

SYDNEY GRAMMAR SCHOOL

2015 Trial Examination

FORM VI

MATHEMATICS EXTENSION II

Friday 31st July 2015

General Instructions

- Reading time 5 minutes
- Writing time 3 hour
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 73 boys

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The roots of the quadratic equation $x^2 - 8ix - 20 = 0$ are:

(A) $4i \pm 2$ (B) $4 \pm 2i$ (C) $-4i \pm 2$ (D) $-4 \pm 2i$

QUESTION TWO

The value of $\int_0^{\frac{\pi}{2}} \sin x \cos x dx$ is:		
(A) $-\frac{1}{2}$	(B)	$\frac{1}{4}$
(C) $\frac{1}{2}$	(D)	1

QUESTION THREE

~

The gradient of the tangent to the parametric curve $x = 2 \sec \theta$, $y = 3 \tan \theta$ at θ is:

(A)
$$\frac{2}{3}\sin\theta$$
 (B) $\frac{2}{3}\csc\theta$
(C) $\frac{3}{2}\sin\theta$ (D) $\frac{3}{2}\csc\theta$

QUESTION FOUR

Which of the following functions is odd?

(A) $y = x \sin x$ (B) $y = \sin(\sin(x))$

(C) $y = \ln |x|$ (D) $y = \sin^2(x)$

QUESTION FIVE

The size of angle θ in the diagram above is:

(A)	50°	(B)	55°
(C)	60°	(D)	65°

The point P in quadrant one represents complex number z. The points O, P, Q, R are the vertices of a square, as in the diagram.

Which statement is NOT true about the square:

- (A) side OR is represented by iz
- (B) the centre of the square is represented by $\frac{1}{2}(1-i)z$
- (C) diagonal RP is represented by (1-i)z
- (D) vertex Q is represented by (1+i)z

Exam continues overleaf ...

QUESTION SEVEN

A pupil makes the following claims about the roots of the equation $z^6 = 1$:

- (I) The roots lie on the vertices of a hexagon in the complex plane
- (II) The roots lie on the unit circle in the complex plane
- (III) If ω is a root, then so is $\frac{1}{\omega}$
- (IV) If ω is a root, then so is $\overline{\omega}$

Which of these statements are TRUE?

- (A) I and IV (B) II and III
- (C) I, II and III (D) I, II, III and IV

QUESTION EIGHT

The base and top of the solid depicted are right angled isosceles triangles. A pupil is required to determine the volume by slicing parallel to the base. A typical slice parallel to the base at height z from the base is marked.

The cross-sectional area of the slice is:

(A)
$$\frac{1}{2}(6-\frac{3}{4}z)^2$$
 (B) $\frac{1}{4}(6-\frac{1}{4}z)^2$
(C) $\frac{1}{2}(7-z)^2$ (D) $\frac{1}{2}(36-\frac{27}{4}z)$

Exam continues next page ...

QUESTION NINE

The point defined by the complex number z moves in the complex plane subject to the constraint |z - 3i| + |z + 3i| = 12.

The locus of z is a conic with eccentricity:

(A)
$$\frac{1}{4}$$
.
(B) $\frac{1}{2}$.
(C) 1.
(D) 2.

QUESTION TEN

A polynomial P(x) of fourth degree with real coefficients has the following properties:

 $P(1) = 0, P'(1) \neq 0$

$$P(2) \neq 0, P'(2) = P''(2) = 0$$

What is the greatest number of complex non-real roots the polynomial could have?

- (A) 0 (B) 1
- (C) 2 (D) 3

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

(a) Given w = 1 - 2i, z = 3 + 4i, express the following in the form a + ib for real a, b:
(i) w²

(ii)
$$\frac{z}{w}$$

- (b) Given $t = 1 + i\sqrt{3}$ find:
 - (i) t in modulus-argument form,
 - (ii) t^8 in Cartesian form.

(c) Find:

(i)
$$\int \frac{1}{x^2 + 6x + 13} dx$$

(ii)
$$\int x \sin x \, dx$$

2

(d) Evaluate the following integral, expressing your answer in simplest exact form:

$$\int_{10}^{17} \frac{dx}{\sqrt{x^2 - 64}} \, .$$

(e) (i) Find constants A, B and C such that

$$\frac{-4x^2 + 5x + 1}{(x-1)^2} = \frac{A}{(x-1)^2} + \frac{B}{x-1} + C.$$

(ii) Hence find

$$\int \frac{-4x^2 + 5x + 1}{(x-1)^2} \, dx \, .$$

\mathbf{Exam}	continues	\mathbf{next}	page	
-----------------	-----------	-----------------	------	--

Marks

1

1

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION TWELVE (15 marks) Use a separate writing booklet.

- (a) Consider the hyperbola $9x^2 16y^2 = 144$.
 - (i) Find the eccentricity, foci, directrices and asymptotes of the hyperbola.
 - (ii) Sketch the curve, locating the foci, directrices, y-intercepts and asymptotes.
 - (iii) Use calculus to find the gradient of the tangent at x = 5 in quadrant one.
 - (iv) Consider a tangent with point of contact in quadrant one. Explain geometrically why its gradient will always be greater than 0.75.
- (b) (i) Solve the equation $z^5 = -1$, leaving your answers in modulus-argument form.
 - (ii) Hence factorise $z^5 + 1$ as a product of real linear and quadratic factors.
- (c)

A certain solid has a base which is the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$. Slices perpendicular to the base and parallel to the *y*-axis are right-angled triangles of height 3 units.

(i) Show that the cross-sectional area of a slice parallel to the y-axis is

$$A(x) = \frac{3}{2}\sqrt{16 - x^2}$$

(ii) Hence find the volume of the solid.

	3	
I	2	
	2	
	1	

1	
2	

 $\mathbf{2}$

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a) The cubic polynomial $P(x) = 2x^3 + 15x^2 + 24x + d$ is known to have a repeated real root and a distinct real root. The distinct root and repeated roots have opposite sign. Find the constant d.

The curve $y = e^{-x^2}$ is shown above.

- (i) Use the method of cylindrical shells to find the volume obtained when the region bounded by the axes, the curve and the line x = 2 is rotated about the y-axis.
- (ii) What is the limiting value as $N \to \infty$ of the volume obtained when the region bounded by the axes, the curve and the line x = N is rotated about the y-axis?
- (c) A landing aeroplane of mass $m \, \text{kg}$ is brought to rest by the action of two retarding forces: a force of 4m Newtons due to the reverse thrust of the engines; and a force due to the brakes of $\frac{mv^2}{40\,000}$ Newtons.
 - (i) Show that the aeroplane's equation of motion for its speed v at time t seconds after landing is

$$\dot{v} = -\frac{v^2 + 400^2}{40\,000} \,.$$

- (ii) Assuming the aeroplane lands at a speed of U m/s, find an expression for the time it takes to come to rest.
- (iii) Show that, given a sufficiently long runway, then no matter how fast its landing speed, it will always come to rest within approximately 2.6 minutes of landing.
- (d) Consider the locus of z such that $|z \sqrt{2} i| = 1$.
 - (i) Sketch the locus of z in the complex plane.
 - (ii) Find the minimum value of |z|.
 - (iii) Find the maximum value of $\arg(z)$, for $0^{\circ} < \arg(z) < 90^{\circ}$, correct to the nearest degree.

Marks

3

3

1

1

3

1

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

(a)

The curve y = f(x), sketched above, has asymptotes y = 0 and y = -x. Copy or trace the above graph onto three separate number planes. Use your diagrams to show sketches of the following graphs, showing all essential features clearly.

- (i) $y = (f(x))^2$
- (ii) |y| = f(x)
- (iii) $y = \ln f(x)$

(b) (i) Let $z = \operatorname{cis} \theta$. Use de Moivre's Theorem to prove that for any integer n,

$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

(ii) By considering $\left(z+\frac{1}{z}\right)^5$, show that $\sin^5\theta = \frac{1}{16}\left(\sin 5\theta - 5\sin 3\theta + 10\sin\theta\right)$.

(iii) Solve the following equation for $0 \le \theta \le 2\pi$: $\sin 5\theta - 5\sin 3\theta + 9\sin \theta = 0$.

(c) You may assume the equation for the chord of contact for the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ from (x_0, y_0) is $\frac{x_0 x}{a^2} - \frac{y_0 y}{b^2} = 1$.

Show that that chord of contact from a point on a directrix is a focal chord.

(d) Use the substitution
$$x = \frac{\pi}{2} - u$$
 to evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x}{\cos^{3} x + \sin^{3} x} dx.$$

2
2
2
1

Marks

2	
2	

 $\mathbf{2}$

 $\mathbf{2}$

Exam continues overleaf ...

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.

 C_1 O_2^{\bullet} O_2^{\bullet}

Two intersecting circles C_1 and C_2 share a common chord AB. Points P and H lie on circle C_1 and points Q and K lie on circle C_2 , such that PAQ and HAK are straight. Lines HP and QK intersect at X.

Let $\angle BKQ = \theta$.

(a)

Copy or trace the diagram into your answer book.

- (i) Find $\angle BAQ$ in terms of θ , giving a reason for your answer.
- (ii) Show that BKXH is cyclic.
- (iii) Assuming that XAB is straight, show that XAB bisects angle PBK.
- (b) (i) List all 10 ways that 3 non-negative integers can add to 3.
 - (ii) Use the identity $(1+x)^{3n} = ((1+x)^n)^3$ to prove that ${}^{3n}C_3 = n^3 + 6n \times {}^nC_2 + 3 \times {}^nC_3$

The question continues over the page

Marks

1

 $\mathbf{2}$

 $\mathbf{2}$

1

 $\mathbf{2}$

QUESTION FIFTEEN (Continued)

(c) As part of a test of a new capsule delivery system, a capsule of mass m is fired straight up at speed u m/s. Air resistance is negligible and the magnitude of the acceleration due to gravity is g.

The capsule subsequently deploys a parachute and falls back to earth, subject to gravity and to a resistive of force of magnitude mkv^2 .

- (i) Use calculus to show that the maximum height attained by the capsule is $H = \frac{u^2}{2a}$.
- (ii) For the return trip, take the origin at the point it begins falling and assume down is positive. Show that the motion is determined by the equation $\ddot{x} = k(\alpha^2 - v^2)$, where $\alpha^2 = \frac{g}{k}$.
- (iii) Let U be the impact speed of the package. Find an expression for the square of the speed U in terms of H, k and α .
- (iv) Assume that the package is launched at speed $u = \alpha$. Find the impact speed as a percentage of the launch speed.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.

(a)

An infinite sequence of complex numbers is defined by

$$z_1 = 1, z_{n+1} = \frac{3}{4}iz_n$$
.

The path $z_1 z_2 z_3 \cdots$ defines a piecewise linear spiral in the Argand plane.

(i) Show that the n^{th} edge satisfies the relationship

$$z_{n+1} - z_n = \left(\frac{3}{4}i - 1\right)z_n.$$

- (ii) Hence find a simplified expression for the length of the n^{th} edge.
- (iii) Find the length of the spiral, by considering the limiting sum of the lengths of its edges as $n \to \infty$.

Marks

 $\mathbf{2}$

1

3

1

(b) (i) Use algebra to prove, for any integer $k \ge 0$, that

$$\frac{2k+1}{2k+2} \le \frac{\sqrt{2k+1}}{\sqrt{2k+3}} \,.$$

(ii) Prove, by induction on $n \ge 0$, that the central binomial coefficient $\binom{2n}{n}$ satisfies

$$\binom{2n}{n} \le \frac{4^n}{\sqrt{2n+1}}$$

(c)

Consider a cubic polynomial y = P(x) with real coefficients and roots 0, $g \pm hi$ where g and h are real and h > 0. In the diagram above, the roots form the vertices of an isosceles triangle OAB in the complex plane. The roots of P'(x) = 0 are the foci of the sketched ellipse which touches the triangle at g + 0i. We have sketched the case g > 0 and with major axis lying on the real axis. The centre of the ellipse is NOT the origin.

- (i) Show that the cubic polynomial has equation $y = x^3 2gx^2 + (g^2 + h^2)x$.
- (ii) Show that the turning points of y = P(x), and hence the foci of the ellipse, occur at

$$x = \frac{2}{3}g \pm \frac{1}{3}\sqrt{g^2 - 3h^2} \,.$$

- (iii) Find the condition on g and h and hence on $\angle AOB$ which ensures that the major axis of this ellipse lies on the real axis. You may assume this condition holds in parts (iv) and (v).
- (iv) Find the equation of the ellipse.
- (v) Show that the ellipse is tangential to the triangle at the midpoints of OA and OB.
- (vi) If the triangle is equilateral, describe the behaviour of the polynomial P(x) at the centre of the ellipse, for real x.

End of Section II

END OF EXAMINATION

1

3

	1
1	
	1

1	

	2	
ſ	2	1

-	
1	

SECTION I - Multiple Choice

QUESTION ONE

The discriminant $\Delta = (-8i)^2 - 4 \times 1 \times (-20) = 16 = (4)^2$. Hence the roots are

$$\frac{8i\pm4}{2} = 4i\pm2$$

Hence A.

QUESTION TWO

$$\int_0^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin 2x \, dx$$
$$= \left[-\frac{1}{4} \cos 2x \right]_0^{\frac{\pi}{2}}$$
$$= \frac{1}{4} \left((-\cos \pi) + \cos 0 \right) \right)$$
$$= \frac{1}{2}$$
Hence C.

QUESTION THREE

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$$

$$= 3 \sec^2 \theta \div 2 \sec \theta \tan \theta$$

$$= \frac{3}{2} \sec \theta \div \tan \theta$$

$$= \frac{3}{2} \frac{1}{\cos \theta} \frac{\cos \theta}{\sin \theta}$$

$$= \frac{3}{2} \operatorname{cosec} \theta$$
Hence D.

QUESTION FOUR

Options A, C and D are even. Only option B is odd. Hence B.

QUESTION FIVE

Angle $XDY = \theta + 20$ (Exterior opposite angle in $\triangle AXD$) Angle $BCD = \theta + 20 + 30$ (Exterior opposite angle in $\triangle DCY$) Thus $\theta + (\theta + 50) = 180$ opposite angles of cyclic quad ABCD) So $\theta = 65$. Hence D.

QUESTION SIX

Option C is incorrect.

QUESTION SEVEN

All statements are TRUE. Hence D

QUESTION EIGHT

The linear equation $y = (6 - \frac{3}{4}z)$ satisfies the conditions y = 6 when z = 0 and y = 3 when z = 4. The area of the triangle is $\frac{1}{2}y^2 = \frac{1}{2}(6 - \frac{3}{4})^2$, hence the correct answer is A.

QUESTION NINE

The foci are $\pm 3i$, hence the distance between the two foci is 2ae = 6. But the sum of the distances from a point on the ellipse to the foci is 2a = 12. Combining these two equations, $e = \frac{1}{2}$.

Hence the correct answer is B

QUESTION TEN

The correct answer is 2. Note that there must be an even number of complex non-real roots, because of the real coefficients, and two is a possible answer. This is easily seen by drawing a polynomial with zero when x = 1, stationary point of inflexion when x = 2 and a turning point at some larger x value.

SECTION II - Written Response

QUESTION ELEVEN

(a) (i)
$$w^2 = (1 - 2i)^2$$

= 1 - 4 - 4i
= -3 - 4i
(ii) $\frac{z}{w} = \frac{3 + 4i}{1 - 2i}$
= $\frac{(3 + 4i)(1 + 2i)}{1 + 4}$
= $\frac{3 - 8 + 4i + 6i}{5}$
= -1 + 2i

(b) (i) We have |t| = 2, $\arg(t) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$. Hence $t = 2 \operatorname{cis} \frac{\pi}{3}$.

(ii)
$$t^8 = 2^8 \operatorname{cis} \frac{8\pi}{3}$$

= 256 cis $\frac{2\pi}{3}$
= 256 $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$
= 128 $\left(-1 + i\sqrt{3}\right)$

(c) (i)
$$\int \frac{1}{x^2 + 6x + 13} dx = \int \frac{1}{(x+3)^2 + 2^2} dx$$
$$= \frac{1}{2} \tan^{-1} \frac{x+3}{2} + C$$
(ii)
$$\int x \sin x \, dx = x(-\cos x) - \int 1 \times (-\cos x) \, dx$$
$$= -x \cos x + \sin x + C$$
(d)
$$\int_{10}^{17} \frac{dx}{\sqrt{x^2 - 64}} = \left[\ln(x + \sqrt{x^2 - 64}) \right]_{10}^{17}$$
$$= \ln(17 + \sqrt{17^2 - 64}) - \ln(10 + \sqrt{10^2 - 64})$$
$$= \ln 32 - \ln 16$$
$$= \ln 2$$

(e)

(i)
$$\frac{-4x^2 + 5x + 1}{(x-1)^2} = \frac{A}{(x-1)^2} + \frac{B}{x-1} + C$$
$$-4x^2 + 5x + 1 = A + B(x-1) + C(x-1)^2$$
Equating coefficients of x^2 tells us $C = -4$.
Substituting $x = 1$ tells us $A = 2$.

Substituting
$$x = 0$$
, tells us:
 $A - B + C = 1$
 $2 - B + 4 = 1$
 $B = -3$
(ii) Hence $\int \frac{-4x^2 + 5x + 1}{(x - 1)^2} dx = \int \frac{2}{(x - 1)^2} dx + \int \frac{-3}{(x - 1)} dx - \int 4 dx$
 $= \frac{-2}{(x - 1)} - 3 \ln|x - 1| - 4x + C$

QUESTION TWELVE

(a)
(i)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Hence $a = 4$ and $b = 3$.
Now $b^2 = a^2(e^2 - 1)$
 $e^2 = \frac{9}{16} + 1$
 $e^2 = \frac{25}{16}$
 $e = \frac{5}{4}$

The foci are $(\pm ae, 0) = (\pm 5, 0)$. The directrices are $x = \frac{a}{e}$ and $x = -\frac{a}{e}$. Thus $x = \frac{16}{5}$ and $x = -\frac{16}{5}$. The asymptotes are $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$. Thus $y = \frac{3}{4}x$ and $y = -\frac{3}{4}x$.

(ii)

(iii) By substituting in the equation for the hyperbola, when x = 5, we find $y = \frac{9}{4}$ in quadrant one. Differentiating with respect to x:

$$18x - 32y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{9x}{16y}$$

$$= \frac{45}{36} \quad \text{when } x = 5$$

$$= 1.25$$

- (iv) The tangent in Quadrant One will be steeper than the asymptote, thus its gradient will never be less than that of the asymptote.
- (b) (i) Let $z = \operatorname{cis} \theta$. Then $z^5 = -1$ $\operatorname{cis} 5\theta = \operatorname{cis}(\pi + 2k\pi)$ for any integer kEquating arguments gives: $5\theta = (2k+1)\pi$ $\theta = \frac{\pi}{5}, \frac{3\pi}{5}, \pi, -\frac{\pi}{5}, -\frac{3\pi}{5}$ Hence (in conjugate pairs) the roots are:

$$z = -1,$$
 $z = cis(\pm \frac{1}{5}\pi),$ $z = cis(\pm \frac{3}{5}\pi)$

(ii) Grouping the conjugate roots, we get:

$$z^{5} + 1 = \left(z+1\right) \times \left(z-\operatorname{cis}\frac{1}{5}\pi\right) \left(z-\operatorname{cis}(-\frac{1}{5}\pi)\right) \times \left(z-\operatorname{cis}\frac{1}{5}\pi\right) \left(z-\operatorname{cis}(-\frac{1}{5}\pi)\right) \\ = \left(z+1\right) \left(z^{2}-2\cos(\frac{1}{5}\pi)z+1\right) \left(z^{2}-2\cos(\frac{3}{5}\pi)z+1\right)$$

(c) (i) The area of the triangle is:

$$\frac{1}{2}bh = \frac{1}{2}(2y) \times 3$$
$$= 3y$$
$$= 6 \times \sqrt{1 - \frac{x^2}{16}}$$
$$= \frac{6}{4} \times \sqrt{16 - x^2}$$
$$= \frac{3}{2}\sqrt{16 - x^2}$$

(ii) The volume is

$$V = 3 \times \int_0^4 \sqrt{16 - x^2} \, dx$$
$$= 3 \times \frac{1}{4}\pi 4^2$$

since the integral is the area of a quarter circle of radius 4. Thus the volume is $V = 12\pi$.

(This integral can also be evaluated using the trig substitution $x = 4 \sin u$.)

QUESTION THIRTEEN

(a) At a double root we have a zero of the derivative.

 $P'(x) = 6x^2 + 30x + 24$

$$= 6(x+4)(x+1)$$

Hence the possibilities are x = -1 or x = -4. The other root must be positive and the product of roots must be negative, i.e. d < 0.

If
$$x = -1$$
 then $P(-1) = 2(-1)^3 + 15(-1)^2 + 24(-1) + d$
 $0 = -2 + 15 - 24 + d$
 $d = 11$
If $x = -4$ then $P(-4) = 2(-4)^3 + 15(-4)^2 + 24(-4) + d$
 $0 = -128 + 240 - 96 + d$
 $d = -16$

Hence d = -16.

This question can also be solved using sum and product of roots methods.

(b) (i)

The volume of the cylindrical shell $dV = 2\pi xy dx$. Total volume is

$$V = \int_{0}^{2} 2\pi xy \, dx$$

= $\pi \int_{0}^{2} 2x e^{-x^{2}} \, dx$
= $\pi \times \left[e^{-x^{2}}\right]_{0}^{2}$
= $\pi \times (1 - e^{-4})$
(ii) $V = \pi \times \lim_{N \to \infty} \left(1 - e^{-N^{2}}\right)$
= π
(c) (i) $m\dot{v} = \frac{-mv^{2}}{40\,000} - 4m$
 $\dot{v} = -\frac{v^{2}}{40} - 4$

$$\dot{v} = -\frac{v}{40\,000} - 4$$
$$\dot{v} = -\frac{v^2 + 160000}{40\,000}$$
$$= -\frac{v^2 + 400^2}{40\,000}$$

(ii)
$$\frac{dv}{dt} = -\frac{v^2 + 400^2}{40\,000}$$
$$dt = \frac{-40\,000\,dv}{v^2 + 400^2}$$
$$\int_0^T dt = -40\,000 \times \int_U^0 \frac{dv}{v^2 + 400^2}$$
$$T = 40\,000 \times \frac{1}{400} \tan^{-1} \frac{U}{400}$$
$$T = 100 \tan^{-1} \frac{U}{400}$$

(iii) As $U \to \infty$, $T \to 100 \times \frac{\pi}{2}$ seconds, which is about 2.6 minutes.

(ii) The point z of minimum modulus is the point on the circle closest to the origin. This distance is: $(2z+1) = \sqrt{2} - 1$

(distance from origin to centre of circle) – (radius) = $\sqrt{3} - 1$

(iii) The point with maximum $\arg(z)$ on the circle is defined by the tangent to the circle. The argument is $2 \times \tan^{-1} \frac{1}{\sqrt{2}} \doteqdot 71^{\circ}$.

(b) (i) Let
$$z = \operatorname{cis} \theta$$
. Then by de Moivre's Theorem,
 $z^n - \frac{1}{z^n} = (\operatorname{cis} \theta)^n - (\operatorname{cis} \theta)^{-n}$
 $= \operatorname{cis}(n\theta) - \operatorname{cis}(-n\theta)$
 $= \cos(n\theta) + i\sin(n\theta) - \cos(-n\theta) - i\sin(-n\theta)$
 $= \cos(n\theta) + i\sin(n\theta) - \cos(n\theta) + i\sin(n\theta)$
 $= 2i\sin(n\theta)$

Where we have used the evenness of the cosine function and the oddness of the sine function.

(ii)
$$\left(z - \frac{1}{z}\right)^3 = z^5 - 5z^4 \frac{1}{z} + 10z^3 \frac{1}{z^2} - 10z^2 \frac{1}{z^3} + 5z \frac{1}{z^4} - \frac{1}{z^5}$$

$$= \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$$
$$= 2i\sin 5\theta - 5 \times 2i\sin 3\theta + 10 \times 2i\sin \theta$$

Now the LHS of this expression is $(2i\sin\theta)^5$, hence $32i\sin^5\theta = 2i\sin5\theta - 5 \times 2i\sin3\theta + 10 \times 2i\sin\theta$ $16\sin^5\theta = \sin5\theta - 5\sin3\theta + 10\sin\theta$ $\sin^5\theta = \frac{1}{16}\left(\sin5\theta - 5\sin3\theta + 10\sin\theta\right)$

(iii) From this equation $16 \sin^5 \theta - 10 \sin \theta = \sin 5\theta - 5 \sin 3\theta$. Hence $\sin 5\theta - 5 \sin 3\theta + 9 \sin \theta = 0$ Becomes $16 \sin^5 \theta - 10 \sin \theta + 9 \sin \theta = 0$ $16 \sin^5 \theta - \sin \theta = 0$ $\sin \theta (16 \sin^4 \theta - 1) = 0$. So $\sin \theta = 0$ or $\sin \theta = \pm \frac{1}{2}$.

The solutions of these equations in the given domain are:

$$\theta = 0, \pi, 2\pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

(c) Let the point be $(x_0, y_0) = (\frac{a}{e}, y_0)$. The chord of contact is $\frac{x}{a^2} \left(\frac{a}{e}\right) - \frac{y_0 y}{b^2} = 1$. Is (ae, 0) on this chord? $LHS = \frac{x}{a^2} \left(\frac{a}{e}\right) - \frac{y_0 y}{b^2}$ = 1 - 0 = RHSSo yes, the chord passes through the focus.

$$(d) \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x}{\cos^{3} x + \sin^{3} x} dx = \int_{\frac{\pi}{2}}^{0} \frac{\cos^{3}(\frac{\pi}{2} - u)}{\cos^{3}(\frac{\pi}{2} - u) + \sin^{3}(\frac{\pi}{2} - u)} (-dx) = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} u}{\sin^{3} u + \cos^{3} u} du = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx \quad \text{(relabelling } u \text{ as } x) \text{Hence } 2 \times \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x}{\cos^{3} x + \sin^{3} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x}{\cos^{3} x + \sin^{3} x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x + \sin^{3} x}{\cos^{3} x + \sin^{3} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos^{3} x + \sin^{3} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos^{3} x + \sin^{3} x} dx = \frac{\pi}{2}$$

 Thus $\int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} x}{\cos^{3} x + \sin^{3} x} dx = \frac{\pi}{4}.$

QUESTION FIFTEEN

(a) (i) $\angle BAQ = \theta$ (angles at the circumference on arc BQ)

(ii) Hence $\angle BHP = \theta$ (interior opposite angle in cyclic quadrilateral BHPA) Since $\angle BHP = \angle BHX = \theta$ and the exterior opposite angle $\angle BKQ = \theta$, we have that quadrilateral BKXH is cyclic. (iii) $\angle PBA = \angle PHA$ (angles at the circumference on arc PA in circle C_1)

 $= \angle XHK \qquad (angles at the circumference on arc TA in circle CI)$ $= \angle XHK \qquad (same angle)$ $= \angle ABK \qquad (angles at the circumference on arc XK in circle BKXH)$ $= \angle ABK \qquad (same angle)$

(b) (i) In any order, the ways three integers can add to 3 are:

$$3+0+0, 0+3+0, 0+0+3$$

 $1+2+0, 2+1+0, 0+2+1, 0+1+2, 1+0+2, 2+0+1$
 $1+1+1$

(ii) We look to be equating coefficients of x^3 . $LHS = (1+x)^{3n}$ $= {}^{3n}C_0x^0 + {}^{3n}C_1x^1 + \cdots$

... and the coefficient of x^3 is ${}^{3n}C_3$.

The *RHS* is $(1+x)^n (1+x)^n (1+x)^n$.

We need to consider how we can get an x^3 term when we expand the brackets. Part (i) gives us a hint here, since the sum of the three indices (one from each bracket) must be 3. Method 1 (list them all): The coefficient of x^3 is:

$${}^{n}C_{3}{}^{n}C_{0}{}^{n}C_{0} + {}^{n}C_{0}{}^{n}C_{3}{}^{n}C_{0} + {}^{n}C_{0}{}^{n}C_{0}{}^{n}C_{3}$$

$$+ {}^{n}C_{1}{}^{n}C_{2}{}^{n}C_{0} + {}^{n}C_{2}{}^{n}C_{1}{}^{n}C_{0} + {}^{n}C_{0}{}^{n}C_{2}{}^{n}C_{1} + {}^{n}C_{0}{}^{n}C_{1}{}^{n}C_{2} + {}^{n}C_{1}{}^{n}C_{0}{}^{n}C_{1}$$

$$+ {}^{n}C_{1}{}^{n}C_{1}{}^{n}C_{1}$$

$$= 3 \times {}^{n}C_{3} + 6 \times {}^{n}C_{1}{}^{n}C_{2} + ({}^{n}C_{1})^{3}$$

Method 2 (Avoid listing them all):

- There are 3 ways to get x^3 from one bracket, x^0 from each of the others. This gives a contribution $3 \times {}^{n}C_3 x^3 \times x^0 \times x^0$
- There are 6 ways to get x^1 from one bracket, x^2 from a second bracket and x^0 from a third.
 - This gives a contribution $6 \times {}^{n}C_{1}x^{1} \times {}^{n}C_{2}x^{2} \times x^{0}$
- There is 1 way to get x^1 from all of the brackets This gives a contribution $1 \times {}^{n}C_{1}x \times {}^{n}C_{1}x \times {}^{n}C_{1}x$

Thus from the *RHS* the coefficient of x^3 is:

 $3 \times {}^{n}C_{3} + 6 \times {}^{n}C_{1}{}^{n}C_{2} + ({}^{n}C_{1})^{3}$

Thus either method gives us

 $3 \times$

$${}^{n}C_{3} + 6 \times {}^{n}C_{1}{}^{n}C_{2} + ({}^{n}C_{1})^{3}$$

= 3 × ${}^{n}C_{3} + 6n \times {}^{n}C_{2} + n^{3}$

Equating coefficients of x^3 yields the required result.

(c) (i) Starting from the equation of motion $\ddot{x} = -g$, we get

$$x = -g$$

$$v \frac{dv}{dx} = -g$$

$$\int_{u}^{0} v \, dv = -\int_{0}^{H} g \, dx$$

$$\left[\frac{1}{2}v^{2}\right]_{u}^{0} = \left[-gx\right]_{0}^{H}$$

$$-gH = -\frac{1}{2}u^{2}$$

$$H = \frac{u^{2}}{2g}$$

(ii) Working the equations with down as positive and including the resistive term; $m\ddot{r} - ma - mkv^2$

$$\begin{aligned} mx &= mg - m\kappa v \\ \ddot{x} &= g - kv^2 \\ &= k\left(\frac{g}{k} - v^2\right) \\ &= k\left(\alpha^2 - v^2\right) \\ \text{where } \alpha^2 &= \frac{g}{k}. \end{aligned}$$

(iii) We need to integrate the equation of motion: dv

$$v\frac{dv}{dx} = k(\alpha^2 - v^2)$$
$$-\frac{1}{2} \times \int_0^U \frac{-2vdv}{\alpha^2 - v^2} = k \times \int_0^H dx$$
$$\left[-\frac{1}{2}\ln\left(\alpha^2 - v^2\right)\right]_0^U = \left[kx\right]_0^H$$
$$-\frac{1}{2}\ln\frac{\alpha^2 - U^2}{\alpha^2} = kH$$

Hence $kH = -\frac{1}{2} \ln \frac{\alpha^2 - U^2}{\alpha^2}$. (Note that $U < \alpha$, the terminal velocity.)

Rearranging we get:

$$U^2 = \alpha^2 \left(1 - e^{-2kH} \right)$$

(iv) We have:

$$\frac{(\text{impact speed})^2}{(\text{launch speed})^2} = \frac{\alpha^2 (1 - e^{-2kH})}{\alpha^2}$$

= 1 - e^{-2kH}
But $2kH = 2 \times \frac{g}{\alpha^2} \times \frac{\alpha^2}{2g} = 1$. Hence
 $\frac{(\text{impact speed})^2}{(\text{launch speed})^2} = 1 - e^{-1}$
= $\frac{e - 1}{e}$
 $\div 0.632$
So $\frac{\text{impact speed}}{(\text{launch speed})} = 79.5\%$
That is, the impact speed=79.5% of the launch speed.

QUESTION SIXTEEN

(a) (i)
$$z_{n+1} - z_n = \frac{3}{4}iz_n - z_n$$

 $= (\frac{3}{4}i - 1)z_n$
(ii) $|z_{n+1} - z_n| = |\frac{3}{4}i - 1| \times |z_n|$
 $= \frac{5}{4}|z_n|$
 But $|z_n| = (\frac{3}{4})^{n-1}$, so
(iii) $|z_{n+1} - z_n| = \frac{5}{4} \times (\frac{3}{4})^{n-1}$
 Total length $= \frac{5}{4}(1 + \frac{3}{4} + \frac{9}{16} + \cdots)$
 $= \frac{5}{4} \times \frac{1}{1 - \frac{3}{4}}$
 $= \frac{5}{4} \times 4$
 $= 5$

(b) Consider RHS/LHS. We want to show that this ratio is greater than 1. $(RHS)^2 = (2k+1)(2k+2)^2$

$$\left(\frac{RHS}{LHS}\right)^2 = \frac{(2k+1)(2k+2)^2}{(2k+3)(2k+1)^2} = \frac{(2k+2)^2}{(2k+3)(2k+1)} = \frac{4k^2+8k+4}{4k^2+8k+3} > 1$$

(Since the numerator is greater than the denominator.)

(i)

Step A: Let us check the result for n = 0. When n = 0: $LHS = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $RHS = \frac{4^n}{\sqrt{2n+1}}$ = 1 = 1

Step B: Assume the results holds for n = k, that is assume

$$\binom{2k}{k} \le \frac{4^k}{\sqrt{2k+1}}$$

We need to show that the result holds for n = k + 1, that is to show that

$$\binom{2k+2}{k+1} \leq \frac{4^{k+1}}{\sqrt{2k+3}}$$
$$LHS = \frac{(2k+2)!}{(k+1)!(k+1)!}$$
$$= \frac{(2k)!}{k!k!} \times \frac{(2k+1)(2k+2)}{(k+1)(k+1)}$$
$$\leq \frac{4^k}{\sqrt{2k+1}} \times \frac{4(2k+1)}{(2k+2)}$$
$$\leq \frac{4^{k+1}}{\sqrt{2k+1}} \times \frac{\sqrt{2k+1}}{\sqrt{2k+3}}$$
$$\leq \frac{4^{k+1}}{\sqrt{2k+3}}$$
as required.

Step C: Hence the result holds for all n by the Principle of Mathematical Induction.

(c) (i)
$$y = x(x - (g + hi))(x - (g - hi))$$

 $= x(x^2 - 2gx + (g^2 + h^2))$
 $= x^3 - 2gx^2 + x(g^2 + h^2)$
(ii) $y' = 3x^2 - 4gx + (g^2 + h^2)$
So $y' = 0$ when
 $x = \frac{4g \pm \sqrt{16g^2 - 4 \times 3 \times (g^2 + h^2)}}{6}$
 $= \frac{2}{3}g \pm \frac{1}{3}\sqrt{g^2 - 3h^2}$

(iii) We need
$$g^2 - 3h^2 \ge 0$$
, so that the foci are real.
Thus $\frac{h^2}{g^2} \le \frac{1}{3}$
 $\frac{h}{g} \le \frac{1}{\sqrt{3}}$
But $\tan \frac{1}{2} \angle AOB = \frac{h}{g}$, so $\frac{1}{2} \angle AOB \le 30^\circ$. Thus $\angle AOB \le 60^\circ$.

(iv) The centre of the ellipse occurs at the midpoint of the foci, which are the stationary points of P(x). Thus the centre is at $x = \frac{2}{3}g$.

The equation of the ellipse is

$$\frac{(x - \frac{2}{3}g)^2}{a^2} + \frac{y^2}{b^2} = 1$$

The endpoint of the ellipse is given to be (g, 0), so that $a = g - \frac{2}{3}g = \frac{1}{3}g$. The distance between the foci is 2ae, so using part (i)

$$2ae = \frac{2}{3}\sqrt{g^2 - 3h^2}$$

Thus $b^2 = a^2(1 - e^2)$
 $= a^2 - (ae)^2$
 $= \frac{1}{9}g^2 - \frac{1}{4} \times \frac{4}{9}(g^2 - 3h^2)$
 $= \frac{1}{3}h^2$

Hence the equation is

$$\frac{(x-\frac{2}{3}g)^2}{\frac{1}{9}g^2} + \frac{y^2}{\frac{1}{3}h^2} = 1$$

(v) We need to show that $(\frac{1}{2}g, \frac{1}{2}h)$ lies on the ellipse, and that at this point the ellipse has gradient $\frac{h}{g}$.

Substitututing in the equation for the ellipse: $(\frac{1}{2}a - \frac{2}{2}a)^2 - (\frac{1}{2}b)^2$

$$LHS = \frac{(\frac{1}{2}g - \frac{2}{3}g)^2}{\frac{1}{9}g^2} + \frac{(\frac{1}{2}h)^2}{\frac{1}{3}h^2}$$
$$= \frac{\frac{1}{36}g^2}{\frac{1}{9}g^2} + \frac{3}{4}$$
$$= \frac{1}{4} + \frac{3}{4}$$
$$= 1$$

Hence the point lies on the ellipse.

By implicit differentiation of the equation of the ellipse:

$$\frac{2(x - \frac{2}{3}g)}{\frac{1}{9}g^2} + \frac{2yy'}{\frac{1}{3}h^2} = 0$$

Thus
$$y' = \frac{-2(x - \frac{2}{3}g)}{\frac{1}{9}g^2} \times \frac{\frac{1}{3}h^2}{2y}$$

 $= \frac{-2(\frac{1}{2}g - \frac{2}{3}g)}{\frac{1}{9}g^2} \times \frac{\frac{1}{3}h^2}{2\frac{1}{2}h}$
 $= \frac{-2(-\frac{1}{6}g)}{\frac{1}{9}g^2} \times \frac{1}{3}h$
 $= \frac{3}{g} \times \frac{1}{3}h$
 $= \frac{h}{g}$

Which is the gradient of OA, and hence the ellipse is tangential to the triangle at the midpoint of OA.

A similar proof (not required) would show that the ellipse is tangential to the triangle at the midpoint of OB also.

(vi) Angle $AOB = 60^{\circ}$, hence $\frac{h}{g} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$. Thus $g^2 - 3h^2 = 0$. The foci are both $x = \frac{2}{3}g$ and the ellipse is a circle, with centre $(\frac{2}{3}g, 0)$ and radius $\frac{1}{3}g$.

Note: At $x = \frac{2}{3}g$ the polynomial has a double root of P'(x) and a point of inflexion – it defines a stationary point of inflexion.