Resisted Motion

Resistance is ALWAYS in the OPPOSITE direction to the motion.
(Newton's $3^{r d}$ Law)

Case 1 (horizontal line)

Case 2 (upwards motion)

$$
\begin{aligned}
& m \ddot{x}=-R \\
& \ddot{x}=-\frac{R}{m} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
m \ddot{x} & =-m g-R \\
\ddot{x} & =-g-\frac{R}{m}
\end{aligned}
$$

NOTE: greatest height still occurs when $v=0$

Case 3 (downwards motion)

$$
\begin{aligned}
m \ddot{x} & =m g-R \\
\ddot{x} & =g-\frac{R}{m}
\end{aligned}
$$

NOTE: terminal velocity occurs

$$
\text { when } \ddot{X}=0
$$

e.g. (i) A particle is projected vertically upwards with a velocity of $u \mathrm{~m} / \mathrm{s}$ in a resisting medium.
Assuming that the retardation due to this resistance is equal to $k v^{2}$ find expressions for the greatest height reached and the time taken to reach that height.

$$
\begin{aligned}
m \ddot{x} & =-m g-k v^{2} \\
\ddot{x} & =-g-\frac{k}{m} v^{2}
\end{aligned}
$$

$$
\begin{aligned}
v \frac{d v}{d x} & =\frac{-m g-k v^{2}}{m} \\
\frac{d x}{d v} & =\frac{m v}{-m g-k v^{2}} \\
\int_{0}^{x} d x & =-m \int_{u}^{o} \frac{v d v}{m g+k v^{2}} \\
x & =\frac{m}{2 k} \int_{0}^{u} \frac{2 k v d v}{m g+k v^{2}} \\
& =\frac{m}{2 k}\left[\log \left(m g+k v^{2}\right)\right]_{0}^{u} \\
& =\frac{m}{2 k}\left\{\log \left(m g+k u^{2}\right)-\log (m g)\right\} \\
& =\frac{m}{2 k} \log \left(\frac{m g+k u^{2}}{m g}\right) \\
& =\frac{m}{2 k} \log \left(1+\frac{k u^{2}}{m g}\right)
\end{aligned}
$$

\therefore the greatest height

$$
\text { is } \frac{m}{2 k} \log \left(1+\frac{k u^{2}}{m g}\right) \text { metres }
$$

$$
\ddot{x}=-g-\frac{k}{m} v^{2}
$$

$$
\frac{d v}{d t}=\frac{-m g-k v^{2}}{m}
$$

$$
\int_{0}^{t} d t=-m \int_{u}^{0} \frac{d v}{m g+k v^{2}}
$$

$$
t=\frac{m}{k} \int_{0}^{u} \frac{d v}{\frac{m g}{k}+v^{2}}
$$

$$
=\frac{m}{k}\left[\sqrt{\frac{k}{m g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} v\right)\right]_{0}^{u}
$$

$$
=\sqrt{\frac{m}{k g}}\left\{\tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right)-\tan ^{-1} 0\right\} . \therefore \text { it takes } \sqrt{\frac{m}{k g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right) \text { seconds }
$$

$$
=\sqrt{\frac{m}{k g}} \tan ^{-1}\left(\sqrt{\frac{k}{m g}} u\right)
$$

(ii) A body of mass 5 kg is dropped from a height at which the gravitational acceleration is g.
Assuming that air resistance is proportional to speed v, the constant of proportion being $\frac{1}{8}$, find;
a) the velocity after time t.

$$
\begin{aligned}
5 \ddot{x} & =5 g-\frac{1}{8} v \\
\ddot{x} & =g-\frac{1}{40} v \\
\frac{d v}{d t} & =\frac{40 g-v}{40} \\
\int_{0}^{t} d t & =40 \int_{0}^{v} \frac{d v}{40 g-v} \\
t & =-40[\log (40 g-v)]_{0}^{v} \\
& =-40\{\log (40 g-v)-\log (40 g)\} \\
& =40 \log \left(\frac{40 g}{40 g-v}\right)
\end{aligned}
$$

$$
\frac{t}{40}=\log \left(\frac{40 g}{40 g-v}\right)
$$

$$
\frac{40 g}{40 g-v}=e^{\frac{t}{40}}
$$

$$
\frac{40 g-v}{40 g}=e^{-\frac{t}{40}}
$$

$$
40 g-v=40 g e^{-\frac{t}{40}}
$$

$$
v=40 g-40 g e^{-\frac{t}{40}}
$$

$$
v=40 g\left(1-e^{-\frac{t}{40}}\right)
$$

b) the terminal velocity
terminal velocity ρ ccurs when $\ddot{x}=0$

$$
\text { i.e. } 0=g-\frac{1}{40} v
$$

$$
v=40 g
$$

OR

$$
\begin{aligned}
\lim _{t \rightarrow \infty} v & =\lim _{t \rightarrow \infty} 40 g\left(1-e^{-\frac{t}{40}}\right) \\
& =40 g
\end{aligned}
$$

\therefore terminal velocity is $40 \mathrm{~g} \mathrm{~m} / \mathrm{s}$
c) The distance it has fallen after time t

$$
\begin{aligned}
\frac{d x}{d t} & =40 g\left(1-e^{-\frac{t}{40}}\right) \\
\int_{0}^{x} d x & =40 g \int_{0}^{t}\left(1-e^{-\frac{t}{40}}\right) d t \\
x & =40 g\left[t+40 e^{-\frac{t}{40}}\right]_{0}^{t} \\
x & =40 g\left\{t+40 e^{-\frac{t}{40}}-0-40\right\} \\
x & =40 g t+1600 g e^{-\frac{t}{40}}-1600 g
\end{aligned}
$$

"Cambridge" Exercise 4A; 1 to 4
"Cambridge" Exercise 4B;
1 to 9
Patel Exercise 8C;
2, 4, 5, 6, 8, 10, 13, 16

