Simple Harmonic Motion

A particle that moves back and forward in such a way that its acceleration at any instant is directly proportional to its distance from a fixed point, is said to undergo Simple Harmonic Motion (SHM)

$$
\begin{gathered}
\ddot{x} \alpha x \\
\ddot{x}=k x
\end{gathered}
$$

$$
\ddot{x}=-n^{2} x \quad \text { (constant needs to be negative) }
$$

If a particle undergoes SHM, then it obeys;

$$
\begin{aligned}
\ddot{x} & =-n^{2} x \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-n^{2} x \\
\frac{1}{2} v^{2} & =-\frac{1}{2} n^{2} x^{2}+c \\
v^{2} & =-n^{2} x^{2}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { when } x=a, v=0 \\
& \text { (} a=\text { amplitude) } \\
& \text { i.e. } 0^{2}=-n^{2} a^{2}+c \\
& c=n^{2} a^{2} \\
& v^{2}=-n^{2} x^{2}+n^{2} a^{2} \\
& v^{2}=n^{2}\left(a^{2}-x^{2}\right) \\
& v= \pm n \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

NOTE:

$$
\begin{array}{r}
v^{2} \geq 0 \\
a^{2}-x^{2} \geq 0 \\
-a \leq x \leq a
\end{array}
$$

\therefore Particle travels back and forward between $x=-a$ and $x=a$

$$
\begin{aligned}
\frac{d x}{d t} & =-n \sqrt{a^{2}-x^{2}} \\
\frac{d t}{d x} & =\frac{-1}{n \sqrt{a^{2}-x^{2}}} \\
\int_{0}^{t} d t & =\frac{1}{n} \int_{a}^{x} \frac{-1}{\sqrt{a^{2}-x^{2}}} d x \\
t & =\frac{1}{n}\left[\cos ^{-1} \frac{x}{a}\right]_{a}^{x} \\
& =\frac{1}{n}\left\{\cos ^{-1} \frac{x}{a}-\cos ^{-1} 1\right\} \\
& =\frac{1}{n} \cos ^{-1} \frac{x}{a} \\
n t & =\cos ^{-1} \frac{x}{a} \\
\frac{x}{a} & =\cos ^{n t} \\
x & =a \cos ^{n t}
\end{aligned}
$$

If when $t=0$;
$x= \pm a$, choose - ve and $\cos ^{-1}$
$x=0$, choose + ve and $\sin ^{-1}$

In general;
A particle undergoing SHM obeys

$$
\begin{aligned}
& \ddot{x}=-n^{2} x \\
& x=a \cos n t \quad \text { OR } x=a \sin n t \\
& \text { where } a=\text { amplitude }
\end{aligned}
$$

the particle has;

$$
\begin{array}{ll}
\text { period: } T=\frac{2 \pi}{n} & \text { (time for one oscillation) } \\
\text { frequency: } f=\frac{1}{T} & \begin{array}{l}
\text { (number of oscillations } \\
\text { per time period) }
\end{array}
\end{array}
$$

e.g. (i) A particle, P, moves on the x axis according to the law $x=4 \sin 3 t$.
a) Show that P is moving in SHM and state the period of motion.

$$
\begin{aligned}
x & =4 \sin 3 t \\
\dot{x} & =12 \cos 3 t \\
\ddot{x} & =-36 \sin 3 t \\
& =-9 x
\end{aligned}
$$

\therefore particle moves in SHM

$$
T=\frac{2 \pi}{3}
$$

\therefore period of motion is $\frac{2 \pi}{3}$ seconds
b) Find the interval in which the particle moves and determine the greatest speed.
\therefore particle moves along the interval $-4 \leq x \leq 4$ and the greatest speed is 12 units/s
(ii) A particle moves so that its acceleration is given by $\ddot{x}=-4 x$ Initially the particle is 3 cm to the right of O and traveling with a velocity of $6 \mathrm{~cm} / \mathrm{s}$.
Find the interval in which the particle moves and determine the greatest acceleration.

$$
\begin{aligned}
v \frac{d v}{d x} & =-4 x \\
\int_{6}^{v} v d v & =\int_{3}^{x}-4 x d x \\
{\left[v^{2}\right]_{6}^{v} } & =-4\left[x^{2}\right]_{3}^{x} \\
v^{2}-36 & =-4 x^{2}+36 \\
v^{2} & =-4 x^{2}+72
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } v^{2} \geq 0 \\
&-4 x^{2}+72 \geq 0 \\
& x^{2} \leq 18 \\
&-3 \sqrt{2} \leq x \leq 3 \sqrt{2} \\
& \hline \text { when } x=3 \sqrt{2}, \ddot{x}=-4(3 \sqrt{2}) \\
&=-12 \sqrt{2}
\end{aligned}
$$

\therefore greatest acceleration is $12 \sqrt{2} \mathrm{~cm} / \mathrm{s}^{2}$

NOTE:

Exercise 3D; 1, 6, 7, 10, 12, 14ab, 15ab, 18, 19, 22, 24, 25 (start with trig, prove SHM or are told)

Exercise 3F; 1, 4, 5b, 6b, 8, 9a, 10a, 13, 14 a, b(ii,iv), 16, 18, 19
(start with $\ddot{x}=-n^{2} x$)

