned}
$$

$$
\begin{aligned}
y-b \sec \theta & =-\frac{b}{a}(x-\operatorname{atan} \theta) \\
a y-a b \sec \theta & =-b x+a b \tan \theta \\
b x+a y & =a b(\tan \theta+\sec \theta)
\end{aligned}
$$

(iii) Prove that the area of $\triangle O P Q$ is independent of θ. perpendicular distance O to $P Q$

$$
\left.\begin{array}{l}
=\frac{|-a b(\tan \theta+\sec \theta)|}{\sqrt{a^{2}+b^{2}}} \quad d_{P Q}
\end{array}=\sqrt{a^{2}(\sec -\tan \theta)^{2}+b^{2}(\tan \theta-\sec \theta)^{2}}\right)=\sqrt{(\tan \theta-\sec \theta)^{2}\left(a^{2}+b^{2}\right)}
$$

\therefore the area is independent of θ

b) 2014 HSC Question 13c)

The point $S(a e, 0)$ is the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ on the positive x-axis.
The points $P(a t, b t)$ and $Q\left(\frac{a}{t},-\frac{b}{t}\right)$ lie on the asymptotes of the hyperbola, where $t>0$.
The point $M\left(\frac{a\left(t^{2}+1\right)}{2 t}, \frac{b\left(t^{2}-1\right)}{2 t}\right)$ is the midpoint of $P Q$

(i) Show that M lies on the hyperbola

$$
\begin{aligned}
M\left(\frac{a\left(t^{2}+1\right)}{2 t}\right. & \left., \frac{b\left(t^{2}-1\right)}{2 t}\right) \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =\frac{a^{2}\left(t^{2}+1\right)^{2}}{4 a^{2} t^{2}}-\frac{b^{2}\left(t^{2}-1\right)^{2}}{4 b^{2} t^{2}} \\
& =\frac{\left(t^{2}+1\right)^{2}-\left(t^{2}-1\right)^{2}}{4 t^{2}} \\
& =\frac{t^{4}+2 t^{2}+1-\left(t^{4}-2 t^{2}+1\right)}{4 t^{2}} \\
& =\frac{4 t^{2}}{4 t^{2}} \\
& =1
\end{aligned}
$$

$\therefore M$ lies on the hyperbola
(ii) Prove that the line through P and Q is a tangent to the hyperbola at M.

$$
\begin{aligned}
m_{P Q} & =\frac{b t+\frac{b}{t}}{a t-\frac{a}{t}} \\
& =\frac{b\left(t^{2}+1\right)}{a\left(t^{2}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 \\
\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{b^{2} x}{a^{2} y} \\
\text { at } M, \frac{d y}{d x} & =\frac{a b^{2}\left(t^{2}+1\right)}{2 t} \times \frac{2 t}{a^{2} b\left(t^{2}-1\right)} \\
& =\frac{b\left(t^{2}+1\right)}{a\left(t^{2}-1\right)} \\
& =m_{P Q}
\end{aligned}
$$

$\therefore P Q$ is parallel to the tangent at M
However, as M lies on $P Q, P Q$ is the tangent at M
(iii) Show that $O P \times O Q=O S^{2}$

$$
\begin{aligned}
O P \times O Q & =\sqrt{a^{2} t^{2}+b^{2} t^{2}} \times \sqrt{\frac{a^{2}}{t^{2}}+\frac{b^{2}}{t^{2}}} \\
& =t \sqrt{a^{2}+b^{2}} \times \frac{1}{t} \sqrt{a^{2}+b^{2}} \\
& =a^{2}+b^{2} \\
& =a^{2} e^{2} \\
& =(a e)^{2} \\
& =O S^{2}
\end{aligned}
$$

(iv) If P and S have the same x-coordinate, show that $M S$ is parallel to one of the asymptotes of the hyperbola.

$$
b\left(e^{2}-1\right)^{P}
$$

$$
a t=a e
$$

$$
m_{M S}=\frac{2 e}{\frac{a\left(e^{2}+1\right)}{2 e}-a e}
$$

$\therefore M S$ is parallel to the asymptote $y=-\frac{b}{a} x \quad=\frac{b\left(e^{2}-1\right)}{a\left(1-e^{2}\right)}=-\frac{b}{a}$
c) $\mathbf{2 0 1 4}$ HSC Question 14b)

The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$
The acute angle between $O P$ and the normal to the ellipse at P is ϕ
(i) Show that $\tan \phi=\left(\frac{a^{2}-b^{2}}{a b}\right) \sin \theta \cos \theta$
$x=a \cos \theta$

$$
\frac{d x}{d \theta}=-a \sin \theta \quad \frac{d y}{d x}=-\frac{b \cos \theta}{a \sin \theta}
$$

$$
y=b \sin \theta
$$

$$
\frac{d y}{d \theta}=b \cos \theta
$$

$$
\therefore m_{\text {normal }}=\frac{a \sin \theta}{b \cos \theta}
$$

$$
m_{O P}=\frac{b \sin \theta}{a \cos \theta}
$$

$$
\begin{aligned}
& \tan \phi=\left|\frac{\frac{b \sin \theta}{a \cos \theta}-\frac{a \sin \theta}{b \cos \theta}}{1+\frac{b \sin \theta}{a \cos \theta} \times \frac{a \sin \theta}{b \cos \theta}}\right| \\
&=\left|\frac{\frac{a \sin \theta \cos \theta}{b}-\frac{b \sin \theta \cos \theta}{a}}{\cos ^{2} \theta+\sin ^{2} \theta}\right| \\
&=\left|\frac{a^{2} \sin \theta \cos \theta-b^{2} \sin \theta \cos \theta}{a b}\right| \\
&=\left(\frac{a^{2}-b^{2}}{a b}\right)|\sin \theta \cos \theta| \quad \text { If } P \text { is as illustrated, then } \theta \text { is acute } \\
& \Rightarrow \sin \theta>0, \cos \theta>0
\end{aligned} \quad \begin{aligned}
\tan \phi=\left(\frac{a^{2}-b^{2}}{a b}\right) \sin \theta \cos \theta
\end{aligned}
$$

(ii) Find a value of θ for which ϕ is a maximum

$$
\sin \theta \cos \theta=\frac{1}{2} \sin 2 \theta
$$

which is a maximum when $2 \theta=\frac{\pi}{2}$

$$
\theta=\frac{\pi}{4}
$$

as $\left(\frac{a^{2}-b^{2}}{a b}\right)$ is a constant, then
$\tan \phi$ is a maximum when $\theta=\frac{\pi}{4}$
as $\tan \phi$ is an increasing function for $0<\phi<\frac{\pi}{2}$
ϕ is a maximum when $\theta=\frac{\pi}{4}$
d) 2013 HSC Question 12d)

The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, where $|p| \neq|q|$, lie on the rectangular hyperbola $x y=c^{2}$
The tangent to the hyperbola at P intersects the x-axis at A and the y-axis at B. Similarly, the tangent to the hyperbola at Q intersects the x-axis at C and the y-axis at D.

(i) Show that the equation of the tangent at P is $x+p^{2} y=2 c p$

$$
\begin{aligned}
& y=\frac{c^{2}}{x} \quad \text { when } x=c p, \frac{d y}{d x}=-\frac{c^{2}}{(c p)^{2}} \\
& y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p) \\
& \frac{d y}{d x}=\frac{-c^{2}}{x^{2}} \\
& =\frac{-1}{p^{2}} \\
& \begin{aligned}
p^{2} y-c p & =-x+c p \\
x+p^{2} y & =2 c p
\end{aligned}
\end{aligned}
$$

(ii) Show that A, B and O are on a circle with centre P
$\triangle A O B$ is right angled with $A B$ as hypotenuse
$\therefore A, O, B$ are concyclic, with $A B$ diameter $\quad\left(\angle\right.$ in a semicircle $\left.=90^{\circ}\right)$ centre of circle is the midpoint of $A B$

$$
\begin{aligned}
A ; y & =0 & & \left(\frac{2 c p+0}{2}, \frac{0+\frac{2 c}{p}}{2}\right) \\
x ; x & =2 c p & \mathrm{M}_{A B} & =0 \\
p^{2} y & =2 c p & & =\left(c p, \frac{c}{p}\right) \quad \therefore A, O, B \text { lies on a circle, centre } P \\
y & =\frac{2 c}{p} & & =P
\end{aligned}
$$

(iii) Prove that $B C$ is parallel to $P Q$

P is centre of a circle passing through A, B, O
(proven in (ii))
Similarly,
Q is centre of a circle passing through D, C, O

$$
\begin{aligned}
& \therefore A P=B P \text { and } D Q=C Q \quad \quad(=\text { radii }) \\
& \quad \frac{A P}{B P}=\frac{D Q}{C Q}=1
\end{aligned}
$$

$\therefore B C\|P Q\| A D \quad$ (ratio of intercepts of $\|$ lines are $=$)

