

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILIS

2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics

Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Start each NEW question in a separate answer booklet.

Total Marks - 100
Section I
Pages 1-5
10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II Pages 6-13

90 marks

- Attempt Questions 11-16
- Allow about 2 hour and 45 minutes for this section

Examiner: P. Parker

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.
1 Which of the following represents $\frac{6}{3+\sqrt{3} i}$ in modulus-argument form?
(A) $\sqrt{3}\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]$
(B) $\sqrt{3}\left[\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right]$
(C) $\sqrt{3}\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right]$
(D) $\sqrt{3}\left[\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)\right]$

2 Which of the following is a correct expression for $\int x 3^{x^{2}} d x$?
(A) $\frac{3^{x^{2}+1}}{x^{2}+1}+C$
(B) $\frac{3^{x^{2}}}{\ln 9}+C$
(C) $\frac{3^{x^{2}}}{\ln 3}+C$
(D) $3^{x^{2}} \ln 3+C$

3 Let $f(x)$ be a continuous, positive and decreasing function for $x>0$. Also, let $a_{n}=f(n)$.
Let $P=\int_{1}^{6} f(x) d x, Q=\sum_{k=1}^{5} a_{k}$ and $R=\sum_{k=2}^{6} a_{k}$.
Which one of the following statements is true?
(A) $\quad P<Q<R$
(B) $\quad Q<P<R$
(C) $\quad R<P<Q$
(D) $\quad R<Q<P$

4 A 12-sided die is to be made by placing the integers 1 through 12 on the faces of a dodecahedron. How many different such dice are possible?

Here we consider two dice identical if one is a rotation of the other.
(A) 12 !
(B) $\frac{12!}{5}$
(C) $\frac{12!}{12}$
(D) $\frac{12!}{60}$

5 A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude $m k\left(v+v^{3}\right)$ Newtons when its speed is $v \mathrm{~m} / \mathrm{s}$ and k is a positive constant. At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity $v \mathrm{~m} / \mathrm{s}$. Which of the following is an expression for x in terms of v ?
Let g the acceleration due to gravity.
(A) $\frac{1}{k} \int \frac{1}{1+v^{2}} d v$
(B) $-\frac{1}{k} \int \frac{1}{1+v^{2}} d v$
(C) $\frac{1}{k} \int \frac{1}{v\left(1+v^{2}\right)} d v$
(D) $-\frac{1}{k} \int \frac{1}{v\left(1+v^{2}\right)} d v$

6 Let $g(x)$ be a function with first derivative given by $g^{\prime}(x)=\int_{0}^{x} e^{-t^{2}} d t$.
Which of the following must be true on the interval $0<x<2$?
(A) $\quad g(x)$ is increasing and the graph of $g(x)$ is concave up.
(B) $\quad g(x)$ is increasing and the graph of $g(x)$ is concave down.
(C) $\quad g(x)$ is decreasing and the graph of $g(x)$ is concave up.
(D) $\quad g(x)$ is decreasing and the graph of $g(x)$ is concave down.
$7 \quad$ Which of the following sketches is a graph of $x^{4}-y^{2}=2 y+1$?
(A)

(B)

(C)

(D)

8
If $4 x+\sqrt{x y}=y+4$, what is the value of $\frac{d y}{d x}$ at $(2,8)$?
(A) $\frac{20}{3}$
(B) $\frac{3}{20}$
(C) $-\frac{20}{3}$
(D) $-\frac{3}{20}$
$9 \quad$ For $z=a+i b,|z|=\sqrt{a^{2}+b^{2}}$.
Let $\lambda=\frac{1}{2}(-1+i \sqrt{3})$.
Which of the following is a correct expression for $|w|$, where $w=a+b \lambda$?
(A) $\sqrt{(a-b)^{2}-a b}$
(B) $\sqrt{(a-b)^{2}-2 a b}$
(C) $\sqrt{(a-b)^{2}+a b}$
(D) $\sqrt{(a-b)^{2}+2 a b}$

10 Kram was asked to evaluate $\binom{15}{0}+3\binom{15}{1}+5\binom{15}{2}+\ldots+(2 n+1)\binom{15}{n}+\ldots+31\binom{15}{15}$. When told that he should use the fact that $\binom{15}{n}=\binom{15}{15-n}$, Kram was able to write down the value. What did he write down?
(A) 2^{15}
(B) $\quad 2^{16}$
(C) $\quad 2^{19}$
(D) 2^{31}

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hour and 45 minutes for this section
Answer each question in a NEW writing booklet. Extra pages are available
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet
(a) If $z=2-i$ express each of the following in the form $a+i b$, where a and b are real.
(i) $4 z-3$
(ii) $3 z^{2}-2 z+1$
(b) Evaluate $\int_{0}^{\pi} x \cos \frac{1}{2} x d x$
(c) The complex number z moves such that $|z+2|=-\operatorname{Re} z$.

Show that the locus of z is a parabola and find its focus and the equation of its directrix.
(d) Without the use of calculus, sketch the graph of $y=x-1-\frac{1}{(x-1)^{2}}$, showing all intercepts and asymptotes.
(e) The region bounded by $y=x-x^{2}$ and $y=0$ is rotated about the line $x=2$.

Using the method of cylindrical shells, find the volume of the solid formed.
(a) The graph of $y=f(x)$ is sketched below.

Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts.
(i) $y=\frac{1}{f(x)}$
(ii) $y=e^{f(x)}$

2
(iii) $y=f(|x|+1)$
(b) A curve is defined implicitly by $\tan ^{-1} x^{2}+\tan ^{-1} y^{2}=\frac{\pi}{4}$.
(i) Show that $\frac{d y}{d x}=-\frac{x\left(1+y^{4}\right)}{y\left(1+x^{4}\right)}$.
(ii) Using symmetry, or otherwise, sketch the curve.
(c) The base of a solid S is the region enclosed by the graph of $y=\ln x$, the line $x=e$, and the x-axis.
The cross sections of S perpendicular to the x-axis are squares.
What is the volume of S ?
(a) A car, starting from rest, moves along a straight horizontal road.

The car's engine produces a constant horizontal force of magnitude 4000 newtons.
At time t seconds, the speed of the car is $v \mathrm{~m} / \mathrm{s}$ and a resistance force of magnitude $40 v$ newtons acts upon the car.

The mass of the car is 1600 kg .
(i) Show that $\frac{d v}{d t}=\frac{100-v}{40}$
(ii) Find the velocity of the car at time t.
(b) (i) Let $T=\tan \theta$ and $z=1+i T$.

Show that $z^{3}=1-3 T^{2}+i\left(3 T-T^{3}\right)$
(ii) Hence find an expression for $\tan 3 \theta$ only in terms of powers of $\tan \theta$.
(c) In the diagram, $A B$ and $A C$ are tangents from A to the circle centre O, meeting the circle at B and C.
$A E$ is a secant of the circle, intersecting it and D and E with G is the midpoint of $D E$.
$C G$ produced meets the circle at F. You may assume that $A B O C$ is a cyclic quadrilateral.

Copy the diagram to your answer sheet.
(i) Show that $A O G C$ is a cyclic quadrilateral
(ii) Construct $B C$ and $B F$ and let $\angle A B C=\theta$.

Prove that $B F$ is parallel to $A E$.
(a) The curve C has parametric equations

$$
x=\frac{1}{\sqrt{\left(1+t^{2}\right)}} \text { and } y=\ln \left(t+\sqrt{1+t^{2}}\right) \text { for all real } t
$$

(i) Show that $\frac{d y}{d x}=-\frac{\left(1+t^{2}\right)}{t}$

2
(ii) Show that $\ln \left(-t+\sqrt{1+t^{2}}\right)=-\ln \left(t+\sqrt{1+t^{2}}\right)$
(iii) Deduce that C is symmetric about the x-axis.
(iv) Show that the domain of C is $0<x \leq 1$.
(v) Sketch the graph of C.
(b) A box contains six chocolates, two of which are identical.

From this box three chocolates are drawn without replacement.
(i) How many different selections could be made
(ii) What is the probability that a selection will include the two identical chocolates?
(c) For what values of k does the equation $3 x^{4}-16 x^{3}+18 x^{2}=k$ have four real solutions?
(d) Find the polynomial equation of smallest degree that has rational coefficients and 2 also has $-1+\sqrt{5}$ and $-6 i$ as two of its roots.
(a) By considering the expansion of $(1+i)^{2 n}$ show that

$$
\sum_{k=0}^{n-1}\binom{2 n}{2 k+1}(-1)^{k}=2^{n} \sin \left(\frac{n \pi}{2}\right)
$$

(b) In an environment without resources to support a population greater than 1000, the population P at time t is governed by

$$
\frac{d P}{d t}=P(1000-P)
$$

(i) Show that $\ln \left(\frac{P}{1000-P}\right)=1000 t+C$, for some constant C.
(ii) Hence show that $P=\frac{1000 K}{K+e^{-1000 t}}$, for some constant K.
(iii) Given that initially there is a population of 200, determine at what time t, the population would reach 900 .
(c) Consider the real numbers $x_{1}, x_{2}, \ldots, x_{n}$, where $0 \leq x_{i} \leq 1$ for $i=1,2, \ldots, n$.
(i) Given that $\left(1-x_{1}\right)\left(1-x_{2}\right) \geq 0$, show that $2\left(1+x_{1} x_{2}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right)$.
(ii) Prove by mathematical induction that

$$
2^{n-1}\left(1+x_{1} \times x_{2} \times \cdots \times x_{n}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right) \times \ldots \times\left(1+x_{n}\right)
$$

for all positive integers n.
(a) A particle Q of mass 0.2 kg is released from rest at a point 7.2 m above the surface of the liquid in a container.
The particle Q falls through the air and into the liquid.
There is no air resistance and there is no instantaneous change of speed as Q enters the liquid.
When Q is at a distance of 0.8 m below the surface of the liquid, Q 's speed is $6 \mathrm{~m} / \mathrm{s}$. The only force on Q due to the liquid is a constant resistance to motion of magnitude R newtons.
Take g, the acceleration due to gravity, to be $10 \mathrm{~ms}^{-2}$.
(i) Show that prior to entering the liquid that $\frac{d v}{d x}=\frac{10}{v}$.
(ii) Hence find the speed as Q enters the liquid.
(iii) Find the value of R.

The depth of the liquid in the container is 3.6 m .
Q is taken from the container and attached to one end of a light inextensible string. Q is placed at the bottom of the container and then pulled vertically upwards with constant acceleration.
The resistance to motion of R newtons continues to act.
The diagram below shows the forces acting on Q as it is being pulled out of the container.

The particle reaches the surface 4 seconds after leaving the bottom of the container.
(iv) By resolving the forces and finding an expression for $\frac{d v}{d t}$, find the tension in the string.

Question 16 continues on page 13

Question 16 (continued)
(b) (i) Find the coordinates of the turning points of the curve $y=27 x^{3}-27 x^{2}+4$. 2
(ii) By sketching the curve, deduce that $x^{2}(1-x) \leq \frac{4}{27}$ for all $x \geq 0$.
(iii) Three real numbers a, b and c lie between 0 and 1 , prove that at least one of the numbers $b c(1-a), c a(1-b)$ and $a b(1-c)$ is less than or equal to $\frac{4}{27}$.

End of paper

SYDNEY BOYS HIGH SCHOOL

 MOORE PARK, SURRY HILLS
2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics Extension 2

Sample Solutions

Question	Teacher
Q11	JD
Q12	PB
Q13	BD
Q14	JD
Q15	AMG
Q16	AF

MC Answers

Q1	B		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Q2	B	A	4	0	7	7	16	37	12	106	10	16
Q3	C	B	107	85	13	6	83	30	51	2	10	25
Q4	D	C	2	27	24	49	7	38	8	7	82	66
Q5	B	D	3	4	72	54	10	11	45	0	14	9
Q6	A	B										
Q7	A											
Q8	C											
Q9	C											

1 Which of the following represents $\frac{6}{3+\sqrt{3} i}$ in modulus-argument form?
(A) $\sqrt{3}\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]$
(B) $\sqrt{3}\left[\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right]$
(C) $\sqrt{3}\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right]$
(D) $\sqrt{3}\left[\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)\right]$

$$
\frac{6}{3+\sqrt{3} i}=\frac{6}{2 \sqrt{3} \operatorname{cis} \frac{\pi}{6}}=\frac{3}{\sqrt{3}} \operatorname{cis}\left(-\frac{\pi}{6}\right)=\sqrt{3} \operatorname{cis}\left(-\frac{\pi}{6}\right)
$$

2 Which of the following is a correct expression for $\int x 3^{x^{2}} d x$?
(A) $\frac{3^{x^{2}+1}}{x^{2}+1}+C$
(B) $\frac{3^{x^{2}}}{\ln 9}+C$
(C) $\frac{3^{x^{2}}}{\ln 3}+C$
(D) $3^{x^{2}} \ln 3+C$

$$
\int x 3^{x^{2}} d x=\frac{1}{2} \int 2 x 3^{x^{2}} d x=\frac{3^{x^{2}}}{2 \ln 3}+C=\frac{3^{x^{2}}}{\ln 9}+C
$$

Alternatively using the substitution $u=x^{2}$

$$
\int x 3^{x^{2}} d x=\frac{1}{2} \int 2 x 3^{x^{2}} d x=\frac{1}{2} \int 3^{u} d u=\frac{3^{u}}{2 \ln 3}+C=\frac{3^{x^{2}}}{\ln 9}+C
$$

3 Let $f(x)$ be a continuous, positive and decreasing function for $x>0$. Also, let $a_{n}=f(n)$.
Let $P=\int_{1}^{6} f(x) d x, Q=\sum_{k=1}^{5} a_{k}$ and $R=\sum_{k=2}^{6} a_{k}$.
Which one of the following statements is true?
(A) $P<Q<R$
(B) $Q<P<R$
(C) $R<P<Q$
(D) $R<Q<P$
P is the exact value, Q is the upper sum since the graph is decreasing and R is the lower sum.

A 12 -sided die is to be made by placing the integers 1 through 12 on the faces of a dodecahedron. How many different such dice are possible?

Here we consider two dice identical if one is a rotation of the other.
(A) 12 !
(B) $\frac{12!}{5}$
(C) $\frac{12!}{12}$
(D) $\frac{12!}{60}$

Since each face must receive a different number, start by counting 12 ! ways to assign the numbers.
However, there is no order to the faces on a die; it may be rolled around into many different orientations.
If the die is placed on a table, then any of the 12 faces (say, the one with the number 1 assigned to it) can be rotated to the top position.
Further, even after the location of this top face is chosen, there are still 5 ways in which it might be rotated about a line through the centers of the top and bottom faces (regular pentagons). That is, adjacent to the top face there are 5 faces from which to specify one as the front face.
Consequently, there are $12 \times 5=60$ ways to orient any numbering of the faces.
So the number of oriented numberings must be divided by 60 .

Alternatively

Place the die on a surface. There are eleven possible numbers for the top face.
Below are two rings of 5 faces.
There are ${ }^{10} C_{5}$ ways of selecting numbers for the top ring which can be arranged in 4 ! ways.
Then the remaining 5 faces can be numbered in 5 ! ways.
$\therefore 11 \times{ }^{10} C_{5} \times 4!\times 5!=\frac{11!}{5}=\frac{12!}{60}$

5 A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude $m k\left(v+v^{3}\right)$ Newtons when its speed is $v \mathrm{~m} / \mathrm{s}$ and k is a positive constant. At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity $v \mathrm{~m} / \mathrm{s}$. Which of the following is an expression for x in terms of v ?
Let g the acceleration due to gravity.
(A) $\frac{1}{k} \int \frac{1}{1+v^{2}} d v$
(B) $-\frac{1}{k} \int \frac{1}{1+v^{2}} d v$
(C) $\frac{1}{k} \int \frac{1}{v\left(1+v^{2}\right)} d v$
(D) $-\frac{1}{k} \int \frac{1}{v\left(1+v^{2}\right)} d v$

By inspection:

Being resistance it must be B or D
To get x in terms of v then the standard approach is $v \frac{d v}{d x}$ and so a v would get cancelled.
\therefore B
Directly:
$m v \frac{d v}{d x}=-m k\left(v+v^{3}\right) \Rightarrow \frac{d v}{d x}=-k\left(\frac{v+v^{3}}{v}\right)$
$\therefore \frac{d x}{d v}=-\frac{1}{k}\left(\frac{1}{1+v^{2}}\right)$
$6 \quad$ Let $g(x)$ be a function with first derivative given by $g^{\prime}(x)=\int_{0}^{x} e^{-t^{2}} d t$.
Which of the following must be true on the interval $0<x<2$?
(A) $g(x)$ is increasing and the graph of $g(x)$ is concave up.
(B) $g(x)$ is increasing and the graph of $g(x)$ is concave down.
(C) $\quad g(x)$ is decreasing and the graph of $g(x)$ is concave up.
(D) $\quad g(x)$ is decreasing and the graph of $g(x)$ is concave down.

As $e^{-t^{2}}>0$, then $g^{\prime}(x)=\int_{0}^{x} e^{-t^{2}} d t>0$ i.e. $g(x)$ is increasing.
$g^{\prime \prime}(x)=\frac{d}{d x}\left(\int_{0}^{x} e^{-t^{2}} d t\right)=e^{-x^{2}}>0$ i.e. $g(x)$ is concave up
$7 \quad$ Which of the following sketches is a graph of $x^{4}-y^{2}=2 y+1$?
(A)

(B)

$$
\begin{aligned}
& x^{4}=(y+1)^{2} \\
& \therefore y+1= \pm x^{2} \\
& \therefore y= \pm x^{2}-1
\end{aligned}
$$

(C)

(D)

8 If $4 x+\sqrt{x y}=y+4$, what is the value of $\frac{d y}{d x}$ at $(2,8)$?
(A) $\frac{20}{3}$
$4+\frac{1}{2}(x y)^{-\frac{1}{2}} \times\left(x y^{\prime}+y\right)=y^{\prime}$
(B) $\frac{3}{20}$
$\therefore 4+\frac{1}{2}(16)^{-\frac{1}{2}} \times\left(2 y^{\prime}+8\right)=y^{\prime}$
(C) $-\frac{20}{3}$
$\therefore 4+\frac{1}{8} \times\left(2 y^{\prime}+8\right)=y^{\prime}$
$\therefore 4+1=y^{\prime}-\frac{1}{4} y^{\prime} \Rightarrow \frac{3}{4} y^{\prime}=5$
(D) $-\frac{3}{20}$
$\therefore y^{\prime}=\frac{20}{3}$
$9 \quad$ For $z=a+i b,|z|=\sqrt{a^{2}+b^{2}}$.
Let $\lambda=\frac{1}{2}(-1+i \sqrt{3})$.
Which of the following is a correct expression for $|w|$, where $w=a+b \lambda$?
(A) $\sqrt{(a-b)^{2}-a b}$
(B) $\sqrt{(a-b)^{2}-2 a b}$
(C) $\sqrt{(a-b)^{2}+a b}$
(D) $\sqrt{(a-b)^{2}+2 a b}$

$$
\begin{aligned}
a+b \lambda & =a+\frac{1}{2}(-1+i \sqrt{3}) b \\
& =\left(a-\frac{1}{2} b\right)+i\left(\frac{\sqrt{3}}{2} b\right)
\end{aligned}
$$

$$
|w|=\sqrt{\left(a-\frac{1}{2} b\right)^{2}+\left(\frac{\sqrt{3}}{2} b\right)^{2}}
$$

$$
=\sqrt{a^{2}-a b+\frac{1}{4} b^{2}+\frac{3}{4} b^{2}}
$$

$$
=\sqrt{a^{2}-a b+b^{2}}
$$

$$
=\sqrt{\left(a^{2}-2 a b+b^{2}\right)+a b}
$$

$$
=\sqrt{(a-b)^{2}+a b}
$$

10 Kram was asked to evaluate $\binom{15}{0}+3\binom{15}{1}+5\binom{15}{2}+\ldots+(2 n+1)\binom{15}{n}+\ldots+31\binom{15}{15}$. When told that he should use the fact that $\binom{15}{n}=\binom{15}{15-n}$, Kram was able to write down the value. What did he write down?
(A) 2^{15}
(B) 2^{16}
(C) 2^{19}
(D) 2^{31}

Adding the reverse sum

$$
\left.\begin{array}{l}
\binom{15}{0}+3\binom{15}{1}+5\binom{15}{2}+\ldots+(2 n+1)\binom{15}{n}+\ldots+31\binom{15}{15} \\
\text { Now use the fact that }\binom{15}{15}+29\binom{15}{14}+27\binom{15}{2}+\ldots+(31-2 n)\binom{15}{15-n}+\ldots+\binom{15}{0} \\
15-n
\end{array}\right) \text { i.e. }\binom{15}{0}=\binom{15}{15} ;\binom{15}{1}=\binom{15}{14} ; \ldots \text {. } \begin{aligned}
\therefore 2 \times \text { Sum } & =32 \times\left[\binom{15}{0}+\binom{15}{1}+\binom{15}{2}+\ldots+\binom{15}{n}+\ldots+\binom{15}{15}\right] \\
& =32 \times 2^{15} \\
& =2^{20}
\end{aligned}
$$

$$
\therefore \text { Sum }=2^{19}
$$

SBIN MATHEMATICS EXT TRIAL 2015 SOLUTIONS/COMMENTS

Q 11.

$$
\begin{aligned}
& \text { Qul. } \begin{aligned}
z & =2-i \\
\text { \& } 4 z 3 & =4(2-i)-3 \\
& =5-4 i
\end{aligned}
\end{aligned}
$$

'mank. No problems
i4)

$$
\begin{aligned}
3 z^{2}-2 z & +1=3(2-i)^{2}-2(2-i)+1 \\
& =3\left(4-4 i+i^{2}\right)-4+2 i+1 \\
& =3(3-4 i)+2 i-3 \\
& =6-10 i
\end{aligned}
$$

2 marks. A smakl number of studenta monde umple errors, 1 mank awambe for error carreid through.
4) $I=\int_{0}^{\pi} x \cos \frac{x}{2} d x$

LIATE. Let $u=x \quad d v=\cos \frac{x}{2} d x$

$$
d v=d x \quad v=2 \sec \frac{x}{2}
$$

$$
\begin{aligned}
I & \left.=2 x \sin \frac{x}{2}-2 \int \sin \frac{x}{2} d x\right]_{0}^{\pi} \\
& \left.=2 x \sin \frac{x}{2}+4 \cos \frac{x}{2}\right]_{0}^{\pi} \\
& =2 \pi-4 \quad 3 \text { mands. }
\end{aligned}
$$

Wrong use of lemets -1
sone progreas +1
None ure of lemeth 2
c) Contianed (3manks)

Thes gries foces as $(-2,0)$
ent durentrici the
y aris $x=0$.
At leont 20 students wrote $(x+2)^{2}=x^{2}+2 x+4$ and finesiled up wich

$$
\begin{aligned}
& y^{2}=-2 x-4 \\
& y^{2}=4(-1 / 2)(x+2)
\end{aligned}
$$

Being whet locate the foues at $(5 / 2,0)$ and drectrix of $x=-3 / 2$ were able t reore 2 manhs Marks awanded were identifying paralution /

Focus
Derectrisi 1
c) $|z+2|=-\operatorname{Re} z$

Let $z=x+i y$

$$
\begin{aligned}
& |x+2+y|=-x \\
& \sqrt{(x+2)^{2}+y}=-x \\
& x^{2}=x^{2}+4 x+4+y^{2} \\
& y^{2}=-4 x-4 \\
& =4(-1)(x+1)
\end{aligned}
$$

Parabols, verted $(-1,0)$
a)

intemefla 1
saymptotes!
araph 1
Generally well done. A wite a fer studenta weat ato to mech detact when only a whelich was requirid.
d)

3 marks

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(2 x-3 x^{2}+x^{3}\right) d x \\
& =2 \pi\left[x^{2}-x^{3}+\frac{1}{4} x^{4}\right]_{0}^{1} \\
& =2 \pi\left[\frac{1}{4}\right]
\end{aligned}
$$

$=\frac{\pi}{2}$ arbieruntas.
NOTES Marg students used incorrect value of r ($1 \frac{1}{2}$ marks) 2 marks for misting π
2 marks for rumple mistake canreid through
Correct using the wrong limits 2 marks
Small errors - $1 / 2$ each.
Question afecifually asked for shell method. No marks for volume by aliciry.

Quinstion 12 (x^{2})
(a).

(III)

(b) (i) $\tan ^{-1} x^{\alpha}+\tan ^{-1} y^{2}=\frac{\pi}{4}$.
$D_{1 f f}$ wit x.

$$
\begin{aligned}
\frac{2 x}{1+x^{4}}+\frac{2 y}{1+y^{4}} \cdot \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-x}{y} \cdot \frac{\left(1+y^{4}\right)}{\left(1+x^{+}\right)}
\end{aligned}
$$

Commहmt. mont were able to do this pret.
(1).

$$
\begin{align*}
& \text { hon } \tan \left(\tan ^{-1} x^{2}+\tan ^{-1} y^{2}\right)=\tan \frac{\pi}{4} \\
& \frac{x^{2}+y^{2}}{1-x^{2} y^{2}}=1 \tag{A1}\\
& \therefore y^{2}=\frac{1-x^{2}}{1+x^{2}} \tag{B}
\end{align*} \text { on } x^{2}=\frac{1-y^{2}}{1+y^{2}} \text {. }
$$

\therefore Dommin $|x| \leqslant 1$
Rawar $|y| \leq 1$.
Aleo at $x=0, y^{\prime}=0 \quad \therefore(0,1) \propto(0,-1)$ are statiary
d at $y=0 \quad y^{\prime}$ is undefined
\therefore at $(1,0) \times(-1$, es are veraical tangents:
atho aince the equation is symmismicte

$$
\sin y= \pm x
$$

(A) hecomer

$$
\begin{aligned}
2 \tan ^{-1} x^{\alpha} & =\frac{\pi}{4} \\
\tan ^{-1} x^{2} & =\frac{\pi}{8} \\
x^{2} & =\tan \frac{\pi}{8} . \\
x & = \pm \sqrt{\tan \pi / 8} \\
x & \doteq \pm 0 \cdot 64 .
\end{aligned}
$$

or. (A1) hecomer

$$
\begin{aligned}
2 \cdot x^{2} & =1-x^{4} \\
x^{4}+2 x^{2}-1 & =0 \\
x^{2} & =-\frac{2 上 \sqrt{8}}{2} \\
& =\sqrt{2}-1 \Rightarrow x= \pm \sqrt{\sqrt{2-1} .} \\
x & = \pm 0.641
\end{aligned}
$$

Conmint Mosr wese atle to sbetch a similar shafe. Nery few ured the symmetry to fix the intersection with $y= \pm x$.
(c).

$$
\begin{align*}
f v & =y^{2} \delta x \cdot \\
v & =\lim _{\delta x \rightarrow 0}^{e} \sum_{x=1}^{e} y^{2} f x \cdot \\
& =\int_{1}^{e} y^{2} d x \cdot \\
& =\int_{1}^{e}(\ln x)^{2} d x \cdot \tag{A}\\
& =\left[x(\ln x)^{2}\right]_{1}^{e} \\
& e-\int_{1}^{e} x \cdot 2 \ln x \times \frac{1}{x} d x \\
& =e-2[\ln x d x \cdot \\
& \left.=e-2[x \ln x]_{1}^{e}-\int_{1}^{e} \frac{1}{x} \cdot x d x\right] \\
& \left.=e-2[e-1)^{e}\right] \\
& =(e-2] \mu^{3} .
\end{align*}
$$

CoMMимт smant optacined full smantes in This haut. The intopial in (A) wos unually secred cevectly.

X2 THC 2015
Question 13
Average mark: 9.5/15
(a) $\quad F=(4000-405) N$
(i) $\ddot{x}=\frac{4000-400}{1600}$

$$
\frac{d v}{d t}=\frac{100-v}{40} \mathrm{~ms}^{-2}
$$

Done well

0	0.5	1	1.5	2	Mean
2	3	3	0	107	1.9

(ii) $\int \frac{d-\infty}{100-r}=\frac{1}{40} \int d t$

$$
\therefore-\ln (100-r)=\frac{1}{40} t+c
$$

when $t=0^{\prime}-\ln 100=c$

$$
\begin{align*}
& \therefore \frac{1}{40} t=\ln \frac{100}{100-2} \\
& \therefore e^{\frac{1}{40} t}=\frac{100}{100-2} \\
& \therefore \frac{100-r}{100}=e^{-\frac{1}{40 t}} \\
& \therefore 100-2=100 e^{-\frac{1}{40} t} \\
& \therefore \sim=100\left(1-e^{-\frac{1}{40} t}\right) \tag{3}
\end{align*}
$$

Done well

0	0.5	1	1.5	2	2.5	3	Mean
4	0	5	1	28	14	63	2.49

(b) (i)

$$
\begin{aligned}
z & =1+i T \\
\therefore z^{3} & =(1+i T)^{3} \\
& =1+3 i T+3(i T)^{2}+(i T)^{3} \\
& =1+3 i T-3 T^{2}-i T^{3} \\
& =\left(1-3 T^{2}\right)+i\left(3 T-T^{3}\right)
\end{aligned}
$$

Done well

0	0.5	1	Mean
1	1	113	0.99

(ii)

$$
\begin{aligned}
z^{3} & =\left(1+i \frac{\sin \theta}{\cos \theta}\right)^{3} \\
& =\frac{1}{\cos ^{3} \theta}(\cos \theta+i \sin \theta)^{3} \\
& =\frac{1}{\cos ^{3} \theta}(\cos 3 \theta+i \sin 3 \theta)
\end{aligned}
$$

$$
\begin{aligned}
\tan 3 \theta & =\frac{\left(\frac{\sin 3 \theta}{\cos ^{3} \theta}\right)}{\left(\frac{\cos 3 \theta}{\cos ^{3} \theta}\right)} \\
& =\frac{3 T-T^{3}}{1-3 T^{2}} \\
& =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
\end{aligned}
$$

A number of students did not follow the "Hence" instruction.
Some students invented a new Defloivre's Theorem, suggesting that
$(1+i \tan \theta)^{3}$

$$
\begin{aligned}
& \text { gesting that } \\
& (1+i \tan \theta)^{3}=1+i \tan 3 \theta-1 .
\end{aligned}
$$

0	0.5	1	1.5	2	Mean
35	7	31	8	34	1.00

(c)
(i) As G is midpoint of $D E$,
$O G \perp D E$
(line joining midpoint of chord to centre of circle is perpendicular to chord)
$\angle A C O=90^{\circ}($ radius 1 tangent at point of contact)
AS $\angle A G O=\angle A C O$, AOGC is a cyclic quadrilateral.
(angler in same segment equal)
Realising that OG $1 D E$ usually
led to a good attempt.

0	0.5	1	1.5	2	2.5	3	3.5	4	Mn
39	1	18	10	11	4	11	4	27	1.79

0	0.5	1	1.5	2	2.5	3	Mean
38	4	25	0	8	3	37	1.40

SBHS EXIT MATHEMATICS TRIALHSC 2015 SOLUTIONS/ COMMENTS Q 14

$$
\begin{aligned}
x & =\left(1+t^{2}\right)^{-1 / 2} \\
\frac{d x}{d t} & =-\frac{1}{2}\left(1+t^{2}\right)^{-3 / 2} \cdot 2 t \\
& =\frac{-t}{\left(1+t^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\ln \left(t+\left(1+t^{2}\right)^{1 / 2}\right) \\
& \frac{d y}{d t}=\frac{1+\frac{1}{2}\left(1+t^{2}\right)^{-1 / 2} \cdot 2 t}{t+\left(1+t^{2}\right)^{1 / 2}}
\end{aligned}
$$

This question was eatnernely poorly wet out by the majority of students. In many wares the atardand of presentation was for below reasonable exfertertions Some worth was barely legible.
This reeds to be worked on.
Mong atadents prevented the guin

$$
=\frac{1+t\left(1+t^{2}\right)^{-1 / 2}}{t+\left(1+t^{2}\right)^{1 / 2}}
$$ answer widget the oulequate lead est. Consequently they did not scone the masts.

MULTIPLY TOP/BOTOA by $\left(1+t^{2}\right)^{1 / 2}$ gules

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\left(1+t^{2}\right)^{1 / 2}+t}{\left(1+t^{2}\right)^{1 / 2}\left[t+\left(1+t^{2}\right)^{1 / 2}\right]} \\
& =\frac{1}{\sqrt{1+t^{2}}}
\end{aligned}
$$

Then $\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$

$$
\begin{aligned}
& =\frac{1}{\left(1+t^{2}\right)^{112}} \times \frac{\left(1+t^{2}\right)^{3 / 2}}{-t} \\
& =-\frac{1+t^{2}}{t}
\end{aligned}
$$

2 mantis
1 mosh for $\frac{d y}{d t}$ and $\frac{d x}{d t}$ consent.
\therefore RMS $=-\ln \left(t+\sqrt{1+t^{2}}\right)$

$$
\begin{aligned}
& =\ln \left(t+\sqrt{1+t^{2}}\right)^{-1} \\
& =\ln \left[\frac{1}{t+\sqrt{1+t^{2}}} \times \frac{t-\sqrt{1+t^{2}}}{t-\sqrt{1+t^{2}}}\right] \\
& =\ln \left(\frac{t-\sqrt{1+t^{2}}}{-1}\right) \\
& =\ln \left(-t+\sqrt{1+t^{2}}\right) \\
& =\operatorname{LHS} \\
O R & \operatorname{RHS}-\angle H S \\
& =\ln \left(-t+\sqrt{1+t^{2}}\right)+\ln \left(t+\sqrt{1+t^{2}}\right) \\
& =\ln \left(\left(t+\sqrt{1+t^{2}}\right)\left(-t+\sqrt{1+t^{2}}\right)\right) \\
& =\ln 1 \\
& =0
\end{aligned}
$$

1 mark
Generally well done

Q 14 in
This question was not answered very wed ot ad by the majority, Mary atideats have the comment "Not show en" on their propens.
Conner the ample fanahola

$y^{2}=4 a x$ wet paramelici eris $x=a t^{2}, y=2 a t$
Symmetric abies the x axis

$$
\begin{aligned}
& y=f(t) \\
& f(-t)=-2 \cdot a t \\
& -f(t)=-20 \cdot t
\end{aligned}
$$

ie $f(-t)=-f(t)$
This is the atalment that needs to lo shower in shes question Hence symaratric shout x asci
Mary atrobents used the fact that annie $x=\frac{1}{\sqrt{1+t^{2}}}$
Then x has the ware value for each $t t$.
Thus only refers to the x, A axes

Hence shay scored zeno marks when they presented no furicher explanation.

Q 14 iv .

$$
x=\frac{1}{\sqrt{1+t^{2}}}
$$

$x \neq 0, x>0$ unce $\sqrt{1+t^{2}}>0$

$$
\text { A1 } t \rightarrow \pm \infty, x \rightarrow 0 \text {, }
$$

When $t=0, x=1$

Hence $0<x \leq 1$
1 mark or no marks.
Mong atudents weal ito for too much detoit (unrecearamy) for the 1 monk.
v) $\frac{d x}{d y}=\frac{-t}{1+t^{2}}, \frac{d x}{y}=0$ when $t=0$

$$
\begin{aligned}
& \text { Wher } t=0, x=1, y=0 \\
& \begin{aligned}
\frac{d^{2} x}{d y^{2}} & =\frac{\left(1+t^{2}\right)(-1)+(-t)(2 t)}{\left(1+t^{2}\right)^{2}} \\
& =\frac{-1-3 t^{2}}{\left(1+t^{2}\right)^{2}}
\end{aligned}
\end{aligned}
$$

Then $\frac{d^{2} x}{d y^{2}}=-1$ when $t=0$ Hence MAX.

10 atudent did chus oferation

1.f x is very mmall pontively $y \div \ln \left(\frac{1}{\varepsilon}+\frac{1}{\varepsilon}\right)$
$\left\{\sin x=\ln \left[\frac{\sqrt{1-x^{2}}}{x}+\frac{1}{x}\right]\right.$
on eliminateing A between x e y
re y is veny lange ε is is vey ramall musber.
This in formstion provides the shelch in quadnant I

Syametry prooudes the whetic in varivart 4

MOTR
Deapte heing told aymmetoy esuats. Mory Ntudents dnew the graph onty in quabmant 1 .

Q HE CHOCOLATES
Generally very poorly answered.
Consider 6 different chocololés

$$
A, B, C, D, E, F
$$

Number of ways of choosing 3 from 6 is ${ }^{6} C_{3}=20$
If 2 of the chocolates are the came nay $A \in B$
Then choosing A and omitting B is the wame choice as choosing B end ormeting A.
That is, now only 2 chocolates reed to he chosen from the remainery $4 C, D, E, F=4 C_{2}=6$
That is there ene 6 pavis of conberations from the 20 that ere identical

Then there ane 20-6 $=14$ different elections.

$$
\text { a }{ }^{6} C_{3}-4 C_{2}=14 \quad(2 \text { marks })
$$

If hock A and B are chosen tern chare is now only 1 selection t he made from 4

$$
\begin{aligned}
& =4 C_{1} \\
& =4
\end{aligned}
$$

$$
\text { Heme } \begin{aligned}
& P(\text { choosing } 2 \text { iolanticial })=\frac{4}{14} \\
&=\frac{2}{7} \quad(1 \mathrm{mart}) \\
& \text { u } \frac{4 C_{1}}{6 C_{3}-4 C_{2}}
\end{aligned}
$$

Note
Students who hod part i incorrect hut stich hat the (4 chocies identical) atilt monad I mark SER OUER

CHOCOLATES.
Connder the 6 chocolales es defferent $A, B, C, D, B, 1=$ choosing 3 from 6 gwes ${ }^{6} C_{3}=20$ combenations To be ABSOLUTRCY CLBAR it es not to delffeult to luat the 20

1) $A B C$
2) $A B D$
3) $A B E$
4) $A B F$

If 2 chocololis are the wame Soy A and B

Then the 12 combinations annowed ophear in fains er 6 different conbinations

That as a total of 14 drfferent relestions
16) $B E F$
7) COB
18) $\angle O F$
is $P(2$ indentical $)=\frac{4}{14}$
19) $C E F$
20) 1 1 R

Selection 1)
2)
3) contain
4) woik A \& B
$14 c$
Conner $y=3 x^{4}-16 x^{3}+18 x^{2}-h$
having 4 distinct real roots then the graph must be

$$
P, Q R
$$

There occur when $y^{\prime}=0$

$$
\begin{aligned}
& 12 x^{3}-48 x^{2}+36 x=0 \\
& 12 x\left(x^{2}-4 x+3\right)=0 \\
& 12 x(x-1)(x-3)=0
\end{aligned}
$$

use when $x=0,1,3$
Substituting there values for I

$$
\begin{array}{ll}
x=0, & y=-12 \\
x=1, & y=5-12 \\
x=3, & y=-27-12
\end{array}
$$

Hence the above graph now becomes

so From diagram $-k<0$ re $k>0$ $5-k>0$ u $k<5$

$$
-27-k<0 \text { ar >-27 }
$$

The only volution common to the alcove is $0<k<5$

QIAC continized
3 martas
Pant marks ewandel for eicter but not all.

1 for terring poinls or y makues (not moch)
1 for some fragneess
No lenalty for $0 \leq x \leq 5$
Soluction" "almost" complet but wechout esplanation 2 marks.

Mory ariolents loobed of the graph

$$
y=3 x^{4}-16 x^{3}+18 x^{2}
$$

and carre uf with the correct anwer $0<k<5$ lut 010 NOT provide EXPLANATION
There itudents mored 2 manks out of the 3.

- All recessany wrraing ahould be shown in every oprestion if full martas are to he ewanded.

Question $14 d$ (3mants)
If $-6 i$ is a root of the polynomial no is $6 i$

$$
(x-6 i)(x+6 i)=x^{2}+36
$$

The quadrate that has a root $-1+\sqrt{5}$
u has $\frac{-2+2 \sqrt{5}}{2}$ as a root

$$
\begin{aligned}
& \text { u } \frac{-2+\sqrt{20}}{2} \text { as a root } \\
& \frac{-2 \pm \sqrt{20}}{2}=\frac{-6 \pm \sqrt{6^{2}-40}}{20} \\
& \text { Here } a=1, \quad k=2, \quad b^{2}-4 a c=20 \\
& 4-4 c=20 \\
& -4 c=16 \\
& c=-4
\end{aligned}
$$

M $x^{2}+2 x-4$
Here polynomial of amallent olegnee with national wepfecunts is $\left(x^{2}+36\right)\left(x^{2}+2 x-4\right)$

$$
x^{4}+2 x^{3}+32 x^{2}+72 x-144=0
$$

$\left\{\begin{array}{l}2 \text { rants for } \\ \text { rimple mistotre }\end{array}\right.$

OR

Var

$$
\begin{array}{r}
x+1=\sqrt{5} \\
(x+1)^{2}=5 \\
x^{2}+2 x+1=5 \\
x^{2}+2 x-4=0
\end{array}
$$

$x=-1+\sqrt{5}$ cerpeid through
$\{$ "Some progress" $1 / 2$
$\frac{-1}{2}$ for each rumple mustoke eg a matead of -

Some aterdeali wed the roots as $6 i,-6 i,-1+\sqrt{5},-1-\sqrt{5}$ is the roots e den used the sum-froducts. reaults for the pools of poly normals t find the weffecients. The is much more dipfeult. end prone to error.

SBHS THSC Maths Ext2 2015

Question 15

(a) $\quad(1+i)^{2 n}=\left(\sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)\right)^{2 n}$

LHS

$$
\begin{aligned}
& ={ }^{2 n} C_{0}+{ }^{2 n} C_{1} i+{ }^{2 n} C_{2} i^{2}+{ }^{2 n} C_{3} i^{3}+{ }^{2 n} C_{4} i^{4}+{ }^{2 n} C_{5} i^{5}+\ldots+{ }^{2 n} C_{2 n-1} i^{2 n-1}+{ }^{2 n} C_{2 n} i^{2 n} \\
& ={ }^{2 n} C_{0}+{ }^{2 n} C_{1} i-{ }^{2 n} C_{2}-{ }^{2 n} C_{3} i+{ }^{2 n} C_{4}+{ }^{2 n} C_{5} i-\ldots+{ }^{2 n} C_{2 n-1} i^{2 n-1}
\end{aligned}
$$

Now $\operatorname{Im}[$ LHS $]={ }^{2 n} C_{1}-{ }^{2 n} C_{3}+{ }^{2 n} C_{5}-{ }^{2 n} C_{7}+\ldots-{ }^{2 n} C_{2 n-1}$

$$
=\sum_{k=0}^{n-1}{ }^{2 n} C_{2 k+1}(-1)^{k}
$$

$$
\text { RHS }=(\sqrt{2})^{2 n}\left(\cos \left(\frac{2 n \pi}{4}\right)+i \sin \left(\frac{2 n \pi}{4}\right)\right) \quad \text { (de Moivre's Theorem) }
$$

$$
=2^{n}\left(\cos \left(\frac{n \pi}{2}\right)+i \sin \left(\frac{n \pi}{2}\right)\right)
$$

Thus $\operatorname{Im}[$ RHS $]=2^{n} \sin \left(\frac{n \pi}{2}\right)$

$$
=\operatorname{Im}[\mathrm{LHS}]
$$

Hence $\sum_{k=0}^{n-1}{ }^{2 n} C_{2 k+1}(-1)^{k}=2^{n} \sin \left(\frac{n \pi}{2}\right)$ as required.
Comments: Well answered generally. Those who lost marks failed to see the connection between the imaginary parts.
(b) $\frac{d P}{d t}=P(1000-P)$
(i) $\quad \frac{d t}{d P}=\frac{1}{P(1000-P)}$

$$
\text { Integrating w.r.t. } P \text { : }
$$

$$
t=\int \frac{1}{P} \cdot \frac{1}{1000-P} d P+C
$$

Partial Fractions:

$$
\begin{aligned}
& \frac{1}{P(1000-P)} \equiv \frac{A}{P}+\frac{B}{1000-P} \\
1 & \equiv A(1000-B)+B P \\
\text { Hence } A & =B=\frac{1}{1000} \\
\therefore t & =\frac{1}{1000}\left(\int \frac{d P}{P}+\int \frac{d P}{1000-P}\right)+C \\
& =\frac{1}{1000}(\ln P-\ln (1000-P))+C
\end{aligned}
$$

$$
\therefore \ln \left(\frac{P}{1000-P}\right)=1000 t+C \quad \text { as required. }
$$

Alternatively:

$$
1000 t+C=\ln \left(\frac{P}{1000-P}\right)
$$

Differentiating w.r.t. P :

$$
\begin{aligned}
& 1000 \frac{d t}{d P}
\end{aligned} \begin{aligned}
\left(\frac{1}{1000-P}\right) & \frac{d}{d P}\left(\frac{P}{1000-P}\right) \\
& =\frac{1000-P}{P}\left[\frac{(1000-P) \cdot 1-P \cdot(-1)}{(1000-P)^{2}}\right] \\
& =\frac{1}{P}\left[\frac{1000}{1000-P}\right] \\
\therefore \frac{d t}{d P} & =\frac{1}{P(1000-P)}
\end{aligned}
$$

Thus $\quad \frac{d P}{d t}=P(1000-P)$, and $1000 t+C=\ln \left(\frac{P}{1000-P}\right)$
is a solution.
Comments: Again very well answered, with most candidates using partial fractions, some by observation rather than formally.
(ii) From above, taking exponentials:

$$
\begin{aligned}
\frac{P}{1000-P} & =e^{1000 t+C} \\
& =K e^{1000 t}
\end{aligned}
$$

Thus $P=1000$ Ke $^{1000 t}-P K e^{1000 t}$

$$
\begin{aligned}
P\left(1+K e^{1000 t}\right) & =1000 K e^{1000 t} \\
P & =\frac{1000 K e^{1000 t}}{1+K e^{1000 t}} \\
\therefore P & =\frac{1000 K}{K+e^{-1000 t}} \quad \text { on division by } e^{1000 t} .
\end{aligned}
$$

Comments: Again very well answered, with most candidates getting the full 3 marks.
(iii) When $t=0, P=200$

So $200=\frac{1000 K}{K+1}$
Hence $K=\frac{1}{4}$.

When the population is 900
$900=\frac{1000 \times 0.25}{0.25+e^{-1000 t}}$
$\therefore e^{-1000 t}=\frac{250}{900}-\frac{1}{4}$
Taking natural logarithms:
$-1000 t=\ln \left(\frac{1}{36}\right)$
$t=\frac{\ln (36)}{1000}$
$t \simeq 0.0036 \quad$ (Assumedly the units are years)
Comments: Almost every candidate obtained this rather alarming result.
(c) $\quad 0 \leq x_{i} \leq 1, \mathrm{i}=1,2, \ldots, \mathrm{n}$
(i) Given $\left(1-x_{1}\right)\left(1-x_{2}\right) \geq 0$, RTP $2\left(1+x_{1} x_{2}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right)$

$$
\begin{align*}
& \left(1-x_{1}\right)\left(1-x_{2}\right) \geq 0 \\
& 1-x_{2}-x_{1}+x_{1} x_{2} \geq 0 \\
& 1-\left(x_{1}+x_{2}\right)+x_{1} x_{2} \geq 0 \\
& 1+x_{1} x_{2} \geq x_{1}+x_{2} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\text { Consider } & 2\left(1+x_{1} x_{2}\right)-\left(1+x_{1}\right)\left(1+x_{2}\right) \\
= & 2\left(1+x_{1} x_{2}\right)-\left(1+\left(x_{1}+x_{2}\right)+x_{1} x_{2}\right) \\
= & 2\left(1+x_{1} x_{2}\right)-\left(1+x_{1} x_{2}\right)-\left(x_{1}+x_{2}\right) \\
= & \left(1+x_{1} x_{2}\right)-\left(x_{1}+x_{2}\right) \\
\geq & 0 \quad \text { From (1) }
\end{aligned}
$$

Thus $2\left(1+x_{1} x_{2}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right)$
Comments: This was generally well done, although some assumed the result, and proceeded to beg the question.
(ii) $\quad P(n): 2^{n-1}\left(1+x_{1} x_{2} \ldots x_{n}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{n}\right)$
$P(1): 2^{0}\left(1+x_{1}\right) \geq 1+x_{1}$
$L H S=1+x_{1} ; \quad R H S=1+x_{1}$
$\therefore P(1)$ is true (equality)
$P(k)$: Assume the proposition is true for some positive integer k
Thus $\quad 2^{k-1}\left(1+x_{1} x_{2} \ldots x_{k}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{k}\right)$
$P(k+1): \quad$ RTP that $P(k)$ implies $P(k+1)$
that is $2^{k}\left(1+x_{1} x_{2} \ldots x_{k+1}\right) \geq\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{k+1}\right)$

$$
\begin{array}{rlr}
R H S & =\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{k}\right)\left(1+x_{k+1}\right) \\
& \leq 2^{k-1}\left(1+x_{1} x_{2} \ldots x_{k}\right)\left(1+x_{k+1}\right) \quad \text { by the assumption } \\
& \leq 2^{k}\left(1+x_{1} x_{2} \ldots x_{k} x_{k+1}\right) \quad \text { by part (i) } \\
& =\text { LHS } & \\
\therefore L H S \geq R H S &
\end{array}
$$

Hence by the principle of mathematical induction, the proposition is true for all $n \geq 1$.

Comments: Almost no candidates took the short route to proof shown above, but most who attempted it found a way.
16) a) i)

$$
\begin{aligned}
m a & =m g \\
a & =10 \\
v \frac{d v}{d x} & =10 \\
\frac{d v}{d x} & =\frac{10}{v}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d x}{d v} & =\frac{v}{10} \\
x & =\frac{r^{2}}{20}+C
\end{aligned}
$$

when $t=0, x=0, v=0$

$$
\begin{aligned}
& \therefore c=0 \\
& x=\frac{v^{2}}{20}
\end{aligned}
$$

when $x=7.2$

$$
\begin{aligned}
7 \cdot 2 & =\frac{v^{2}}{20} \\
v^{2} & =144 \\
v & = \pm 12 \\
v & =12 \mathrm{~ms}^{-1}
\end{aligned}
$$

iii)
$\operatorname{mg}_{\operatorname{ma}} \sqrt{R}$

$$
\begin{aligned}
m a & =m g-R \\
0.2 a & =0.2 \times 10-R \\
a & =10-5 R \\
\frac{d\left(\frac{1}{2} v^{2}\right)}{d x} & =10-5 R \\
\frac{1}{2} r^{2} & =(10-5 R) x+C
\end{aligned}
$$

Note: R is a constant
when $x=0, r=12$

$$
\begin{aligned}
\frac{1}{2}(12)^{2} & =c \\
c & =72
\end{aligned}
$$

$$
\frac{1}{2} v^{2}=(10-5 R) x+72
$$

when $x=0.8, \quad v=6$

$$
\begin{gathered}
\frac{1}{2}(6)^{2}=(10-5 R)(0.8)+72 \\
(10-5 R)(0.8)=-54 \\
10-5 R=-67.5 \\
-5 R=-77.5 \\
R=15.5 \mathrm{~N}
\end{gathered}
$$

iv)

$$
\begin{aligned}
m a & =T-R-m g \\
0.2 a & =T-15.5-0.2 \times 10 \\
0.2 a & =T-17.5 \\
a & =5 T-87.5
\end{aligned}
$$

Note: Since a is a constant T is a constant.

$$
\begin{aligned}
\frac{d V}{d t} & =5 T-87.5 \\
r & =(5 T-87.5) t+C
\end{aligned}
$$

when $t=0, r=0$

$$
\begin{aligned}
& \therefore c=0 \\
& \frac{d x}{d t}=(5 T-87.5) t \\
& x=(5 T-87.5) \frac{t^{2}}{2}+C
\end{aligned}
$$

when $t=0, x=0$

$$
\begin{gathered}
\therefore c=0 \\
x=(5 T-87.5) \frac{t^{2}}{2}
\end{gathered}
$$

when, $t=4, x=3.6$

$$
\begin{gathered}
3.6=(5 T-87.5) \frac{(4)^{2}}{2} \\
5 T-87.5=0.45 \\
5 T=87.95 \\
T=17.59 \mathrm{~N}
\end{gathered}
$$

COMMENT:

- Students should approach these questions by resolving forces. Many started with acceleration.
- Student's should not use

$$
\left\{\begin{array}{l}
v=u+a t \\
v^{2}=u^{2}+2 a s \\
s=u t+\frac{1}{2} a t^{2}
\end{array}\right.
$$

- Definite integrals can be used. However, mistakes were made in (iv).

$$
\begin{aligned}
& \frac{d v}{d t}=5 T-87.5 \\
& d v=(5 T-87.5) d t \\
& \int_{0}^{v} d v=\int_{0}^{4}(5 T-87.5) d t
\end{aligned}
$$

this was a common mistake.
It should have been

$$
\begin{aligned}
\int_{0}^{r} d r & =\int_{0}^{t}(5 T-87.5) d t \\
r & =(5 T-87.5) t \\
\frac{d x}{d t} & =(5 T-87.5) t \\
\int_{0}^{3.6} d x & =\int_{0}^{4}(5 T-87.5) t d t \\
3.6 & =\left[(5 T-87.5) \frac{t^{2}}{2}\right]_{0}^{4} \\
3.6 & =(5 T-87.5) \frac{(4)^{2}}{2} \\
5 T-87.5 & =0.45 \\
5 T & =87.95 \\
T & =17.59 \mathrm{~N}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& y=27 x^{3}-27 x^{2}+4 \\
& y^{\prime}=81 x^{2}-54 x
\end{aligned}
$$

For stationary points let $y^{\prime}=0$

$$
\begin{gathered}
27 x(3 x-2)=0 \\
x=0, \frac{2}{3} .
\end{gathered}
$$

when $x=0$

$$
\text { when } x=\frac{2}{3}
$$

$$
y=4
$$

$$
\begin{aligned}
y & =27\left(\frac{2}{3}\right)^{3}-27\left(\frac{2}{3}\right)^{2}+4 \\
& =0
\end{aligned}
$$

\therefore Turning points at $(0,4) \not \&\left(\frac{2}{3}, 0\right)$

$$
\begin{aligned}
& 27 x^{3}-27 x^{2}+4 \geqslant 0 \\
& 4 \geqslant 27 x^{2}-27 x^{3} \\
& 4 \geqslant 27 x^{2}(1-x) \\
& \frac{4}{27} \geqslant x^{2}(1-x) \\
& \therefore x^{2}(1-x) \leqslant \frac{4}{27}
\end{aligned}
$$

iii) Consider $0<a \leq b \leq c<1$

$$
\begin{gather*}
0>-a \geqslant-b \geqslant-c>-1 \tag{I}\\
-1<-c \leqslant-b \leqslant-a \leqslant 0 \\
0<1-c \leqslant 1-b \leqslant 1-a \leqslant 1 \tag{2}
\end{gather*}
$$

From (1) $a \leq b$

$$
\begin{array}{cl}
a b \leqslant b^{2} & (b>0) \\
a b(1-c) \leqslant b^{2}(1-c) & (1-c>0)
\end{array}
$$

From (2) $\quad b^{2}(1-c) \leqslant b^{2}(1-b)$

$$
\therefore \quad a b(1-c) \leq b^{2}(1-c) \leq b^{2}(1-b)
$$

From (ii) $\quad b^{2}(1-b) \leqslant \frac{4}{27}$

$$
\therefore a b(1-c) \leqslant \frac{4}{27}
$$

And so at least one of $a b(1-c), b c(1-a), c a(1-b)$ is less than or equal to $\frac{4}{27}$.
iii) since $a>0$

$$
a^{2}(1-a) \leq \frac{4}{27} \quad \text { from (ii) }
$$

Also $0<a^{2}(1-a)$

$$
\begin{equation*}
0<a^{2}(1-a) \leqslant \frac{4}{27} \tag{1}
\end{equation*}
$$

similarly, $0<b^{2}(1-b) \leqslant \frac{4}{27}$

$$
\begin{gather*}
0 \leqslant c^{2}(1-c) \leqslant \frac{4}{27} \tag{2}\\
0 \times(2) \times 3 \\
0<a^{2}(1-a) \cdot b^{2}(1-b) \cdot c^{2}(1-c) \leqslant\left(\frac{4}{27}\right)^{3} \\
0<b c(1-a) \cdot c a(1-b) \cdot a b(1-c) \leqslant\left(\frac{4}{27}\right)^{3} \tag{4}
\end{gather*}
$$

Proof by contradiction:
Assume that $b c(1-a), c a(1-b)$ and $a b(1-c)$ are all greater than $\frac{4}{27}$
ie $\quad b c(1-a)>\frac{4}{27}$

$$
\begin{align*}
& c a(1-b)>\frac{4}{27} \tag{5}\\
& a b(1-c)>\frac{4}{27} \\
& (5) \times(6) \times(7) \\
& b c(1-a) \cdot c a(1-b) \cdot a b(1-c)>\left(\frac{4}{27}\right)^{3}
\end{align*}
$$

This contradicts (4)
Assumption is false
\therefore At least one of $b c(1-a), c a(1-b)$ and $a b(1-c)$ is less than or equal to $\frac{4}{27}$.
comment,
part (i) \& (ii) were done well by students. A small number of students assumed the result in (ii) which is not a valid form of proof.
Not many students made any progress with (iii)

