MLC School

2016
 YEAR 12 TRIAL HSG EXAMINATION

Mathematics Extension 1

Name:

\qquad Teacher: \qquad

Date:	2016
Weighting:	40%

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write in blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in questions 11-14
- A separate reference sheet is provided

Total Marks - 70
Section 1 Pages 3-5
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Section 2 Pages 6-10
60 marks
Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section

This page intentionally left almost but not entirely blank

Section I

10 marks

Attempt Questions 1-10

Allow 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 In the diagram, AB is a diameter of the circle and MCN is the tangent to the circle at C . $\angle \mathrm{CAB}=35^{\circ}$. What is the size of $\angle \mathrm{MCA}$?

(A) 35°
(B) 45°
(C) 55°
(D) 65°

2 Which of the following is the domain of $y=\cos ^{-1}\left(\frac{x}{2}\right)$?
(A) $-2 \leq x \leq 2$
(B) $0<x<2 \pi$
(C) $\quad-\frac{1}{2} \leq x \leq \frac{1}{2}$
(D) $0 \leq x \leq \frac{\pi}{2}$

3 The solution to the inequality $\frac{x-1}{x+2}>0$ is:
(A) $-2<x<1$
(B) $-1<x<2$
(C) $x<-2$ or $x>1$
(D) $x<-1$ or $x>2$

4 The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$.
What is the value of k ?
(A) $k=-3$ or $k=-\frac{1}{3}$
(B) $k=-3$ or $k=\frac{1}{3}$
(C) $k=3$ or $k=-\frac{1}{3}$
(D) $k=3$ or $k=\frac{1}{3}$

5 After t years the number N of individuals in a population is given by $N=400+100 e^{-0.1 t}$. What is the difference between the initial population size and the limiting population size?
(A) 100
(B) 300
(C) 400
(D) 500

6 The point dividing the interval from $A(-3,1)$ to $B(1,-1)$ externally in the ratio 3:1 is:
(A) $(0,-1 / 2)$
(B) $\quad(-1,1 / 2)$
(C) $(-5,2)$
(D) $(3,-2)$

7 The expression $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}$ can be simplified to
(A) $\sin 2 \theta-\cos 2 \theta$
(B) $\sin 2 \theta+\cos 2 \theta$
(C) $\tan 2 \theta$
(D) 2

8 Which of the following is an asymptote of the curve $y=\frac{x^{2}-4}{x}$?
(A) $y=x$
(B) $x=2$
(C) $x=1$
(D) $y=0$

9 Which of the following is an expression for $1+\sec x$ in terms of t given $t=\tan \frac{x}{2}$?
(A) $\frac{2}{1+t^{2}}$
(B) $\frac{2}{1-t^{2}}$
(C) $\frac{2 t}{1+t^{2}}$
(D) $\frac{2 t}{1-t^{2}}$

10 Which of the following is a solution of the equation $2^{x}=5$?
(A) $x=\sqrt{5}$
(B) $x=\log _{e} x$
(C) $x=\frac{\log _{e} 5}{\log _{e} 2}$
(D) $x=\frac{\log _{e} 2}{\log _{e} 5}$

Section II

60 marks

Attempt Questions 11-14

Allow 1 hour 45 minutes for this section
Answer in separate writing booklets for this section. Start each question in a new booklet.

Question 11. (15 marks) Marks
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.
(b)

$A B$ is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets $B C$ produced at D. E is a point on $A D$ and F is a point on $C D$ such that $E F$ is parallel to $A C$.
(i) Give a reason why $\angle E A C=\angle A B C$.
(ii) Hence or otherwise show that $E A B F$ is a cyclic quadrilateral.
(iii) Explain why $B E$ is a diameter of the circle through E, A, B and F.
(Question 11 continued)
(c) Solve for $x: \frac{2 x-3}{x} \leq 4$

2
(e) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$

Question 12.
(15 marks) (Start a new booklet)

Marks
(a)

The region bounded by the curves $y=\sin x$ and $y=\cos x$ between $x=0$ and $x=\frac{\pi}{4}$ is rotated through one complete revolution around the x-axis. Find the volume of the solid of revolution.
(b) (i) Show that $\frac{d}{d x}\left(\sin ^{2} x\right)=\sin 2 x$
(ii) Hence use the substitution $u=\sin ^{2} x$ to evaluate $\int_{\pi / 4}^{\pi / 3} \frac{\sin 2 x}{1+\sin ^{2} x} d x$
(Question 12 continues on the next page)
(Question 12 continued)
(c) Find $\int \frac{1+2 x}{1+x^{2}} d x$.
(d)

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The tangents to the parabola at P and Q intersect at R. The normals at P and Q intersect at T. The point M is the midpoint of the chord $P Q$. The point S is the focus $(0, a)$.
(i) Find the coordinates of M.
(ii) Show that $p q=-1$ if $P Q$ is a focal chord.
(iii) By considering the x-coordinates of the three points or otherwise, show that if $P Q$ is a focal chord, then the points R, T and M are collinear.

Question 13. ($\mathbf{1 5}$ marks) (Start a new booklet)

(a) Consider the function $f(x)=(x+2)^{2}-9,-2 \leq x \leq 2$.
(i) Find the equation of the inverse function $f^{-1}(x)$.
(ii) On the same diagram, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$, showing
clearly the coordinates of the endpoints and the intercepts on the coordinate axes.
(iii) Find the x-coordinate of the point of intersection of the curves $y=f(x)$ and

$$
y=f^{-1}(x) .
$$

(b) Consider the function $f(x)=\tan ^{-1}(x-1)$.
(i) Sketch the curve $y=f(x)$, showing clearly the equations of any asymptotes and the intercepts on the coordinate axes.
(ii) Find the equation of the tangent to the curve $y=f(x)$ at the point where $x=1$.
(c)

CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is 45°. B is a point due East of C such that the angle of elevation of D from B is $\alpha . \mathrm{M}$ is the midpoint of AB .
(i) Show that $B C=\cot \alpha$ and hence show that $A B=\operatorname{cosec} \alpha$.
(ii) Show that $C M=\frac{1}{2} \operatorname{cosec} \alpha$

Question 14. ($\mathbf{1 5}$ marks) (Start a new booklet)
(a) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds, it has displacement x metres from a fixed point O in the line, velocity $v \mathrm{~ms}^{-1}$ given by $v=-12 \sin \left(2 t+\frac{\pi}{3}\right)$ and acceleration $\ddot{x} \mathrm{~ms}^{-2}$. Initially the particle is 5 metres to the right of O.
(i) Find an expression for x.
(ii) Show that $\ddot{x}=-4(x-2)$.
(ii) Find the extremes of motion.
(iii) Find the time taken by the particle to return to its starting point for the first time.
(b) After t hours, the number of individuals in a population is given by $N=500-400 e^{-0.1 t}$.
(i) Sketch the graph of N as a function of t, showing clearly the initial population size and the limiting population size.
(ii) Show that $\frac{d N}{d t}=0.1(500-N)$.
(iii) Find the population size for which the rate of growth of the population is half the initial rate of growth.
(c) A particle is moving in a straight line. After time t seconds, it has displacement x metres from a fixed point O in the line, velocity $v \mathrm{~ms}^{-1}$ given by $v=\sqrt{x}$, and acceleration $a \mathrm{~ms}^{-2}$. Initially the particle is 1 metre to the right of O.
(i) Show that a is constant.
(ii) Express x in terms of t.
(iii) Find the distance travelled by the particle during the third second of motion.

MLC School

2016

YEAR 12 TRIAL HSG EXAMINATION

Mathematics

Extension 1

SOLUTIONS

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write in blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in questions 11-14
- A separate reference sheet is provided

Total Marks - 70
Section 1 Pages 3-5
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Section 2 Pages 6-10
60 marks
Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section

This page intentionally left almost but not entirely blank

Section I

10 marks

Attempt Questions 1-10

Allow 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 In the diagram, AB is a diameter of the circle and MCN is the tangent to the circle at C . $\angle \mathrm{CAB}=35^{\circ}$. What is the size of $\angle \mathrm{MCA}$?

(A) 35°
(B) 45°
(C) 55° (a)
(D) 65°

2 Which of the following is the domain of $y=\cos ^{-1}\left(\frac{x}{2}\right)$?
(A) $-2 \leq x \leq 2$ (-)
(B) $0<x<2 \pi$
(C) $-\frac{1}{2} \leq x \leq \frac{1}{2}$
(D) $0 \leq x \leq \frac{\pi}{2}$

3 The solution to the inequality $\frac{x-1}{x+2}>0$ is:
(A) $-2<x<1$
(B) $-1<x<2$
(C) $x<-2$ or $x>1$ (a)
(D) $x<-1$ or $x>2$

4 The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$.
What is the value of k ?
(A) $k=-3$ or $k=-\frac{1}{3}$
(B) $k=-3$ or $k=\frac{1}{3}$ (
(C) $k=3$ or $k=-\frac{1}{3}$
(D) $k=3$ or $k=\frac{1}{3}$

5 After t years the number N of individuals in a population is given by $N=400+100 e^{-0.1 t}$. What is the difference between the initial population size and the limiting population size?
(A) 100 (
(B) 300
(C) 400
(D) 500

6 The point dividing the interval from $A(-3,1)$ to $B(1,-1)$ externally in the ratio 3:1 is:
(A) $(0,-1 / 2)$
(B) $(-1,1 / 2)$
(C) $\quad(-5,2)$
(D) $(3,-2)$ 包

7 The expression $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}$ can be simplified to
(A) $\sin 2 \theta-\cos 2 \theta$
(B) $\sin 2 \theta+\cos 2 \theta$
(C) $\tan 2 \theta$
(D) 2

8 Which of the following is an asymptote of the curve $y=\frac{x^{2}-4}{x}$?
(A) $y=x \quad$ (a)
(B) $x=2$
(C) $x=1$
(D) $y=0$

9 Which of the following is an expression for $1+\sec x$ in terms of t given $t=\tan \frac{x}{2}$?
(A) $\frac{2}{1+t^{2}}$
(B) $\frac{2}{1-t^{2}}$ (-)
(C) $\frac{2 t}{1+t^{2}}$
(D) $\frac{2 t}{1-t^{2}}$

10 Which of the following is a solution of the equation $2^{x}=5$?
(A) $x=\sqrt{5}$
(B) $x=\log _{e} x$
(C) $x=\frac{\log _{e} 5}{\log _{e} 2}$
(D) $x=\frac{\log _{e} 2}{\log _{e} 5}$

Section II

60 marks

Attempt Questions 11-14

Allow 1 hour 45 minutes for this section
Answer in separate writing booklets for this section. Start each question in a new booklet.

Question 11. (15 marks)
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.
$\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3$
(b)

$A B$ is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets $B C$ produced at D. E is a point on $A D$ and F is a point on $C D$ such that $E F$ is parallel to $A C$.
(i) Give a reason why $\angle E A C=\angle A B C$.

Angle between tangent and chord equals angle in alternate segment
(ii) Hence or otherwise show that $E A B F$ is a cyclic quadrilateral.
$\angle D E F=\angle E A C \quad$ (corresponding angles in || lines)
$\angle D E F=\angle A B C$
$\therefore E A B F$ is cyclic (exterior angle equals opposite interior angle)
(iii) Explain why $B E$ is a diameter of the circle through E, A, B and F. $\angle E A B=90^{\circ} \quad$ (tangent perpendicular to radius)
$\therefore B E$ is a diameter of circle $E A B F$ (angle in semi-circle $=90^{\circ}$)
(c) Solve for x : $\frac{2 x-3}{x} \leq 4$

$$
\begin{aligned}
x(2 x-3) & \leq 4 x^{2} \\
x(2 x-3)-4 x^{2} & \leq 0 \\
x(2 x-3-4 x) & \leq 0 \\
-x(3+2 x) & \leq 0 \\
x>0 \quad \text { or } \quad x & \leq-\frac{3}{2}
\end{aligned}
$$

(d) Use Mathematical induction to show that for all positive integers $n \geq 2$,

$$
\begin{equation*}
2 \times 1+3 \times 2+4 \times 3+\ldots+n(n-1)=\frac{n\left(n^{2}-1\right)}{3} \tag{4}
\end{equation*}
$$

Let $n=2: 2 \times 1=\frac{2\left(2^{2}-1\right)}{3}=2 \quad \therefore$ true when $n=2$
Assume true for $n=k: \quad 2 \times 1+3 \times 2+4 \times 3+\ldots+k(k-1)=\frac{k\left(k^{2}-1\right)}{3}$
Let $n=k+1$ and show that

$$
\begin{aligned}
& 2 \times 1+3 \times 2+4 \times 3+\ldots+k(k-1)+(k+1) k=\frac{(k+1)\left((k+1)^{2}-1\right)}{3} \\
& \begin{aligned}
L H S & =2 \times 1+3 \times 2+4 \times 3+\ldots+k(k-1)+(k+1) k \\
& =\frac{k\left(k^{2}-1\right)}{3}+k(k+1) \\
& =\frac{k\left(\left(k^{2}-1\right)+3(k+1)\right)}{3} \\
& =\frac{k\left(k^{2}+3 k+2\right)}{3} \\
& =\frac{k(k+2)(k+1)}{3} \\
& =R H S
\end{aligned}
\end{aligned}
$$

\therefore true for $n=k+1$ if true for $n=k$
\therefore true for all positive integers $n \geq 2$
(e) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$

$$
\begin{aligned}
\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x & =\left[\sin ^{-1} \frac{x}{2}\right]_{\sqrt{2}}^{\sqrt{3}} \\
& =\left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)-\left(\sin ^{-1} \frac{\sqrt{2}}{2}\right) \\
& =\frac{\pi}{3}-\frac{\pi}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

Question 12. ($\mathbf{1 5}$ marks) (Start a new booklet)
(a)

The region bounded by the curves $y=\sin x$ and $y=\cos x$ between $x=0$ and $x=\frac{\pi}{4}$ is rotated through one complete revolution around the x-axis. Find the volume of the solid of revolution.

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 4} \cos ^{2} x-\sin ^{2} x d x \\
& =\pi \int_{0}^{\pi / 4} \cos 2 x d x \\
& =\frac{\pi}{2}[\sin 2 x]_{0}^{\pi / 4} \\
& =\frac{\pi}{2}\left(\sin \frac{\pi}{2}-\sin 0\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

(b) (i) Show that $\frac{d}{d x}\left(\sin ^{2} x\right)=\sin 2 x$

$$
\frac{d}{d x}\left(\sin ^{2} x\right)=2 \sin \cos x=\sin 2 x
$$

(ii) Hence use the substitution $u=\sin ^{2} x$ to evaluate $\int_{\pi / 4}^{\pi / 3} \frac{\sin 2 x}{1+\sin ^{2} x} d x$

$$
\begin{aligned}
u & =\sin ^{2} x \Rightarrow d u=2 \sin x \cos x d x=\sin 2 x d x \\
x & =\frac{\pi}{3} \Rightarrow \quad u=\frac{3}{4} \\
x & =\frac{\pi}{4} \Rightarrow \quad u=\frac{1}{2} \\
\int_{\pi / 4}^{\pi / 3} \frac{\sin 2 x}{1+\sin ^{2} x} d x & =\int_{1 / 2}^{3 / 4} \frac{1}{1+u} d u \\
& =[\ln (1+u)]_{1 / 2}^{3 / 4} \\
& =\ln \frac{7}{4}-\ln \frac{3}{2} \\
& =\ln \frac{7}{6}
\end{aligned}
$$

(c) Find $\int \frac{1+2 x}{1+x^{2}} d x$.

$$
\begin{aligned}
\int \frac{1+2 x}{1+x^{2}} d x & =\int \frac{1}{1+x^{2}} d x+\int \frac{2 x}{1+x^{2}} d x \\
& =\tan ^{-1} x+\ln \left(1+x^{2}\right)+c
\end{aligned}
$$

(d)

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The tangents to the parabola at P and Q intersect at R. The normals at P and Q intersect at T. The point M is the midpoint of the chord $P Q$. The point S is the focus $(0, a)$.
(i) Find the coordinates of M.
M is at $\left(\frac{2 a p+2 a q}{2}, \frac{a p^{2}+a q^{2}}{2}\right)=\left(a(p+q), \frac{1}{2} a\left(p^{2}+q^{2}\right)\right)$
(ii) Show that $p q=-1$ if $P Q$ is a focal chord.

Equation of PQ: $y-a p^{2}=\frac{p+q}{2}(x-2 a p)$
Substitute the coordinates of S into the equation:

$$
\begin{aligned}
a-a p^{2} & =\frac{p+q}{2}(0-2 a p) \\
a-a p^{2} & =-a p^{2}-a p q \\
a & =-a p q \\
p q & =-1
\end{aligned}
$$

(iii) By considering the x-coordinates of the three points or otherwise, show that if $P Q$ is a focal chord, then the points R, T and M are collinear.

THE LONG WAY:

If $P Q$ is a focal chord, then the tangents meet on the directrix $y=-a$.
R lies on the tangent at $P: y=p x-a p^{2}$. Let $y=-a$:

$$
\begin{aligned}
-a & =p x-a p^{2} \\
p x & =a p^{2}-a \\
& =a\left(p^{2}-1\right) \\
x & =\frac{a}{p}\left(p^{2}-1\right) \\
& =\frac{a}{p}\left(p^{2}+p q\right) \\
& =a(p+q)
\end{aligned}
$$

So R has the same x-coordinate as M.
Find the equations of the normals:
At $\mathrm{P}, x+p y=a p^{3}+2 a p$
Similarly, at Q: $x+q y=a q^{3}+2 a q$
Solving these simultaneously to find T :

$$
\begin{aligned}
p y-q y-a p^{3}+a q^{3} & =2 a p-2 a q \\
(p-q) y & =2 a(p-q)+a\left(p^{3}-q^{3}\right) \\
& =2 a(p-q)+a(p-q)\left(p^{2}+p q+q^{2}\right) \\
y & =2 a+a\left(p^{2}+q^{2}-1\right) \\
x & =2 a p+a p^{3}-p y \\
& =2 a p+a p^{3}-2 a p-a p^{3}-a p q^{2}+a p \\
& =a p-a p q^{2} \\
& =a p+a q \\
& =a(p+q)
\end{aligned}
$$

So T has the same x-coordinate, and thus R, M and T all lie on the same vertical line.

THE SHORT WAY

$\angle \mathrm{QRP}, \angle \mathrm{RPT}$ and $\angle \mathrm{RQT}$ are all right angles (tangents \perp normals)
\therefore The quadrilateral RPTQ is a rectangle (all angles of quadrilateral are right angles)
\therefore The midpoints of diagonals RT and PQ are the same (diagonals of a rectangle bisect each other)
\therefore The points R, M and T must be collinear (midpoint M must lie on diagonal RT)

Question 13. ($\mathbf{1 5} \mathbf{~ m a r k s) ~ (S t a r t ~ a ~ n e w ~ b o o k l e t) ~}$
(a) Consider the function $f(x)=(x+2)^{2}-9,-2 \leq x \leq 2$.
(i) Find the equation of the inverse function $f^{-1}(x)$.

$$
\begin{aligned}
\rightarrow x & =(y+2)^{2}-9 \\
x+9 & =(y+2)^{2} \\
\sqrt{x+9} & =y+2 \\
y & =-2+\sqrt{x+9}
\end{aligned}
$$

(ii) On the same diagram, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$, showing clearly the coordinates of the endpoints and the intercepts on the coordinate axes.

(iii) Find the x-coordinate of the point of intersection of the curves $y=f(x)$ and

$$
y=f^{-1}(x)
$$

Find the intersection of $y=f(x)$ and $y=x$:

$$
\begin{aligned}
x & =(x+2)^{2}-9 \\
x & =x^{2}+4 x+4-9 \\
x^{2}+3 x-5 & =0 \\
x & =\frac{-3 \pm \sqrt{3^{2}-4 \cdot 1 \cdot(-5)}}{2 \cdot 1}=\frac{\sqrt{29}-3}{2}
\end{aligned}
$$

The lines intersect at $\left(\frac{\sqrt{29}-3}{2}, \frac{\sqrt{29}-3}{2}\right)$
(b) Consider the function $f(x)=\tan ^{-1}(x-1)$.
(i) Sketch the curve $y=f(x)$, showing clearly the equations of any asymptotes and the intercepts on the coordinate axes.

(ii) Find the equation of the tangent to the curve $y=f(x)$ at the point where $x=1$.

$$
\begin{aligned}
& f(x)=\tan ^{-1}(x-1) \\
& f^{\prime}(x)=\frac{1}{1+(x-1)^{2}}=\frac{1}{x^{2}-2 x+2} \\
& f^{\prime}(1)=\frac{1}{1^{2}-2(1)+2}=1
\end{aligned}
$$

Tangent: $y-0=1(x-1) \Rightarrow y=x-1$
(c)

CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is 45°. B is a point due East of C such that the angle of elevation of D from B is $\alpha . \mathrm{M}$ is the midpoint of AB .
(i) Show that $B C=\cot \alpha$ and hence show that $A B=\operatorname{cosec} \alpha$.

In $\triangle B C D$,

$$
\begin{aligned}
\frac{C D}{B C} & =\tan \alpha \\
\frac{B C}{1} & =\frac{1}{\tan \alpha} \\
B C & =\cot \alpha
\end{aligned}
$$

In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} \\
& =1^{2}+\cot ^{2} \alpha \\
& =\csc ^{2} \alpha \\
A B & =\csc \alpha
\end{aligned}
$$

(ii) Show that $C M=\frac{1}{2} \operatorname{cosec} \alpha$
$\angle A C B=90^{\circ} \therefore A B$ is the diameter of a circle with M as its centre and A, B and C are equally distant from M
$\therefore C M=A M=\frac{1}{2} A B=\frac{1}{2} \csc \alpha$
Question 14. ($\mathbf{1 5}$ marks) (Start a new booklet)
(a) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds, it has displacement x metres from a fixed point O in the line, velocity $v \mathrm{~ms}^{-1}$ given by $v=-12 \sin \left(2 t+\frac{\pi}{3}\right)$ and acceleration $\ddot{x} \mathrm{~ms}^{-2}$. Initially the particle is 5 metres to the right of O.
(i) Find an expression for x.

$$
x=6 \cos \left(2 t+\frac{\pi}{3}\right)+c
$$

When $t=0, x=5$

$$
\begin{aligned}
& 5=6 \cos \frac{\pi}{3}+c \Rightarrow c=2 \\
& x=6 \cos \left(2 t+\frac{\pi}{3}\right)+2
\end{aligned}
$$

(ii) Show that $\ddot{x}=-4(x-2)$.

$$
\begin{aligned}
\ddot{x} & =-24 \cos \left(2 t+\frac{\pi}{3}\right) \\
& =-4 \times 6 \cos \left(2 t+\frac{\pi}{3}\right) \\
& =-4(x-2)
\end{aligned}
$$

(iii) Find the extremes of motion.

Let $v=0$:

$$
\begin{aligned}
-12 \sin \left(2 t+\frac{\pi}{3}\right) & =0 \\
2 t+\frac{\pi}{3} & =0, \pi, 2 \pi, \ldots \\
x & =6 \cos \left(2 t+\frac{\pi}{3}\right)+2 \\
& =6 \cos (0)+2,6 \cos (\pi)+2 \\
& =8,-4
\end{aligned}
$$

(iv) Find the time taken by the particle to return to its starting point for the first time.

Let $x=5$:

$$
\begin{aligned}
6 \cos \left(2 t+\frac{\pi}{3}\right)+2 & =5 \\
6 \cos \left(2 t+\frac{\pi}{3}\right) & =3 \\
\cos \left(2 t+\frac{\pi}{3}\right) & =\frac{1}{2} \\
2 t+\frac{\pi}{3} & =\frac{\pi}{3}, \frac{5 \pi}{3}, \ldots \\
2 t & =0, \frac{4 \pi}{3} \\
t & =0, \frac{2 \pi}{3}
\end{aligned}
$$

The particle takes $\frac{2 \pi}{3}$ seconds to return to its starting point for the first time
(b) After t hours, the number of individuals in a population is given by $N=500-400 e^{-0.1 t}$.
(i) Sketch the graph of N as a function of t, showing clearly the initial population size and the limiting population size.

(ii) Show that $\frac{d N}{d t}=0.1(500-N)$.

$$
\begin{aligned}
N & =500-400 e^{-0.1 t} \\
\frac{d N}{d t} & =-400 e^{-0.1 t} \times-0.1 \\
& =0.1\left(400 e^{-0.1 t}\right) \\
& =0.1(500-N)
\end{aligned}
$$

(iii) Find the population size for which the rate of growth of the population is half the initial rate of growth.

Initial rate of growth $\frac{d N}{d t}=0.1(500-100)=40$

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& \frac{d N}{d t}=20: \\
& 0.1(500-P)=20 \\
& 500-P=200 \\
& P=300
\end{aligned}
\end{aligned}
$$

(c) A particle is moving in a straight line. After time t seconds, it has displacement x metres from a fixed point O in the line, velocity $v \mathrm{~ms}^{-1}$ given by $v=\sqrt{x}$, and acceleration $a \mathrm{~ms}^{-2}$. Initially the particle is 1 metre to the right of O.
(i) Show that a is constant.

$$
\begin{aligned}
\ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2} x\right) \\
& =\frac{1}{2}
\end{aligned}
$$

(ii) Express x in terms of t.

$$
\begin{aligned}
\frac{d x}{d t} & =x^{1 / 2} \\
\frac{d t}{d x} & =\frac{1}{x^{1 / 2}}=x^{-1 / 2} \\
t & =2 x^{1 / 2}+c
\end{aligned}
$$

$$
\begin{aligned}
t & =2 x^{1 / 2}-2 \\
\frac{1}{2}(t+2) & =x^{1 / 2} \\
x & =\frac{1}{4}(t+2)^{2}
\end{aligned}
$$

(iii) Find the distance travelled by the particle during the third second of motion.

When $t=2, x=4$. When $t=3, x=6.25$
The particle does not change direction in this time (v is always positive)
The particle travels 2.25 m during the third second.

END OF EXAM

