

2015 HSC TRIAL EXAMINATION

Mathematics Extension 1

General Instructions:

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions 11 − 14, show relevant mathematical reasoning and/or calculations
- Answer each question on a new sheet of paper

Total marks-70

SECTION I Pages 3–5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

(SECTION II) Pages 6–9

60 marks

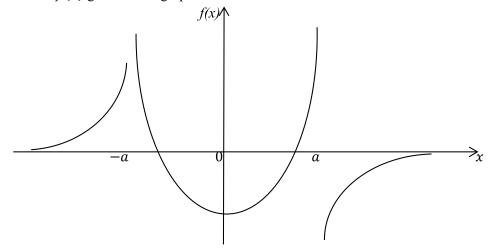
- Attempt Questions 11–14
- Allow about 1 hours 45 minutes for this section

tudent Number:	Teacher Name:
----------------	---------------

This paper MUST NOT be removed from the examination room

Assessor: T Bales

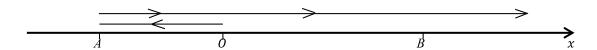
Section I


10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the provided multiple-choice answer sheet for Questions 1–10


- 1 For x > 1, $e^x \ln x$ is:
 - (A) = 0
 - (B) > 0
 - (C) < 0
 - (D) = e
- 2 Consider the function f(x) given in the graph below:

Which domain of the function f(x) above is valid for the inverse function to exist?:

- (A) x > 0
- (B) -a < x < a
- (C) 0 < x < a
- (D) x < 0
- 3 What is the acute angle between the lines 2x y 7 = 0 and 3x 5y 2 = 0?
 - (A) $4^{\circ}24'$
 - (B) $32^{\circ}28'$
 - (C) 57°32′
 - (D) 85°36′

A particle is moving in a straight line with velocity $v \, m/s$ and acceleration $a \, m/s^2$. Initially the particle started moving to the left of a fixed point O. The particle is noticed to be slowing down during the course of the motion from 0 to A. It turns around at A, keeps speeding up for the rest of the course of motion, passing O and B and continues. The particle never comes back. Take left to be the negative direction.

During the course of the particle's motion from O to A, which statement of the following is correct?

- (A) v > 0 and a > 0
- (B) v > 0 and a < 0
- (C) v < 0 and a > 0
- (D) v < 0 and a < 0
- A particle is moving in a straight line with velocity, $v = \frac{1}{1+x} m/s$ where x is the displacement of the particle from a fixed point O. If the particle was observed to have reached the position x = -2 m at a certain moment of time, then this particle:
 - (A) will definitely reach the position x = 1m
 - (B) may reach the position x = 1m
 - (C) will never reach the position x = 1m
 - (D) will come to rest before reaching x = 1m
- 6 If the rate of change of a function y = f(x) at any point is proportional to the value of the function at that point then the function y = f(x) is a:
 - (A) Polynomial function
 - (B) Trigonometric function
 - (C) Exponential function
 - (D) Quadratic function

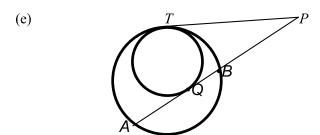
- 7 Let α and β be any two acute angles such that $\alpha < \beta$. Which of the following statements is correct?
 - (A) $\sin \alpha < \sin \beta$
 - (B) $\cos \alpha < \cos \beta$
 - (C) $cosec\alpha < cosec\beta$
 - (D) $cot\alpha < cot\beta$
- 8 Which of the following is a primitive function of $sin^2x + x^2$?
 - (A) $x \frac{1}{2}sin2x + \frac{x^3}{3} + c$
 - (B) $\frac{1}{2}x \frac{1}{4}\sin 2x + \frac{x^3}{3} + c$
 - $(C) x \frac{1}{2}sin2x + 2x + c$
 - (D) $\frac{1}{2}x \frac{1}{4}sin2x + 2x + c$
- 9 Consider the binomial expansion $(1+x)^n = 1 + n_{C_1}x + n_{C_2}x^2 + \dots + n_{C_n}x^n$. Which of the following expressions is correct?
 - (A) ${}^{n}c_{1} + 2 {}^{n}c_{2} + \dots + n {}^{n}c_{n} = n2^{n-1}$
 - (B) ${}^{n}c_{1} + 2 {}^{n}c_{2} + \dots + n {}^{n}c_{n} = n2^{n+1}$
 - (C) ${}^{n}c_{1} + {}^{n}c_{2} + \dots + {}^{n}c_{n} = 2^{n-1}$
 - (D) ${}^{n}c_{1} + {}^{n}c_{2} + \dots + {}^{n}c_{n} = 2^{n+1}$
- 10 Using the substitution, $u = 1 + \sqrt{x}$, find the value of $\int_1^4 \frac{1}{(1+\sqrt{x})^2} \frac{1}{\sqrt{x}} dx$ is:
 - (A) $\frac{6}{5}$
 - (B) $\frac{1}{3}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{3}{2}$

Section II

60 marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section


Begin each question on a new sheet of paper. Extra sheets of paper are available.

In questions 11–14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Start a new sheet of paper.

(a)
$$(x+1)$$
 and $(x-2)$ are factors of $A(x) = x^3 - 4x^2 + x + 6$. Find the third factor.

- (b) Find the coordinates of the point P which divides the interval AB internally in the ratio 2: 3 with A(-3,7) and B(15,-6)
- (c) Solve the inequality $\frac{1}{4x-1} < 2$, graphing your solution on a number line.
- (d) Use the method of mathematical induction to prove that, for all positive integers n: $1^2 + 3^2 + 5^2 + 7^2 + \dots + (2n-1)^2 = \frac{n}{3}(2n-1)(2n+1)$

PT is the common tangent to the two circles which touch at T.

PA is the tangent to the smaller circle at Q, intersecting the larger circle at points B and A as shown.

- i) State the property which would be used to explain why $PT^2 = PA \times PB$
- ii) If PT = m, QA = n and QB = r, prove that $m = \frac{nr}{n-r}$

Question 12 (15 marks) Start a new sheet of paper.

- The equation sinx = 1 2x has a root near x = 0.3. Use one application of Newton's (a) methods to find a better approximation, giving your answer correct to 2 decimal places.
 - 3

- Five couples sit at a round table. How many different seating arrangements are possible if: (b)
 - i) there are no restrictions?

1

2

- ii) each person sits next to their partner?
- In the expansion of $(4 + 2x 3x^2)(2 \frac{x}{5})^6$, find the coefficient of x^5 3 (c)
 - 2

- Write the binomial expansion for $(1 + x)^n$ (d) i)
 - Using part (i), show that $\int_0^3 (1+x)^n dx = \sum_{k=0}^n \frac{1}{k+1} {}^n C_k 3^{k+1}$ ii) 2
 - Hence show that $\sum_{k=0}^{n} \frac{1}{k+1} {}^{n}C_{k} 3^{k+1} = \frac{1}{n+1} \left[4^{n+1} 1 \right]$ iii) 2

Question 13 (15 marks) Start a new sheet of paper.

Use the substitution $u = \frac{x}{\sqrt{1-x^2}}$ to show that $\frac{d}{dx} \left[tan^{-1} \left(\frac{x}{\sqrt{1-x^2}} \right) \right] = \frac{1}{\sqrt{1-x^2}}$ (a)

3

(You can use the result that $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan^{-1} \frac{x}{a} + c$. You do not need to prove this).

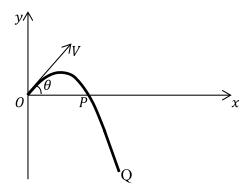
- Give the exact value for $\int_{-\sqrt{3}}^{3} \frac{dx}{3+x^2}$ (b) 3
- (c) The distinct points P, Q have parameters $t = t_1$ and $t = t_2$ respectively on the parabola $x = 2t, y = t^2$. The equations of the tangents to the parabola at P and Q respectively are

 $y - t_1x + t_1^2 = 0$ and $y - t_2x + t_2^2 = 0$ (You do not need to prove these)

- Show that the equation of the chord PQ is $2y (t_1 + t_2)x + 2t_1t_2 = 0$ i) 2
- ii) Show that M, the point of intersection of the tangents to the parabola at P and Q, 2 has coordinates $(t_1 + t_2, t_1t_2)$.
- \propto) Prove that for any value of t_1 , except $t_1 = 0$, there are exactly two values 3 iii) of t_2 for which M lies on the parabola $x^2 = -4y$.
 - Find these two values of t_2 in terms of t_1 . 2

Question 14 (15 marks) Start a new sheet of paper.

- (a) A particle P is moving in simple harmonic motion on the x axis, according to the law x = 4sin3t where x is the displacement of P in centimetres from O at time t seconds.
 - i) State the period and amplitude of the motion.


2

- ii) Find the first time when the particle is 2cm to the positive side of the origin and it's velocity at this time.
- 2

iii) Find the greatest speed and greatest acceleration of P

3

(b)

A projectile is fired from O, with speed Vms^{-1} , at an angle of elevation of θ to the horizontal. After t seconds, its horizontal and vertical displacements from O (as shown) are x metres and y metres, repectively.

i) Prove that
$$x = Vtcos\theta$$
 and $y = -\frac{1}{2}gt^2 + Vtsin\theta$

ii) Show that the time taken to reach
$$P$$
 is given by $t = \frac{2V sin\theta}{g}$

iii) The projectile falls to
$$Q$$
, where its angle of depression from O is θ . Prove that, in its flight from O to Q , P is the half-way point in terms of time.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x, x > 0$

Section I - Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$2 + 4 =$$

(A) 2
A
$$\bigcirc$$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A 🌑

 $C\bigcirc$

$$D \bigcirc$$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

 $C \bigcirc$

Start Here

- 2. A O
- вО
- CO
- DО

- 3.
- A **O**
- ВО
- CO
- DO DO

- 4.
- A O
- ВО
- СО

- **5**.
- A O
- ВО
- CO
- DO

- 6.
- A O
- ВО
- CO
- DО

- 7.
- A O
- ВО
- CO
- DO

8.

9.

A O

A O

ВО

ВО

CO

CO

DΟ

DO

- **10**.
- A O
- ВО
- CO
- DO

Exam Wathematis Ext. (Question!)	
Suggested Solutions : Question	Marker's Comments
a) $P(3) = 27 - 4 \times 9 + 3 + 6$ = 0 : $(2 - 3)$ is third factor.	A lot of students found by polynomial division
b) $A(-3,7)$ $B(15,-6)$ $M:N$ $\chi = \frac{3(-3)+2(15)}{5} = \frac{21}{5}$ $y = \frac{3(7)+2(-6)}{5} = \frac{9}{5}$	Extremely well clone. problems occurred with getting signs wrong
$P(\frac{21}{5}, \frac{9}{5})$ $C) \frac{1}{4x-1} < 2$ $4x-1 < 2(4x-1)^{2}$ $2(4x-1)^{2} - (4x-1) > 0$ $(4x-1)[2(4x-1)-1] > 0$ $(4x-1)(8x-3) > 0$ $x < \frac{1}{4}$ $x < \frac{3}{8}$	students need to ensure a number line is represented at the end and not shadled regions on a number plane
Mutt. Choice	
1) B 2) C 3) B 4) C 5) C	
6) C 7) A 8) B 9) A 10) B	

Exam Trial Mathematics CX+1 : Question	
Suggested Solutions	Marker's Comments
a) $\sin x = 1 - 2x$	some students
f(sc): sinx + 2 x -1 =0	forgat to
f'_{pc} : cossc+2	rearrange
•	to =0.
$f(a) = a - \frac{f(a)}{f(a)}$	
$= 0.3 - \frac{\sin 0.3 + 0.6 - 1}{\cos 0.3 + 2}$	- some student put equation
605 0-3+2	I am in the wrong
= 0.33535	way so that the numerator
= 0.34 to 2 decimal places	and denomination
Diis 9!	gave a regative
(1) 4! x25	- students forgot
	that all 5 pairs could be
c) $(4+2x-3x^2)(2-\frac{3}{5})^6$	singped between the pair.
General term. 6 Ch 2 6-k (-1) k (3) 5 for (2+3) 6 6 26-k (-1) k x k	1
for (2+ f) 6C, 26-k 5 (-1) k xk	
when k=5. multiply by 4 (other brackets)	
$-\frac{6}{5}(2.5^{-5}(4) = \frac{-48}{3125}$ when $k = 4$ multiply by 2 (other brackets)	General problems with signs.
k=4 multiply by 2 (other brackets)	with signi.
$\frac{6}{3} = \frac{2}{3} = \frac{1}{2}$	
when k=3 multiply by (-3) tother bracket)	
$-6C_{3}2^{3}5^{-3}(-3) = \boxed{\frac{480}{125}}$	
$\frac{-48}{3125} + \frac{120}{625} + \frac{480}{125} = \frac{12552}{3125} \text{ or } 4.01664$	
3125 + 625 + 125 3125 or 4.0166 P	

Exam Vial Modernancs (x) 1 MATHEMATICS $d(i) (1+x)^{n} = {n \choose 0} + {n \choose 1} x + {n \choose 2} x^{2} + \cdots + {n \choose n} x^{n}.$ well don (ii) $\int_{0}^{3} (1+x)^{n} dx = \int_{0}^{3} (n) + \binom{n}{1} x + \binom{n}{2} x^{2} + \cdots + \binom{n}{n} x^{n} dx$ $= \left[\binom{n}{0} \times + \binom{n}{1} \frac{1}{2} \times + \binom{n}{3} \frac{1}{3} + \cdots + \binom{n}{n+1} \frac{1}{3} \times + \cdots + \binom{n}{n+1}$ = 2 / Ch 3 k+1 (iii) $\int (|+x|)^n dx = \left[\frac{(1+x)^{n+1}}{n+1} \right]_0^3$ = 4 nti - 1 = 1 [4 nti 7] they were nti 1 successful. from (iv(1)) \(\frac{2}{k+1}\) \(\frac{1}{G_k}\) = \(\frac{1}{n+1}\) \(\frac{4}{4}\) - \(\frac{1}{1}\)

Exam Trial Maths Ext MATHEMATICS : Question. 13.	
Suggested Solutions	Marker's Comments
a) Let $V = \frac{x}{\sqrt{1-x^2}}$ Let $y = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$	Some students did not use the given
dy = dy x du dx	Substitution & which was beguired.
$\frac{dy}{du} = \frac{d}{du}(tan^{-1}u) = \frac{1}{1+u^2}$	Some Students did not Seem familiar with
$\frac{dy}{du} = \frac{1}{1 + \frac{yc^2}{1 - x^2}} = \frac{1}{1 - x^2} = \frac{1 - x^2}{1 - x^2}$	dy = dy x du dx du dx
$\frac{du}{dx} = \frac{3c}{3c} \times \frac{1}{2} (1 - x^{2})^{-\frac{1}{2}} \times \frac{3c}{2x} + \frac{1}{2} (1 - x^{2})^{-\frac{1}{2}}$	Product rule V=x,V=(1-x2)-2
$= \frac{(\sqrt{1-\chi^2})^3}{(\sqrt{1-\chi^2})^3} = \frac{(\sqrt{1-\chi^2})^3}{(\sqrt{1-\chi^2})^3}$	For quotient rule $V=x$, $V=(1-x)^2$ Students were
$\frac{dy}{dx} = (1-x^2) \times \underline{1}$ $\frac{1-x^2}{\sqrt{1-x^2}}$	mixing these up.
b) $\int_{-\sqrt{3}}^{3} \frac{1}{3+x^2} dx = \int_{3}^{3} \left[\tan^{-1} x \right]_{3}^{3}$	This question was well answered.
$= \frac{1}{\sqrt{3}} \left(tan^{-1} \frac{3}{\sqrt{3}} - tan^{-1} - \sqrt{3} \right)$	
$= \frac{1}{\sqrt{3}} \left(\frac{1}{3} - \frac{1}{4} \right)$ $= \frac{1}{\sqrt{3}} \left(\frac{1}{3} - \frac{1}{4} \right)$	Some Students did not knows the range of
	the range of tan-1 to be -II to II
$=\frac{7\pi}{12\sqrt{3}}\left(\text{or}\frac{7\pi\sqrt{3}}{36}\right)$	

Exam Trial Maths Extl MATHEMATICS : Question	
Suggested Solutions	Marker's Comments
13ci. $m = \frac{t_2^2 - t_1^2}{2t_2 - 2t_1} = \frac{(t_2 + t_1)(t_2 - t_1)}{2(t_2 - t_1)} = \frac{t_2 + t_1}{2}$ $y - t_1^2 = \frac{(t_1 + t_2)}{2}(x - 2t_1)$ $2y - 2t_1^2 = \frac{(t_1 + t_2)}{2}x - 2t_1^2 - 2t_1t_2$ $2y - (t_1 + t_2)x + 2t_1t_2 = 0$	" keep (t ₁ +t ₂) in brackets to avoid complicated algebraic manipulation
ii. $y = t_1 x - t_1^2$ $y = t_1 x - t_2^2$ $t_1 x - t_2 x = t_1^2 - t_2^2$ $x(t_1 + t_2) = (t_1 + t_2)(t_1 + t_2)$ $x = t_1 + t_2$ Sub unto $y = t_1 x - t_1^2$ $y = t_1(t_1 + t_2) - t_1^2$ $y = t_1 t_2$ $y = t_1 t_2$ $y = t_1 t_2$ $y = t_1 t_2$	
iii. $\alpha = 2c^2 = -4y$ $(t_1+t_2)^2 = -4(t_1t_2)$ $t_1^2 + 2t_1t_2 + t_2^2 = 4t_1t_2$ $t_1^2 + 6t_1t_2 + t_2^2 = 0$ $\Delta = 36t_1^2 - 4.1.t_1^2$ $= 32t_1^2$ $\Delta > 0$ for all t_1 : 2 values for all t_2	• Some students didn't know when to start. • sub M into $x^2 = -4y$ • Use discriminant to show 2 value ie $\Delta > 0$

Exam Ext / Maths	MATHEMATICS	: Question 13 ζ Ϊί β	
ENTITION IN THE STATE OF THE ST	Suggested Solutions		Marker's Comments
$t_z = -\frac{6t_i \pm \sqrt{3}}{2}$			some students found t, in terms of tz
= -6t t 9	-12 t,		in terms of tz
2			
$= -3t, \pm $ $= (-3\pm 2)$			
= (SI21	2) ()		
		·,	

xam Trial Maths ExtIMATHEMATICS : Question	Marker's Comments
Suggested Solutions $Ci C = 4 \sin 3t$	Marker's Comments
amplitude = 4	
$Period = \frac{2\pi}{n} = \frac{2\pi}{3}$	
2 = 4 sin 3 t	
$\frac{1}{2} = \sin 3t$	
$3t = \frac{\pi}{6}$	
t.=T	· errors were
t = T 18	made differentia
i= 12cos3t	x=4sin3t
= 12 cos 3 (#)	* common error
= 6/3	t = T = 10 sec
世 2世	
-4- T 3 2tt 3	errors different $\hat{x} = 12\cos 3t$
max velocity when t=0	ousing degrees
$\hat{x} = 12\cos 3(0)$	instead of
= 12 cms	radians
max acceleration when $t = \frac{\pi}{2}$ (positive direction 2 $\dot{x} = -36\sin 3t$	• -36cms ⁻²
$\dot{x} = -36\sin 3t$	
·	was accepted
$= 36 cm^{-2}$	
·	
	,

exam Trial Maths Ext MAT	HEMATICS : Question 14 b	
	ted Solutions	Marker's Comments
bi x =0	$\ddot{y} = -q$	errors were
$\hat{x} = c$		common when
	ý = -9t + c ₃	evaluating
when $t=0$ $i=v\cos\theta$	when t=0 y=vsino	constants
:. c = was 0	-	
i = vcos Q	$c_3 = v \sin \theta$	
	$\dot{y} = -gt + vsin0$	
$x = vtcos0 + c_z$		
when $t=0 =0$; $c_2=0$	$y = -\frac{gt^2}{z} + vtsin0 + c_4$	
x = v + cos 0	when t=0 y=0 :. c4=0	
	$y = -qt^2 + ntsind$	
	2	
bii. P-> y=0		
$0 = -\frac{1}{2}gt^2 + vtsin0$		
0 = t(vsin 0 - gt)		
t=0 or vsind-gt:	= 0	
$\frac{9t}{2} = v \sin \theta$		
2	. Q	
$t = \frac{2 v s_{IV}}{9}$		
iii. tand = -y		he as a Cl
X		· be careful
tano= - (ntsino)- <u>+9t</u>)	quoting the
Ntc	250	cartesian ean
		for the trajector
tand=-tand+	90	(a mattered a
	240050	(a method some)
2 + and = qt		
2 vas	0	You may need to
425in 12 = +	which is twice zusina	derive it.
	- · · · · · · · · · · · · · · · · · · ·	İ