

MLC School

2016 TRIAL EXAMINATION

MATHEMATICS EXTENSION 2

Reading time 5 minutes

Writing time 3 hours

General Instructions:

- Write using black or blue pen
- Board approved calculators may be used
- A formulae booklet is provided

Total Marks 100

Section 1: 10 marks

- Attempt all questions.
- Write in blue or black pen.
- Answer on the multiple choice answer sheet provided.
- Allow approximately 15 minutes for this section.

Section 2: 90 marks

- Attempt all questions.
- Answer Section 2 on the writing booklets provided. Show all relevant mathematical reasoning and/or calculations.
- Allow about 2 hours and 45 minutes for this section.

Section 1

10 marks (Allow about 15 minutes)

Use the multiple Choice answer sheet for questions 1 – 10.

1.	Which	of the following is an expression fo	or $\int x^3 \ln x$	1x dx?
	A	$\frac{1}{4}x^4 \ln x - \frac{1}{4}x^4 + c$	В	$\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + c$
	С	$\frac{1}{4}x^4\ln x + \frac{1}{16}x^4 + c$	D	$\frac{1}{4}x^4 \ln x + \frac{1}{4}x^4 + c$
2.	Given	$y = \sin^{-1}(e^x)$, an expression for $\frac{dy}{dx}$	is :	
	А	cos <i>ec y</i>	В	cot y

3. Which of the following is the locus of the point P representing the complex number *z* moving on an Argand diagram, such that |z - 2i| = 2 + Im z?

А	a circle		В	a hyperbola

C a parabola D a straight line

4. The eccentricity of the ellipse $\frac{x^2}{k} + \frac{y^2}{k-1} = 1$, k > 1 is equal to

A
$$\frac{\sqrt{2k-1}}{k}$$
 B $\frac{1}{\sqrt{k}}$
C $\sqrt{\frac{2k-1}{k}}$ D $\frac{\sqrt{2k^2-2k+1}}{k}$

5. The equations of the directrices of the hyperbola $\frac{x^2}{144} - \frac{y^2}{25} = 1$ are:

A
$$x = \pm \frac{13}{144}$$
 B $x = \pm \frac{13}{25}$

C
$$x = \pm \frac{25}{13}$$
 D $x = \pm \frac{144}{13}$

6. The gradient of the curve $x^2y - xy^2 + 6 = 0$ at the point P(2,3) is equal to:

A	- 5	В	$\frac{3}{8}$
С	$\frac{9}{8}$	D	1

7. If 1 + i is one root of the equation $z^2 - z + (1 - i) = 0$, what is the value of the other root?

А	1 - i	В	-i

C *i* D 1+*i*

8. The horizontal base of a solid is the circle $x^2 + y^2 = 1$. Each cross section taken perpendicular to the *x* – axis is a triangle with one side in the base of the solid. The length of this triangle side is equal to the altitude of the triangle through the opposite vertex. Which of the following is an expression for the volume of the solid?

A
$$\frac{1}{2}\int_{-1}^{1}(1-x^2)dx$$

B $\int_{-1}^{1}(1-x^2)dx$
C $\frac{3}{2}\int_{-1}^{1}(1-x^2)dx$
D $2\int_{-1}^{1}(1-x^2)dx$

9. The diagram below shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord *PQ* subtends a right angle at the origin.

Which of the following is correct?

A.
$$\sin\theta\sin\alpha = -\frac{a^2}{b^2}$$

B $\sin\theta\sin\alpha = \frac{a^2}{b^2}$
C $\tan\theta\tan\alpha = -\frac{a^2}{b^2}$
D $\tan\theta\tan\alpha = \frac{a^2}{b^2}$

10. The graphs of y = f(x) and y = g(x) are shown below.

Which of the following best describes the relationship between f(x) and g(x)?

A |f(x)| = g(x)B $g(x) = \ln[f(x)]$ C $f(x) = \pm \ln|g(x)|$ D $g(x) = \pm \sqrt{f(x)}$

End of Section 1

Section 2

90 Marks (Allow about 2 hours and 45 minutes)

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. Show all working and reasoning.

Question 11 (15 marks) **Use a SEPARATE writing booklet.**

- (a) Suppose that *c* is a real number and that z = c i. Express each of the following in the form x + iy where *x* and *y* are real numbers.
 - (i) $\overline{(iz)}$ (ii) $\frac{1}{z}$ 2

(b) On an Argand diagram, shade the region specified by both $\operatorname{Re}(z) \le 4$ and $|z-4+5i| \le 3$.

(c)	(i)	Prove by induction that ($\cos\theta + i\sin\theta$ ⁿ = $\cos n\theta + i\sin n\theta$ for $n \in Z^+$.	4
(-)	Ċ	(······································	

- (ii) Given $w = \sqrt{3} i$, express *w* in modulus argument form. 1
- (iii) Hence express w^5 in the form x + iy where x and y are real numbers. 2

Question 11 continues on page 7

Question 11 (continued)

(d) The diagram below shows the locus of point *z* in the complex plane such that

 $\arg(z-3) - \arg(z+1) = \frac{\pi}{3}$

This locus is part of a circle. The angle between the chord from (-1,0) to z and the chord from (3,0) to z is θ , as shown.

(i) Explain why
$$\theta = \frac{\pi}{3}$$
. 1

3

(ii) Find the centre of the circle.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) A tangent to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is drawn at point $P(4\cos\theta, 3\sin\theta)$.

Perpendiculars are drawn from each focus of the ellipse to meet the tangent at Q and R as shown in the diagram.

(i) Prove that the equation of the tangent at *P* is
$$\frac{x\cos\theta}{4} + \frac{y\sin\theta}{3} = 1$$
 2

3

(ii) Show that $QS \times RS' = 9$

Question 12 continues on page 9

Question 12 (continued)

(b) In the diagram below, TP is the tangent of the circle at *P*, and *TQ* is a secant cutting the circle at *R*. *SQ* is a chord of the circle such that *PX* and *SY* are perpendicular to *SQ* and *PQ* respectively.

	(i)	Prove that $\angle TRP = \angle TPQ$	3
	(ii)	Explain why <i>SPYX</i> is a cyclic quadrilateral and state the diameter of the circle.	1
	(iii)	Prove $\angle PYX = \angle PRQ$	2
(c)	(i)	Show that the polynomial equation $4x^3 + 20x^2 - 23x + 6 = 0$ has a double root.	3
	(ii)	Hence find the value of each root.	1

End of Question 12

Question 13 (15 marks) **Use a SEPARATE writing booklet.**

(a) Consider the curve $x^3 + y^3 = 4xy$. Use implicit differentiation to find an expression for $\frac{dy}{dx}$.

(b) Find
$$\int \frac{5xdx}{x^2 + 3x + 6}$$
 3

2

(c) Use the substitution
$$x = \frac{1}{u}$$
 to evaluate $\int_{\frac{1}{e}}^{e} \frac{\log_e x}{(1+x)^2} dx$ 3

(d) The equation $x^3 + px + 5 = 0$ has roots α , β and γ .

(i) Find in terms of
$$p$$
, $\alpha^2 + \beta^2 + \gamma^2$ 2

(ii) Show that
$$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = p^2$$
 2

(iii) Find the cubic polynomial with integer coefficients, whose roots are $\frac{\alpha}{\beta\gamma}, \frac{\beta}{\gamma\alpha}, \frac{\gamma}{\alpha\beta}$. 3

End of Question 13

Question 14 (15 marks) **Use a SEPARATE writing booklet.**

(a)	(i)	Show that $\sin x + \sin 5x = 2\sin 3x \cos 2x$	2
	(ii)	Hence or otherwise, find all solutions of $\sin x + \sin 5x = 0$ for $o \le x \le 2\pi$.	3
	(iii)	Find $\int_{0}^{\pi} \sin 3x \cos 2x dx$	2
(b)	The h $x = \frac{9}{5}$	apperbola $\mathcal{P}: 16x^2 - 9y^2 = 144$ has foci $S(5,0)$ and $S(-5,0)$ and directrices and $x = -\frac{9}{5}$.	
	(i)	Find the equation of each asymptote of 🛠.	1
	(ii)	Show that the tangent to \mathcal{P} at the point $P(3\sec\theta, 4\tan\theta)$, has equation $4x = (3\sin\theta)y + 12\cos\theta$.	3
	(iii)	Q is the point of intersection of the tangent to \mathcal{P} at <i>P</i> and the nearer directrix. Given that $0 < \theta < \frac{\pi}{2}$, show that <i>Q</i> has <i>y</i> – coordinate	
		$\frac{12-20\cos\theta}{5\sin\theta}.$	1
	(iv)	Show that $\angle PSQ$ is a right angle.	3

End of Question 14

Question 15 (15 marks) **Use a SEPARATE writing booklet.**

(a) The region bounded by the curve $y = \frac{1}{x^2 - 1}$ and the *x* – axis between x = 2 and x = 4 is rotated through one revolution about the line x = 2.

(i) Use the method of cylindrical shells to show that the volume, *V*, of the solid formed is given by $V = 2\pi \int_{2}^{4} \frac{x-2}{x^2-1} dx$.

3

- (ii) Hence find the exact value of *V* in simplest form.
- (b) The sequence of numbers A_n , where n = 1, 2, 3..., is defined by the following:

$$A_1 = 0, A_2 = 1 \text{ and } A_n = (n-1)(A_{n-1} + A_{n-2}) \text{ for } n \ge 3.$$

Use mathematical induction to show that $A_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$ for $n \ge 1$ 4

Question 15 continues on page 13

(c) The diagram below shows the graph of y = f(x). The curve has a minimum turning point at $\left(-1, \frac{1}{2}\right)$.

On separate diagrams, sketch the following curves showing any important features.

(i)	$y = f\left(\left x-1\right \right)$		1
-----	--------------------------------------	--	---

(ii)
$$y = \ln f(x)$$
 1

(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$y = f'(x)$$
 2

End of question 15

Question 16 (15 marks) **Use a SEPARATE writing booklet.**

(a) The points
$$T(2t, \frac{2}{t})$$
 and $R(2r, \frac{2}{r})$ lie on the rectangular hyperbola $xy = 4$.

- (i) Find the midpoint *M* of *TR*.
- (ii) It is known that *TR* is tangent to the parabola $x = \frac{p^2}{2}$, y = p. Find the locus of *M*.

1

4

4

(b) (i) Using the property
$$\int_{0}^{2a} f(x) dx = \int_{-a}^{a} f(a-x) dx$$
 for $a > 0$, or otherwise,
show that $\int_{0}^{1} \sqrt{x(1-x)} dx = \frac{\pi}{8}$ 2

(ii) Given
$$I_n = \int_0^1 \sqrt{x} (1-x)^{\frac{n}{2}} dx$$
, $n = 0, 1, 2, ...,$ show that $I_n = \frac{n}{n+3} I_{n-2}$ for $n \ge 2$.

(iii) Hence evaluate
$$\int_{0}^{1} \sqrt{x} (1-x)^{\frac{5}{2}} dx$$
. 1

(c) The frustrum shown below is obtained by cutting the top of a right circular cone. The top and bottom of the frustrum are circles with radii *r* cm and *R* cm respectively. The height of the frustrum is *h* cm. Use the method of slices to

show that the volume of the frustrum is $\frac{\pi h}{3} (R^2 + Rr + r^2) cm^3$. (Hint: turn the frustrum on its side)

(Hint: turn the frustrum on its side)

End of Paper

	<pre> cc)() Continued</pre>	: Touce for n= let 1 if duce form	But there for n=1 . " by the	Dinciple of MI true be all	1. (00 0+ in 0)= 00000 + in (100)		(ii) W = T3 - i I3 _ I3 _	= 2,000(平) N1.		$(iii) \omega^{5} = 32 \dot{\omega} a \left(- \frac{c_{i}}{c_{i}} \right)$	=32(con-25+0, 2-25)1	= 32/- 13 - it)	=-16/13+2) 1.		(d)ijarg(3-3) is the angle the	intervol 3 to 3 makes with	the x-axis (say &)	ang (3+1) is the angle the	no intervol 3 to -1 makes	with the x-axis (say b	A-d-B Sliner	exterior	1 to Iangle	Former of D = Sum of interior	obporte 0 = 2- R = T/3.		(ii) Centre of chard is (1,0)	: centre lin on line	X=1		BOB + CO ROZIND)	~	
Das ? = C- L	$(i) \frac{1}{i^2} = \frac{i(c-c)}{i}$	$0 = \frac{1}{2c+1}$	= - (c+1.		$(ii), \frac{1}{2} = \frac{1}{c-c} \times \frac{c+c}{c+c}$	d = ctc	C2+1.	- 0 + + 0 =		Where n = 4 and	(1-4)2+ (4+5)25 9.	(g)	(5) E(3)		(1) 2 ··	($\chi = \varphi$	$(c)(i)(con \theta + i xin \theta)^n = con n\theta + i ni$	when we i, LHS = (co orize)	-c3 8+ in 0	RHS = coo (10) + (n) (10)	= C3 0+ C1 8	- CHS. => from	assume but for n=k, kEZt	i (coro +in) = corko+in ko +	more true for in=let !	(con 0+ in 0) th	= (con 0+ in 0) + (con 0+ in 0)	= (cork8+ in 18) ar8+ in 6) +	= anklesse - 2 k & 2 + 1 (sink	= con(k0+0) + i anin(k0+0)	= cor (k+1) + i min (k+1) 9 /
	(2xy + xy - y - 2xy, y = 0. B	4×3+44'-9-124'=0	M = 1 - 58 - 7	n N N N N N	2	(1) w+B = 1+ c+ 3= +1 => 3= - c B	xp = g(rti) = 1-i. (chuch)	$\left(-\mathcal{C}\right)\left(1+i\right) = -i+1$) ー) ー		(S) (I' D.	24	SA = 1.24.24.	5V = 24252 .	= 2(1-X2) Sr.	1.	(D. map = bland = bain & A	ared a.	mog = bland = baind	ator a	More x nog I - I - I - I	1 the amount of the	(a) D	Croph of gar needs at	since upper hay reflected in	bottom half and the log	of gGe) would be undefined	as x= ±1 surce g(±1)=0.	>	1	-		
Erleneign 2 2016 Trial.	() [n 2 lux du B	I weing integration	buy pouts "	ME Ense V'=x2	M'=+ V=+x*	=> 10 ~ 34 - 2 (r34m	t = t	= 4xtlux - toxtc.	20	2 y= Rune D	4" et	U VI-ezh	1 x y'= auny.	1 de l cora	green = tany	Ø	3 3-21 = 2+ 4. C	Jurt(y-2)2 = 2+y.	hthat = h+hhat + 2x	0x2 - 84.	S	(a= (k, b= le-1 B	h= a2(1-e2).	1-2-15=62.	R.	e=/k-(k-1)	y ,	1		() 12+1= c' => C= 22+1 D	αv $e = \frac{13}{13}$	12 12	X-13/2 = 13.

	(13) dringen PS . FR	" but ITRP= 8	1 PSQ = TRP= A lecterior emote , 2 / 1	of explore gued	= marine opporter.)	1250 = 1700 = Danale in alterete	regment equel angle	Bulween chard and tengert.	(JPQ = TRP=8.	(PTR = PTQ (common angle)	(D PTR III D PTQ . equilangular)		(ii) SPYX is a cyclic quedulation with SP as drawfer	since [SXP=154P=90° angles in semicoiele		(ii). ITYX + IPSX = (80° (opposide anales of eyclic grad.)	· 1 PYX = (180-8)	19 RO +19RT =120° (angles on a straight line)	12 R.Q. =/150- B)	2. (P4x = 1PRQ = (180-B)		(c) $P(x) = 4x^{3} + 20x^{2} - 23x + 6 =$	$P'(x) = 12x^2 + 40x - 23$	=(6x+23)2x-1)	P'(-23)=0, P'(-2)=0	Test P(-+) = 4/ +) + 20/ +) -23/ +)+6		x= 5 is a double root	(ii) factor 2x-1	· Product of ract = 2x 2x d = - to	d=-6	Resto are 3, 3, -6. 1	1 × 1 ×	
(July-	d as = J7.300 8+0-12 .	V16-70228		QS*RS'=)- (31700842 X35008-12)	16-7 co-20.	$= -(6 3 \cos^2 \theta - i + +)$	11 7 5 28		= 144 -63002B	16-7 05-20	$-q(16-705^{2})$	16-703 H	10										$x + 12 \cos^2 \beta$											
	at is lant. JA	00	2 5/1	- Z A	-	tan Js = ch.	CM = 2 01 233		- lenter (1, 2) 1		(D(a)(i). 24 + 4 = 1.	-) 24 + 24 4'=0.	200	2 "	× •	2-45	m =-sherre.	481-0	= -3 007 Q	Ed of tangent	4-31-9=300 + x-4000	, dirth P	4 RUNG 4 - 12 1- 20 = - 3 00 0	3x cond + 44n- 8 = 12	rung , yaing = 1	4 0 3	(i) a=4, b=3, e=/1-3= -4.	S+S' (MT,0).	d or = 1-17.3000 + 0x 12 0 - 12	1 19 cos 20 + 16 sun 20.	= -317029-12	1 /qcor20 +16 -16 cor20 -	$= [-337 cm \theta - 12]$	V16-7 cur 20- 1.

(3(d) X ³ + px+5-0.	(i) $d^{+} + g^{+} + 3^{2} = (24g + 3)^{2} - 2(2g + 38 + g_{8})$ $= 0 - 2g \cdot 2g$	$= (ab + bb + bb) - 2 (ab + b + b) = (b)^{2} - 2ab (a + b + b) = (b)^{2} - (b)^{2} - 2ab (a + b + b) = (b)^{2} - 2ab (a + b + b) = (b)^{2} - 2ab (a + b)^{2} - 2ab (a + b) = (b)^{2} - 2ab (a + b)^{2} - 2ab (a + b)^{2$	Sum data time = $\frac{ds}{ds} + \frac{dX}{ds} + \frac{\betaX}{ds}$ = $\frac{ds}{ds} + \frac{dX}{ds} + \frac{\betaX}{ds}$ = $\frac{ds}{ds} + \frac{dx}{ds} + \frac{dx}{ds}$ = $\frac{ds}{ds} + \frac{dx}{ds} + \frac{dx}{ds}$ = $\frac{ds}{ds} + \frac{ds}{ds} = -\frac{ds}{ds}$: Eq. $x^3 - \frac{d}{ds} x + \frac{ds}{ds} + \frac{ds}{ds} = -\frac{d}{s}$.	25x3-10px2+p2x+5=0.
(3) (2) 23+43 =424	$d_{nk} \left(x^{3} + y^{3} + 4xy \right)$ $d_{nk} \left(x^{3} + 3y^{2} + 4yy + 4xy \right)$ $3x^{2} + 3y^{2} + 4y - 3x^{2}$ $(3y^{2} - 4x)y^{1} = 4y - 3x^{2}$ $d_{nk} = 4y^{2} - 3x^{2}$	$ \frac{dr}{x^{2}+3x+tc} = \frac{5}{3} \frac{2x+33}{x^{2}+3x+tc} du = \frac{5}{3} \frac{2x+3}{x^{2}+3x+tc} = \frac{15}{3} \frac{du}{x^{2}+3x+tc} = 15$	(c) $\chi = \frac{1}{2}$ due $\frac{1}{2}$ due $\frac{1}{2}$ due $\frac{1}{2}$ due $\frac{1}{2}$ due $\frac{1}{2}$ due $\frac{1}{2}$ $\frac{1}{2}$ due $\frac{1}{2}$	(HX) Tr

	(④ ④)(11), 248, 2-3	4x = 3000 By + 12000 B.	36 = 32 84 + 12 007 8.		$36 - 60 \cos \theta = y.$	15 air & a	$\Rightarrow 12 - 20 \cos \theta = y$	s ainte 0		(N) P (3,200, 4 han 0) S (5,0) Q (9, 12-200000)	m. = 4 tand mar = 12 - 20 cm 6	rs 32000-5 50000 (2-5)	= 4 2 Ling 1 (12-20 CNB)	3-5cord 16 air 8.	=13-5 cm g)	(dring)	1 1 - = JOWX SOLM	/ PS Q = 90°.		(B)			of t t $2c$ $2n$ $2\pi(x-2)$ $3c$	let SA be are of typical cylinder	$SA = 2\pi(x-2)yy$	SV - 21/2-2/2 - Si		V= lim Z21(n-2) Sn	1-2X 2=2 XE-1	=21 (2 - 2. du	1-275 6	
\bigcirc	(f) (a) i) ank + an 5x	= din (3x-2x) + din (3x+2x)	= Nin 3x 0002x - Non3r din 2x + Nin 3x 0002x + 00031 n 2r	= 2 ain 3x ar 2x		(ii) Swint + Sin Sk = 2 rein 31 con21	Am 3x con 2x = 0.	111 3x = 0 ~ ~ W W 2x = 0	3x = 0, T, 2T, 3T, 4T, 5T, 6T, 2x = F, 3F, 5F, 7T	$x = 0, \frac{1}{2}, \frac{2}{20}, \frac{1}{1}, \frac{1}{10}, \frac{2}{20}, \frac{2}{20}, \frac{2}{20}, \frac{1}{20}, \frac{1}{20},$	- <td>(iii) [sun 3recor 2re du. =] fain 2r + ain 5r) due</td> <td></td> <td>$= \frac{1}{2} \int$</td> <td>$= t \left[1 + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right]$</td> <td>2 c 2 c 2 J</td> <td>= 15.</td> <td>dry 16x2 - 942=144</td> <td>$\Rightarrow \chi^{2} - \frac{4^{2}}{4} = 1 S \left(r_{i} o \right) S^{i} \left(- r_{i} o \right).$</td> <td>9 46 x = 2, x = -2</td> <td>e= art => at1. e= a.</td> <td>(i) Asymptotes y=t&x => y=tyx.</td> <td></td> <td>(ii) at P(suee, 4tand) due = 3 recotante. dy = 4 rector</td> <td></td> <td>du = 4 200 0 Eq. of langent.</td> <td>= 4 y-4 aub = 4 (x - 3rec b)</td> <td>32.0.1 0 32.01</td> <td>34 pur 0 - 12 r. 0 four - 41 - 12 ref.</td> <td>4 2 - 3 y aw 8 + 12 (20 CB - 2 B fan 8)</td> <td>= = = = = = = = = = = = = = = = = = =</td> <td>4x = 2 y ALM 4+ 12 CO2 0.</td>	(iii) [sun 3recor 2re du. =] fain 2r + ain 5r) due		$= \frac{1}{2} \int $	$= t \left[1 + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right]$	2 c 2 c 2 J	= 15.	dry 16x2 - 942=144	$\Rightarrow \chi^{2} - \frac{4^{2}}{4} = 1 S \left(r_{i} o \right) S^{i} \left(- r_{i} o \right).$	9 46 x = 2, x = -2	e= art => at1. e= a.	(i) Asymptotes y=t&x => y=tyx.		(ii) at P(suee, 4tand) due = 3 recotante. dy = 4 rector		du = 4 200 0 Eq. of langent.	= 4 y-4 aub = 4 (x - 3rec b)	32.0.1 0 32.01	34 pur 0 - 12 r. 0 four - 41 - 12 ref.	4 2 - 3 y aw 8 + 12 (20 CB - 2 B fan 8)	= = = = = = = = = = = = = = = = = = =	4x = 2 y ALM 4+ 12 CO2 0.

E

. E)