Sydney Girls High School 2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations.
- All answers should be given in simplest exact form unless otherwise specified.

Total marks - 100

Section I Pages 3-7

10 Marks

- Attempt Questions 1 - 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II
Pages 8-17
90 Marks

- Attempt Questions 11-16.
- Answer on the blank paper provided.
- Begin a new page for each question.
- Allow about 2 hours and 45 minutes for this section.

Name: ...	THIS IS A TRIAL PAPER ONLY
Teacher: ...	It does not necessarily reflect the format or the content of the 2015 HSC Examination Paper in this subject.

Section I

10 marks

Attempt Questions 1-10

Use the multiple-choice answer sheet for Questions 1-10.
(1) An object rotates at 40 rpm and is moving at $30 \mathrm{~m} / \mathrm{s}$. The radius of the motion is
(A) 1.33 m
(B) 6.37 m
(C) 7.16 m
(D) 20 m
(2) Let $z=3-i$. What is the value of $\overline{\bar{z}}$?
(A) $-1-3 i$
(B) $-1+3 i$
(C) $1-3 i$
(D) $1+3 i$
(3) Which of the following is an expression for $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$?
(A) $\frac{1}{4} \sin ^{-1}\left(\frac{x-3}{4}\right)+c$
(B) $\frac{1}{4} \sin ^{-1}\left(\frac{x+3}{4}\right)+c$
(C) $\sin ^{-1}\left(\frac{x-3}{4}\right)+c$
(D) $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
(4) How many ways can 5 boys and 3 girls be arranged around a circular table such that no two girls sit next to each other?
(A) 144
(B) 432
(C) 720
(D) 1440
(5) What is the solution to the equation $\tan ^{-1}(4 x)-\tan ^{-1}(3 x)=\tan ^{-1}\left(\frac{1}{7}\right)$?
(A) $x=\frac{1}{7}$ or $x=\frac{2}{7}$
(B) $x=\frac{1}{3}$ or $x=\frac{2}{3}$
(C) $x=\frac{1}{3}$ or $x=\frac{1}{4}$
(D) $x=3$ or $x=4$
(6) The diagram below shows the graph of the function $y=f(x)$.

Which diagram represents the graph of $y^{2}=f(x)$?

(C)

(B)

(D)

(7) Use the substitution $t=\tan \frac{x}{2}$ to find $\int-\sec x d x$.
(A) $\ln |(t-1)(t+1)|+c$
(B) $\ln |(1-t)(t+1)|+c$
(C) $\ln \left|\frac{1+t}{t-1}\right|+c$
(D) $\ln \left|\frac{t-1}{t+1}\right|+c$
(8) What is the eccentricity of the hyperbola $4 x^{2}-25 y^{2}=9$?
(A) $\frac{\sqrt{21}}{5}$
(B) $\frac{\sqrt{29}}{5}$
(C) $\frac{\sqrt{21}}{2}$
(D) $\frac{\sqrt{29}}{2}$
(9) Part of the graph of $y=f(x)$ is shown below

$y=f(x)$ could be
(A) $y=-\tan \left(2 x-\frac{\pi}{6}\right)$
(B) $y=-\tan \left(2 x-\frac{\pi}{3}\right)$
(C) $\quad y=\cot \left(2 x-\frac{\pi}{12}\right)$
(D) $y=\cot \left(2 x-\frac{\pi}{6}\right)$
(10) The polynomial equation $x^{3}-3 x^{2}-x+2=0$ has roots α, β and γ. Which one of the following polynomial equations has roots $2 \alpha+\beta+\gamma, \alpha+2 \beta+\gamma$ and $\alpha+\beta+2 \gamma$?
(A) $x^{3}-6 x^{2}+44 x-49=0$
(B) $x^{3}-12 x^{2}+44 x-49=0$
(C) $x^{3}+3 x^{2}+36 x+5=0$
(D) $x^{3}+6 x^{2}+36 x+5=0$

Section II

90 marks

Attempt Questions 11-16

Start each question on a NEW sheet of paper.
Question 11 (15 marks)
Use a NEW sheet of paper.
(a) If $z=(1-i)^{-1}$
(i) Express \bar{z} in modulus-argument form.
(ii) If $(\bar{z})^{13}=a+i b$ where a and b are real numbers, find the values of a and b.
(b) Find
$\int x^{3} e^{x^{4}+7} d x$
(ii)

$$
\int \sec ^{3} x \tan x d x
$$

(c) Find the Cartesian equation of the locus of a point P which represents the complex number z where $|z-2 i|=|z|$
(d) Sketch the region in the complex plane where $\operatorname{Re}[(2-3 i) z]<12$
(e)
(i) Express $\frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)}$ in the form $\frac{A x+B}{x^{2}+1}+\frac{C}{x+1}$, where A, B and C are constants.
(ii) Hence find

End of Question 11

Question 12 (15 marks)
Use a NEW sheet of paper.
(a)

Using four separate graphs sketch:
(i) $y=f^{\prime}(x)$
(ii) $|y|=f(x)$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=3^{f(x)}$
(b) Evaluate

$$
\int_{4}^{7} \frac{d x}{x^{2}-8 x+19}
$$

(c) Let $f(x)=\frac{x^{3}+1}{x}$.
(i) Show that

$$
\lim _{x \rightarrow \pm \infty}\left[f(x)-x^{2}\right]=0
$$

(ii) Part (i) shows that the graph of $y=f(x)$ is asymptotic to the parabola $y=x^{2}$. Use this fact to help sketch the graph $y=f(x)$.

Question 13 (15 marks)
Use a NEW sheet of paper.
(a) If ω is the root of $z^{5}-1=0$ with the smallest positive argument, find the real quadratic equation with roots $\omega+\omega^{4}$ and $\omega^{2}+\omega^{3}$.
(b) Given the polynomial $P(x)=x^{3}+x^{2}+m x+n$ where m and n are real numbers:
(i) If $(1-2 i)$ is a zero of $P(x)$ factorise $P(x)$ into complex linear factors.
(ii) Find the values of m and n.
(c)
(i) An ellipse has major and minor axes of lengths 12 and 8 respectively. Write a possible equation of this ellipse.
(ii) A solid has the elliptical base from part (i). Sections of the solid, perpendicular to its base and parallel to the minor axis, are semi-circles. Find the volume of the solid.
(d)
(i) Let $P(x)$ be a degree 4 polynomial with a zero of multiplicity 3 . Show that $P^{\prime}(x)$ has a zero of multiplicity 2 .
(ii) Hence find all the zeros of $P(x)=8 x^{4}-25 x^{3}+27 x^{2}-11 x+1$, given that it has a zero of multiplicity 3 .

End of Question 13

Question 14 (15 marks)
Use a NEW sheet of paper.
(a)
(i) Given that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$, show that $\int_{0}^{\pi} x \cos 2 x d x=0$.
(ii)

The area bounded by the curve $y=\sin ^{2} x$ and the x-axis between $x=0$ and $x=\pi$ is rotated through one revolution about the y-axis. By taking the limiting sum of the volumes of cylindrical shells find the volume of this solid.
(b) $P\left(t, \frac{1}{t}\right)$ is a variable point on the rectangular hyperbola $x y=1 . M$ is the foot of the perpendicular from the origin to the tangent to the hyperbola at P.

(i) Show that the tangent to the hyperbola at P has equation $x+t^{2} y=2 t$.
(ii) Find the equation of $O M$.
(iii) Show that the equation of the locus of M as P varies is $x^{4}+2 x^{2} y^{2}-4 x y+y^{4}=0$ and indicate any restrictions on the values of x and y.
(c) PT is a common tangent to the circles which touch at T . PA is a tangent to the smaller circle at Q .

(i) Prove that $\triangle \mathrm{BTP}$ is similar to $\triangle \mathrm{TAP}$.
(ii) Hence show that $\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$.
(iii) If $\mathrm{PT}=t, \mathrm{QA}=a$ and $\mathrm{QB}=b$ prove that $t=\frac{a b}{a-b}$.

End of Question 14

Question 15 (15 marks)
Use a NEW sheet of paper.
(a) Evaluate

$$
\int_{1}^{e} x^{7} \log _{\mathrm{e}} x d x
$$

(b)
(i) On the same diagram sketch the graphs of the ellipses
$E_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ and $E_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{12}=1$, showing clearly the intercepts on the axes. Find the coordinates of the foci and the equations of the directrices of the ellipse E_{1}.
(ii) $P(2 \cos p, \sqrt{3} \sin p)$, where $0<p<\frac{\pi}{2}$, is a point on the ellipse E_{1}. Use differentiation to show that the tangent to the ellipse E_{1} at P has equation $\frac{x \cos p}{2}+\frac{y \sin p}{\sqrt{3}}=1$.
(iii) The tangent to the ellipse E_{1} at P meets the ellipse E_{2} at the points $Q(4 \cos q, 2 \sqrt{3} \sin q)$ and $R(4 \cos r, 2 \sqrt{3} \sin r)$, where $-\pi<q<\pi$ and $-\pi<r<\pi$. Show that q and r differ by $\frac{2 \pi}{3}$.
(c) The diagram shows an isosceles triangle PAB. PM is the bisector of $\angle A P B$, where $\angle A P B=\beta$. PM bisects AB . A and B represent the complex numbers z_{1} and z_{2} respectively.

(i) Find the complex number represented by
(α) $\overrightarrow{A M}$
(β) $\overrightarrow{M P}$
(ii) Hence show that P represents the complex number

$$
\begin{equation*}
\frac{1}{2}\left(1-i \cot \frac{\beta}{2}\right) z_{1}+\frac{1}{2}\left(1+i \cot \frac{\beta}{2}\right) z_{2} \tag{3}
\end{equation*}
$$

End of Question 15

Question 16 (15 marks)

Use a NEW sheet of paper.
(a) A bowl is formed by rotating the hyperbola $y^{2}-x^{2}=1$ for $1 \leq y \leq 5$ through 180° about the y-axis. Sometime later, a particle P of mass m moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω.

(i) Show that if the radius of the circle in which P moves is r, then the normal to the surface at P makes an angle α with the horizontal as shown in the diagram where $\tan \alpha=\frac{\sqrt{1+r^{2}}}{r}$.
(ii) Draw a diagram showing the forces on P .
(iii) Find the expressions for the radius r of the circle of motion and the magnitude of the reaction force between the surface and the particle in terms of m, g and ω.
(iv) Find the values of ω for which the described motion of P is possible.
(b) Let

$$
I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x \text { where } n=0,1,2, \ldots
$$

(i) Show

$$
I_{n}=-1+n I_{n-1} \text { where } n=1,2,3, \ldots
$$

(ii) Hence evaluate

$$
\int_{1}^{e}(1-\ln x)^{3} d x
$$

(iii) Show that

$$
\frac{I_{n}}{n!}=e-\sum_{r=0}^{n} \frac{1}{r!} \text { where } n=1,2,3, \ldots
$$

(iv) Show that $0 \leq I_{n} \leq e-1$.
(v) Deduce that

$$
\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{1}{r!}=e
$$

End of Question 16

End of Exam

Sydney Girls High School

Mathematics Faculty

Multiple Choice Answer Sheet
 2015 Trial HSC Mathematics Extension 2

Select the alterative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample $2+4=$?
(A) 2
(B) 6
(C) 8
(D) 9
A \bigcirc
B
CD

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$\mathrm{C} \bigcirc$
D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
A

D

Student Number: AMSWERS
Completely fill the response oval representing the most correct answer.

1. $\mathrm{A} \bigcirc$
B
C
$\mathrm{D} \bigcirc$
2. $\mathrm{A} \bigcirc$
$\mathrm{B} \bigcirc$
C $\mathrm{D} \bigcirc$
3. $\mathrm{A} \bigcirc$
$B \bigcirc$
$\mathrm{C} \bigcirc$
D
4. $\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D (3)
5. $\mathrm{A} \bigcirc$
B
C
$\mathrm{D} \bigcirc$
6. A \bigcirc
$B \bigcirc$
CD D
7. $\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D
8. A
B .
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
9. $\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D
10.A
B 5
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

Question II
(a) (i) $z=\frac{1}{1-i} \times \frac{1+i}{1+i}=\frac{1+i}{1-i^{2}}=\frac{1}{2}+\frac{1}{2} i$

$$
\begin{aligned}
\bar{z} & =\frac{1}{2}-\frac{1}{2} i \\
|\bar{z}| & =\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}}=\frac{1}{\sqrt{2}} \\
\arg (\bar{z}) & =-\frac{\pi}{4} \quad \therefore \bar{z}=\frac{1}{\sqrt{2}} \operatorname{cis}\left(-\frac{\pi}{4}\right)
\end{aligned}
$$

A common error was an
incorrect calculation of the
argument. A diagram is usually recommended.

Some students didn't apply De Moivre's theorem correctly. Also, being asked - some students did not state the values for a and b as asked.

$$
\because a=\frac{-1}{128}, b=\frac{1}{128}
$$

(b) (i) $\int x^{3} e^{x^{4}+7} d x=\frac{1}{4} e^{x^{4}+7}+c \quad \begin{gathered}\text { An easy question made } \\ \text { complicated ty some. }\end{gathered}$
(ii) let $u=\sec x \quad d u=\sec x \tan x d x$

$$
I=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{\sec ^{3} x}{3}+C
$$

(c) $|z-2 i|=|z| \rightarrow$ perpendicular bisector of $(0,0)$

$(0,2)$. Some used algebraic approach successfully.
\therefore The locus is the line $y=1$.

Qn II (continued)
(d) let $z=x+i y \quad \operatorname{Re}[(2-3 i)(x+i y)]<12$

$$
\operatorname{Re}[2 x+3 y+i(2 y-3 x)]<12
$$

(e) (i)

$$
\begin{aligned}
& \frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)} \equiv \frac{A x+B}{x^{2}+1}+\frac{C}{x+1} \\
& x^{2}+x+2 \equiv(A x+B)(x+1)+C\left(x^{2}+1\right)
\end{aligned}
$$

coeft. of $x^{2} \quad 1=A+C$ (1)
coeff. of $x \quad 1=A+B$
constant $2=B+C$ (3)
(1) -(2) $C-B=0$ i.e. $B=C$
subst. into (3) $B+B=2 \quad \therefore B=1$ and $C=1$
from (1) $\quad A+1=1 \quad \therefore A=0$

$$
\therefore \frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)}=\frac{0 x+1}{x^{2}+1}+\frac{1}{x+1}=\frac{1}{x^{2}+1}+\frac{1}{x+1}
$$

A reminder to ANSWER THE QUESTION. :)

$$
\text { (ii) } \begin{aligned}
\int \frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)} d x & =\int\left(\frac{1}{x^{2}+1}+\frac{1}{x+1}\right) \\
& =\tan ^{-1} x+\ln (x+1)+C
\end{aligned}
$$

2015 THSC ext 2
(a)
(i)

(iii)

(iii)

(iv)

(b)

$$
\int_{4}^{7} \frac{d x}{x^{2}-8 x+14}
$$

$$
=\int_{4}^{7} \frac{d x}{(x-4)^{2}-16+19}
$$

$$
=\int_{4}^{7} \frac{d x}{\sqrt{3}^{2}+(x-4)^{2}}
$$

$$
=\frac{1}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{x-4}{\sqrt{5}}\right)\right]_{4}^{7}
$$

$$
=\frac{1}{\sqrt{3}}\left(\tan ^{-1}\left(\frac{3}{\sqrt{3}}\right)-\tan ^{-1} 0\right) .
$$

$$
=\frac{\pi}{3 \sqrt{3}}
$$

(c) $F(x)=\frac{x^{3}+1}{x}$
(i) $\lim _{x \rightarrow \pm \infty}\left[\frac{x^{3}+1}{x}-x^{2}\right]=\lim _{x \rightarrow 5 \infty}\left[\frac{1}{x}\right]$
(ii)

$$
\begin{array}{rl}
f^{\prime}(x) & =\frac{x\left(3 x^{2}\right)-\left(x^{3}+1\right)}{x^{2}}=0 . \\
& =\frac{2 x^{3}-1}{x^{2}} \\
f^{\prime}(x) & =0 . \\
2 x^{3}-1 & =0 \quad \frac{x}{f^{\prime}(x)}\left|\frac{0.7}{1-0.6}\right| 0 \\
x & =\frac{1}{\sqrt[3]{2}} \quad 10.1 \\
x & f\left(\frac{1}{\sqrt{2}}\right)=1.89
\end{array}
$$

$$
\begin{aligned}
& \text { As } x \rightarrow 0^{-} \quad f(x) \rightarrow-\infty \\
& \text { As } x \rightarrow 0^{+} \quad f(x) \rightarrow \infty \\
& \vdots
\end{aligned}
$$

Common for student to hove booth piece inside the parabola.
eg y

Some students ignored part (i) completely when oruphing.

13 (a)

$$
\begin{aligned}
& 1+w+w^{2}+w^{3}+w^{4}=0 \\
& \alpha+\beta=w+w^{4}+w^{2}+w^{3} \\
& =-1 \\
& \alpha \beta=w^{3}+w^{4}+w^{6}+w^{7} \\
& =w^{3}+w^{4}+w+w^{2} \\
& =-1 \\
& \therefore \quad x^{2}-1 x+-1=0 \\
& \\
& x^{2}+x-1=0
\end{aligned}
$$

Students
(ノ)

$$
\begin{gathered}
\text { (i) } 1-2 i+1+2 i+\alpha=-1 \\
2+\alpha=-1 \\
\alpha=-3 \\
\therefore P(x)=(x-1+2 i)(x-1-2 i)(x+3)
\end{gathered}
$$

(ii)

$$
\begin{gathered}
(1-2 i)(1+2 i) x-3=-n \\
-15=-n \\
n=15 \\
2(-3)^{3}-4 \times(-3)^{2}+14 x-3+15=0 \\
(-3)^{3}+(-3)^{2}+m x-3+15=0 \\
-3 m+3=0 \\
m=-1
\end{gathered}
$$

(c) (i) $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{4^{2}}=1$ Many students

$$
\frac{x^{2}}{36}+\frac{y^{2}}{16}=1
$$ forg of to halre 12 and 8 .

(d) (i) $P(x)=(x-a)^{3} G(x)$

$$
\begin{aligned}
P^{\prime}(x)= & (x-a)^{3} Q^{\prime}(x)+\left(a(x)_{x}\right. \\
& 3(x-a)^{2} \\
= & (x-a)^{2}\left\{(x-a) Q^{\prime}(x)+3 G t x:\right.
\end{aligned}
$$

G. \&.b.

$$
\text { (ii) } \begin{aligned}
p^{\prime}(x) & =32 x^{3}-75 x^{2}+54 x-1 \\
p^{\prime \prime}(x) & =96 x^{2}-15 x x+54 \\
& =6\left(16 x^{2}-25 x+9\right) \\
& =6(16 x-9)(x-1) \\
p(1) & =8-25+27-11+1 \\
& =0
\end{aligned}
$$

$\therefore 1$ is the tiple rat

$$
\begin{aligned}
1^{3} \times \alpha & =\frac{1}{8} \\
\alpha & =\frac{1}{8}
\end{aligned}
$$

\therefore zeros ore $1,1,1, \frac{1}{8}$
(ii)

$$
\begin{aligned}
V_{\text {shice }} & =\frac{\pi}{2} y^{2} f_{2} \\
V_{\text {salid }} & =\frac{\pi}{2} \int_{-6}^{6} y^{2} d x \\
& =\frac{\pi}{2} \int_{-6}^{6} 16\left(1-\frac{x^{2}}{36}\right) d x \quad \text { a seni -arde } \\
& =16 \pi \int_{0}^{6}\left(1-\frac{x^{2}}{36}\right) d x \\
& =16 \pi\left[x-\frac{x^{3}}{108}\right]_{0}^{6}=16 \pi\left(6-\frac{6^{3}}{108}\right)=64 \pi u^{3}
\end{aligned}
$$

$14(a)$

$$
\text { (i) } \begin{aligned}
& \int_{0}^{\pi} x \cos 2 x d x \\
&= \int_{0}^{\pi}(\pi-x) \cos (2 \pi-2 x) d x \\
&= \int_{0}^{\pi}(\pi-x) \cos 2 x d x \\
&= \int_{0}^{\pi} \pi \cos 2 x d x-\int_{0}^{\pi} x \cos 2 x d x \\
& \therefore 2 \int_{0}^{\pi} x \cos 2 x d x=\pi \int_{0}^{\pi} \cos 2 x d x \\
&=\pi\left[\frac{\sin 2 x}{2}\right]_{0}^{\pi} \\
&=\pi(0-6) \\
&=0 \\
& \therefore \int_{0}^{\pi} x \cos 2 x d x=0
\end{aligned}
$$

$$
\text { (ii) } V_{\text {sten }}=\pi\left\{\left(x+s_{x}\right)^{2}-x^{2}\right\} y
$$

$$
=2 \pi_{x y} \delta_{x}
$$

$$
V_{\text {salid }}=2 \pi \int_{0}^{\pi} x \sin ^{2} x d x
$$

$$
=2 \pi \int_{0}^{\pi} x\left(\frac{1-\cos _{0} 2 x}{2}\right) d x
$$

$$
=\pi \int_{0}^{\pi}(x-x \cos 2 x) d x
$$

$=\pi\left[\frac{\lambda^{3}}{2}\right]_{0}^{n} \quad U_{\text {suing }}$ the result

$$
=\frac{\pi^{3}}{2}
$$

(b) (i)

$$
\text { (i) } \begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =-\frac{1}{t^{2}} \times 1 \\
& =-\frac{1}{t^{2}} \\
y-\frac{1}{A^{2}} & =-\frac{1}{A^{2}}(x-A) \\
t^{2} y-t & =-x+A \\
\therefore x+t^{2} y & =2 t
\end{aligned}
$$

(ii) $y=t^{2} x \quad m_{0 m}$ io fifferchialor to the tong-at at P
(iii)

$$
\begin{aligned}
& t^{2}=\frac{y}{x} \\
& t= \pm \sqrt{\frac{y}{x}} \\
& x+\frac{y}{x} \times y=2 x \pm \sqrt{\frac{y}{x}} \\
& \left(x+\frac{y^{2}}{x}\right)^{2}=\frac{4 y}{x} \\
& x^{2}+2 y^{2}+\frac{y^{4}}{x^{2}}=\frac{4 y}{x} \\
& x^{4}+2 x^{2} y^{2}+y^{4}=4 x y
\end{aligned}
$$

restrition: $\frac{y}{x}>0$
The froint M camnat liean the luyterbola
(c) (i) in $\triangle R T P$ and $\triangle T A P$ \hat{p} is conmon
$P \hat{T} B=\operatorname{tap}(<0$ mienternal segman)
$\therefore \triangle B T p\|\| T A P$ (equiangutar)
(ii) $\frac{T r}{T_{A}}=\frac{P B}{T A}$ sidgin sinitor Δ_{0})

$$
\therefore T P^{2}=T A \cdot P B
$$

Quationg the thearem is nat shavaring.
(iii)

$$
\begin{aligned}
A^{2} & =(t+a)(t-b) \\
& =t^{2}-b t+a t-a b \\
a A t & =a t-b t \\
& =t(a-b) \\
\therefore A & =\frac{a b}{a-b}
\end{aligned}
$$

$k=P G$ (tangets from an extend ff.)

Q15.
(a) $I=\int_{1}^{e} x^{7} \log _{e} x d x$.

$$
\begin{aligned}
& u=\frac{\log _{e} x}{\frac{1}{x}} \quad v=\frac{x^{8}}{8} \\
& u^{\prime} \\
& I=\left.\frac{x^{8}}{8} \ln (x)\right|_{1} ^{e}-\frac{1}{8} \int_{1}^{e} x^{7} d x \\
&=\frac{e^{8}}{8}-\frac{1}{8}\left[\frac{x^{8}}{8}\right]_{1}^{e} \quad \text { we } \\
&=\frac{e^{8}}{8}-\frac{x^{8}}{64}+\frac{1}{64} \\
&=\frac{7 e^{8}}{64}+\frac{1}{64}
\end{aligned}
$$

Well dare by most.

Loci of el
$S(a e, 0) \quad S^{\prime}(-a c, 0)$.
$S(1, \theta) \quad S^{-1}(-1,0)$

$$
\begin{aligned}
& e_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 \\
& E_{2}: \frac{x^{3}}{16}+\frac{y^{2}}{12}=1
\end{aligned}
$$

Fer $E, \quad 3=4\left(1-e^{2}\right)$

$$
1-\frac{3}{4}=e^{2}
$$

$$
\frac{1}{4}=e^{2}
$$

$$
e=\frac{1}{2}
$$

directives

$$
x= \pm 4
$$

(b) (r) $P(2 \cos p, \sqrt{3} \sin p) \quad E_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$.

$$
\begin{aligned}
& \frac{x}{2}+\frac{2 y}{3} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{x}{2} \times \frac{3}{2 y} \\
& \frac{d y}{d x}=-\frac{3 x}{4 y}
\end{aligned}
$$

At P,

$$
m_{T}=-\frac{\sqrt{3} \cos p}{2 \sin \beta}
$$

Tangent at P

$$
\begin{aligned}
& y-\sqrt{3} \sin p=-\frac{\sqrt{3} \cos p}{2 \sin p}(x-2 \cos p) \\
& 2 y \sin p-2 \sqrt{3} \sin ^{2} p=-\sqrt{3} x \cos p+2 \sqrt{3} \cos ^{2} p \\
& \sqrt{3} x \cos p+2 y \sin p=2 \sqrt{3} \\
& \frac{x \cos p}{2}+\frac{y \sin p}{\sqrt{3}}=1
\end{aligned}
$$

(iii) Tangent to \hat{E}_{1} at P meets E_{2} at some point $(4 \cos t, 2 \sqrt{3} \sin t)$.
So

$$
\begin{gathered}
\frac{4 \cos t \cos p}{2}+\frac{2 \sqrt{3} \sin t}{\sqrt{3}}=1 \\
2(\cos t \cos p+\sin t \sin p)=1 \\
\cos (t-p)=\frac{1}{2}
\end{gathered}
$$

Since $0<p<\frac{\pi}{2}$ and $-\pi<t<\pi \quad t-p= \pm \frac{\pi}{3}$.

Hence Q anal R have ponametreres

$$
q=\frac{\pi}{3}+p, \quad r=-\frac{\pi}{3}+p
$$

$$
|q-r|=\frac{2 \pi}{3}
$$

Some arguments for
this were poor and lostamork.
(c) (i) $\overrightarrow{A B}$ represents $\left(z_{2}-\beta_{1}\right)$
$\therefore \overrightarrow{A M}$ represents $\frac{1}{2}(3 z-3$,$) .$
(ii) $\tan \frac{\beta}{2}=\frac{|\overrightarrow{A M}|}{|\overrightarrow{A M}|}$

$$
|\overrightarrow{P M}|=|\overrightarrow{A M}| \cot \frac{\beta}{2}
$$

Also $\left|\frac{\frac{1}{2}\left(z_{2}-z_{1}\right)}{|\overrightarrow{A M}|}\right|=1$
Find a unit vector in the right direction then multiply by the required modulus
So $\overrightarrow{P M}$ is represented by.

$$
\begin{aligned}
& \frac{\frac{1}{2}\left(z_{2}-3_{1}\right)}{|\overrightarrow{A M}|} i \times|\overrightarrow{A M}| \cot \frac{\beta}{2} . \\
= & \frac{1}{2}\left(z_{2}-3_{1}\right) \cot \frac{\beta}{2} .
\end{aligned}
$$

(iii) Prepresents $3_{1}+\overrightarrow{A M}+\overrightarrow{A M}{ }^{2}$

$$
\begin{aligned}
& \text { Must add } 3=3_{1}+\frac{1}{2}\left(z_{2}-z_{1}\right)+\frac{i}{2}\left(z_{2}-3_{1}\right) \cot \frac{\beta}{2} \\
& \text { vertor to } \\
& \text { get } \beta \text {, Save }=\frac{1}{2} 3_{1}+\frac{1}{2} z_{2}+\frac{1}{2} 3_{2} \cot \frac{\beta}{2}-\frac{i}{2} z_{1} \cot \frac{\beta}{2} \\
& \text { student only } \\
& \frac{\text { adel AM and }}{P M M}=\frac{1}{2}\left(1-i \cot \frac{\beta}{2}\right) 3_{1}+\frac{1}{2}\left(1+i \cot \frac{\beta}{2}\right) 3_{2}
\end{aligned}
$$

Question 16
(a) (i) at $P, x=r$ and $y^{2}-r^{2}=1$

$$
y=\sqrt{1+r^{2}}
$$

$$
2 y \frac{d y}{d x}-2 x=0
$$

$$
\frac{d y}{d x}=\frac{x}{y}, \text { at } p \quad m_{T}=\frac{r}{\sqrt{1+r^{2}}}
$$

Many students did not

$$
m_{N}=\frac{-\sqrt{1+r^{2}}}{r}
$$ make the connection to the gradient of the normal. Also, the angle between the

$$
\tan (180-\alpha)=-\frac{\sqrt{1+r^{2}}}{r}
$$ line and the x-axis was overlooked.

$$
-\tan \alpha=-\frac{\sqrt{1+r^{2}}}{r} \quad \therefore \tan \alpha=\frac{\sqrt{1+r^{2}}}{r}
$$

(ii)

(iii) Resolving forces on P

Horizontally $\quad m r \omega^{2}=N \cos \alpha$
Vertically $N \sin \alpha-m g=0$

$$
\begin{equation*}
\therefore \quad m g=N \sin \alpha \tag{2}
\end{equation*}
$$

(2) \div (1) $\tan \alpha=\frac{g}{r \omega^{2}}$

Using (i) $\frac{\sqrt{1+r^{2}}}{r}=\frac{9}{r \omega^{2}}$
Some students incorrectly resolved forces horizontally and vertically. $\quad 1+r^{2}=\left(\frac{g}{\omega^{2}}\right)^{2}$ Also, the question sought an expression for r and N in terms of m, g and w only. Solutions that $\quad r^{2}=\frac{g^{2}}{w^{4}}-1$ N were incomplete.

$$
\therefore r=\sqrt{\frac{g^{2}}{w^{4}}-1}
$$

16 (a) (iii) continued
(1)

$$
\begin{aligned}
& \text { (iii) continued } \\
&)^{2}+(2) \quad N^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=m^{2} g^{2}+m^{2} r^{2} \omega^{4} \\
& \therefore \quad N^{2}=m^{2} g^{2}+m^{2} \omega^{4}\left(\frac{g^{2}}{\omega^{4}}-1\right) \\
&=m^{2} g^{2}+m^{2} g^{2}-m^{2} \omega^{4} \\
& \text { i.e. } N=\sqrt{2 m^{2} g^{2}-m^{2} \omega^{4}}
\end{aligned}
$$

(iv) an $r^{2}=g^{2}-1$ answered this correctly. Most students failed to consider the restriction placed on w due to the range.

For movemat to occas $r>0 \quad \therefore y=\sqrt{1+r^{2}}>1$
Since $1 \leq y \leq 5$ and $y>1$ and $y=\frac{9}{\omega^{2}}$

$$
\begin{aligned}
& 1<\frac{9}{w^{2}} \leq 5 \\
& 1>\frac{w^{2}}{g} \geqslant \frac{1}{5} \quad \text { i.e. } \sqrt{\frac{g}{5}} \leq w<\sqrt{g} \\
& \quad \therefore \quad 1.4 \mathrm{rad} / \mathrm{s} \leq w<3.13 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Question 16 (cont.)
(b) (i) $I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x$ where $n=0,1,2 \ldots$
V^{\prime} substitution into the

$$
\begin{aligned}
& \text { let } u=(1-\ln x)^{n} \quad v^{\prime}=1 \\
& \left.x(1-\ln x)^{n}\right]_{1}^{e}-\int-n(1-\ln x)^{n-1} d x \\
& =e(1-\ln e)^{n}-1(1-\ln 1)^{n}+n \int(1-\ln x)^{n-1} d x \\
& \therefore I_{n}=-1+n I_{n-1}
\end{aligned}
$$

(ii) $I_{3}=\int_{1}^{e}(1-\ln x)^{3} d x$

$$
\begin{aligned}
& =-1+3 I_{2} \\
& =-1+3\left(-1+2 I_{1}\right) \\
& =-4+6\left(-1+I_{0}\right) \\
& =-10+6 \int_{1}^{e} d x \\
& =-10+6[x]_{1}^{e} \\
& =-10+6(e-1) \\
\therefore I_{3} & =6 e-16
\end{aligned}
$$ to manage multiple

(iii) $\frac{I_{n}}{n!}=\frac{-1+n I_{n-1}}{n!}=\frac{-1}{n!}+\frac{I_{n-1}}{(n-1)!}$

This question was not done
particularly well by many.
Some students glossed over

$$
\begin{aligned}
& =-\frac{1}{n!}-\frac{1}{(n-1)!}+\frac{I_{n-2}}{(n-2)!} \\
& =-\frac{1}{n!}-\frac{1}{(n-1)!}-\frac{1}{(n-2)!}+\frac{I_{n-3}}{(n-3)!} \\
& =-\frac{1}{n!}-\frac{1}{(n-1)!}-\frac{1}{(n-2)!} \cdots-\frac{1}{1!}+\frac{I_{0}}{0!}
\end{aligned}
$$

Qu 16 (b) (iii) Continued

$$
\begin{aligned}
& \frac{I_{n}}{n!}=-\left(\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{(n-1)!}+\frac{1}{n!}\right)+\int_{1}^{e} 1 d x \\
&=-\sum_{r=1}^{n} \frac{1}{r!}+[x]_{1}^{e} \\
&=-\sum_{r=1}^{n} \frac{1}{r!}+e-1 \quad \text { Note }: 1=\frac{1}{0!} \\
&=-\left(\sum_{r=1}^{n} \frac{1}{r!}+\frac{1}{0!}\right)+e \\
& \text { i.e. } \frac{I_{n}}{n!}=e-\sum_{r=0}^{n} \frac{1}{r!}
\end{aligned}
$$

(iv) Consider graph of $y=1-\ln x$ between $x=1$ and $x=e$.

Note that the y-values for this domain are $0 \leq y \leq 1$.
The y-values for $y=(1-\ln x)^{n}$ will also be in the range $0 \leqslant y \leqslant 1$ where $n=0,1,2 \ldots$ Consider the area under the curve $y=(1-\ln x)^{n}$ for $1 \leqslant x \leq e$ where the area will
A variety of approaches always be smaller than the rectangle shown, could be taken. However, and always above the x-axis.
the question required $0 \leqslant \int_{1}^{e}(1-\ln x)^{n} d x \leqslant(e-1) \times 1$
part of the inequality
and not just $(e-1)$. i.e. $0 \leqslant I_{n} \leqslant e-1$
(r) using (iv) $\frac{0}{n!} \leqslant \frac{I_{n}}{n!} \leqslant \frac{e-1}{n!}$

3 as $n \rightarrow \infty, \frac{e-1}{n!} \rightarrow 0 \quad \therefore 0 \leqslant \lim _{n \rightarrow \infty} \frac{I_{n}}{n!} \leqslant 0$
ie. $\lim _{\text {Many stuabents pinked up the }} \frac{I_{n}}{n}=0 \quad \therefore \lim _{n \rightarrow \infty}\left(e-\sum_{r=0}^{n} \frac{1}{r!}\right)=0$
marks for this question but $e-\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{1}{r!}=0$
with greater clarity.

$$
\text { ie. } \lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{1}{r!}=e
$$

