

## MLC School

## 2016 TRIAL EXAMINATION

## MATHEMATICS EXTENSION 2

## Reading time 5 minutes

Writing time $\quad 3$ hours

## General Instructions:

- Write using black or blue pen
- Board approved calculators may be used
- A formulae booklet is provided

Total Marks 100
Section 1: 10 marks

- Attempt all questions.
- Write in blue or black pen.
- Answer on the multiple choice answer sheet provided.
- Allow approximately 15 minutes for this section.


## Section 2: 90 marks

- Attempt all questions.
- Answer Section 2 on the writing booklets provided. Show all relevant mathematical reasoning and/or calculations.
- Allow about 2 hours and 45 minutes for this section.


## Section 1

## 10 marks (Allow about 15 minutes)

Use the multiple Choice answer sheet for questions 1-10.

1. Which of the following is an expression for $\int x^{3} \ln x d x$ ?
A $\frac{1}{4} x^{4} \ln x-\frac{1}{4} x^{4}+c$
B $\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+c$
C $\quad \frac{1}{4} x^{4} \ln x+\frac{1}{16} x^{4}+c$
D $\frac{1}{4} x^{4} \ln x+\frac{1}{4} x^{4}+c$
2. Given $y=\sin ^{-1}\left(e^{x}\right)$, an expression for $\frac{d y}{d x}$ is :
A $\quad \operatorname{cosec} y$
B $\quad \cot y$
C $\quad \sec y$
D $\quad \tan y$
3. Which of the following is the locus of the point $P$ representing the complex number $z$ moving on an Argand diagram, such that $|z-2 i|=2+\operatorname{Im} z$ ?
A a circle
B a hyperbola
C a parabola
D a straight line
4. The eccentricity of the ellipse $\frac{x^{2}}{k}+\frac{y^{2}}{k-1}=1, k>1$ is equal to
A $\frac{\sqrt{2 k-1}}{k}$
B $\frac{1}{\sqrt{k}}$
C $\sqrt{\frac{2 k-1}{k}}$
D $\frac{\sqrt{2 k^{2}-2 k+1}}{k}$
5. The equations of the directrices of the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{25}=1$ are:
A $x= \pm \frac{13}{144}$
B $x= \pm \frac{13}{25}$
C $x= \pm \frac{25}{13}$
D $x= \pm \frac{144}{13}$
6. The gradient of the curve $x^{2} y-x y^{2}+6=0$ at the point $P(2,3)$ is equal to:
A $\quad-5$
B $\frac{3}{8}$
C $\quad \frac{9}{8}$
D 1
7. If $1+i$ is one root of the equation $z^{2}-z+(1-i)=0$, what is the value of the other root?
A $1-i$
B $\quad-i$
C $i$
D $1+i$
8. The horizontal base of a solid is the circle $x^{2}+y^{2}=1$. Each cross section taken perpendicular to the $x$-axis is a triangle with one side in the base of the solid. The length of this triangle side is equal to the altitude of the triangle through the opposite vertex. Which of the following is an expression for the volume of the solid?
A $\quad \frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right) d x$
B $\quad \int_{-1}^{1}\left(1-x^{2}\right) d x$
C $\quad \frac{3}{2} \int_{-1}^{1}\left(1-x^{2}\right) d x$
D $\quad 2 \int_{-1}^{1}\left(1-x^{2}\right) d x$
9. The diagram below shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a>b>0$. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord $P Q$ subtends a right angle at the origin.


Which of the following is correct?
A. $\sin \theta \sin \alpha=-\frac{a^{2}}{b^{2}}$
B $\quad \sin \theta \sin \alpha=\frac{a^{2}}{b^{2}}$
C $\quad \tan \theta \tan \alpha=-\frac{a^{2}}{b^{2}}$
D $\quad \tan \theta \tan \alpha=\frac{a^{2}}{b^{2}}$
10. The graphs of $y=f(x)$ and $y=g(x)$ are shown below.



Which of the following best describes the relationship between $f(x)$ and $g(x)$ ?
A $\quad|f(x)|=g(x)$
B $\quad g(x)=\ln [f(x)]$
C $\quad f(x)= \pm \ln |g(x)|$
D $\quad g(x)= \pm \sqrt{f(x)}$

End of Section 1

## Section 2

## 90 Marks (Allow about 2 hours and 45 minutes)

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. Show all working and reasoning.

## Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Suppose that $c$ is a real number and that $z=c-i$. Express each of the following in the form $x+i y$ where $x$ and $y$ are real numbers.
(i) $\overline{(i z)}$
(ii) $\frac{1}{z}$
(b) On an Argand diagram, shade the region specified by both $\operatorname{Re}(z) \leq 4$ and $|z-4+5 i| \leq 3$.
(c) (i) Prove by induction that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for $n \in Z^{+}$.
(ii) Given $w=\sqrt{3}-i$, express $w$ in modulus argument form.
(iii) Hence express $w^{5}$ in the form $x+i y$ where $x$ and $y$ are real numbers.

## Question 11 (continued)

(d) The diagram below shows the locus of point $z$ in the complex plane such that

$$
\arg (z-3)-\arg (z+1)=\frac{\pi}{3}
$$



This locus is part of a circle. The angle between the chord from $(-1,0)$ to $z$ and the chord from $(3,0)$ to $z$ is $\theta$, as shown.
(i) Explain why $\theta=\frac{\pi}{3}$.
(ii) Find the centre of the circle.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) A tangent to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is drawn at point $P(4 \cos \theta, 3 \sin \theta)$. Perpendiculars are drawn from each focus of the ellipse to meet the tangent at $Q$ and $R$ as shown in the diagram.

(i) Prove that the equation of the tangent at $P$ is $\frac{x \cos \theta}{4}+\frac{y \sin \theta}{3}=1$
(ii) Show that $Q S \times R S^{\prime}=9$

## Question 12 (continued)

(b) In the diagram below, TP is the tangent of the circle at $P$, and $T Q$ is a secant cutting the circle at $R$. $S Q$ is a chord of the circle such that $P X$ and $S Y$ are perpendicular to $S Q$ and $P Q$ respectively.

(i) Prove that $\angle T R P=\angle T P Q$
(ii) Explain why $S P Y X$ is a cyclic quadrilateral and state the diameter of the circle.
(iii) Prove $\angle P Y X=\angle P R Q$
(c) (i) Show that the polynomial equation $4 x^{3}+20 x^{2}-23 x+6=0$ has a double root.
(ii) Hence find the value of each root.

## Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the curve $x^{3}+y^{3}=4 x y$. Use implicit differentiation to find
an expression for $\frac{d y}{d x}$.
(b) Find $\int \frac{5 x d x}{x^{2}+3 x+6}$
(c) Use the substitution $x=\frac{1}{u}$ to evaluate $\int_{\frac{1}{e}}^{e} \frac{\log _{e} x}{(1+x)^{2}} d x$
(d) The equation $x^{3}+p x+5=0$ has roots $\alpha, \beta$ and $\gamma$.
(i) Find in terms of $p, \alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Show that $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=p^{2}$
(iii) Find the cubic polynomial with integer coefficients, whose roots are

$$
\begin{equation*}
\frac{\alpha}{\beta \gamma}, \frac{\beta}{\gamma \alpha}, \frac{\gamma}{\alpha \beta} . \tag{3}
\end{equation*}
$$

## Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that $\sin x+\sin 5 x=2 \sin 3 x \cos 2 x \quad 2$
(ii) Hence or otherwise, find all solutions of $\sin x+\sin 5 x=0$ for $o \leq x \leq 2 \pi$.
(iii) Find $\int_{0}^{\pi} \sin 3 x \cos 2 x d x$
(b) The hyperbola $\mathcal{H}: 16 x^{2}-9 y^{2}=144$ has foci $S(5,0)$ and $S(-5,0)$ and directrices $x=\frac{9}{5}$ and $x=-\frac{9}{5}$.
(i) Find the equation of each asymptote of $\mathcal{\#}$.
(ii) Show that the tangent to $\nRightarrow$ at the point $P(3 \sec \theta, 4 \tan \theta)$, has equation $4 x=(3 \sin \theta) y+12 \cos \theta$.
(iii) Q is the point of intersection of the tangent to $\mathcal{\#}$ at $P$ and the nearer directrix. Given that $0<\theta<\frac{\pi}{2}$, show that $Q$ has $y$-coordinate

$$
\frac{12-20 \cos \theta}{5 \sin \theta}
$$

(iv) Show that $\angle P S Q$ is a right angle.

## End of Question 14

(a) The region bounded by the curve $y=\frac{1}{x^{2}-1}$ and the $x$ - axis between $x=2$ and $x=4$ is rotated through one revolution about the line $x=2$.

(i) Use the method of cylindrical shells to show that the volume, $V$, of the solid formed is given by $V=2 \pi \int_{2}^{4} \frac{x-2}{x^{2}-1} d x$.
(ii) Hence find the exact value of $V$ in simplest form.
(b) The sequence of numbers $A_{n}$, where $n=1,2,3 \ldots$, is defined by the following:

$$
A_{1}=0, A_{2}=1 \text { and } A_{n}=(n-1)\left(A_{n-1}+A_{n-2}\right) \text { for } n \geq 3
$$

Use mathematical induction to show that $A_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$ for $n \geq 1$
(c) The diagram below shows the graph of $y=f(x)$. The curve has a minimum turning point at $(-1,1 / 2)$.


On separate diagrams, sketch the following curves showing any important features.
(i) $\quad y=f(|x-1|)$
(ii) $y=\ln f(x)$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=f^{\prime}(x)$

## Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) The points $T\left(2 t, \frac{2}{t}\right)$ and $R\left(2 r, \frac{2}{r}\right)$ lie on the rectangular hyperbola $x y=4$.
(i) Find the midpoint $M$ of $T R$.
(ii) It is known that $T R$ is tangent to the parabola $x=\frac{p^{2}}{2}, y=p$.

Find the locus of $M$.
(b) (i) Using the property $\int_{0}^{2 a} f(x) d x=\int_{-a}^{a} f(a-x) d x$ for $a>0$, or otherwise, show that $\int_{0}^{1} \sqrt{x(1-x)} d x=\frac{\pi}{8}$
(ii) Given $I_{n}=\int_{0}^{1} \sqrt{x}(1-x)^{\frac{n}{2}} d x, n=0,1,2, \ldots$, show that $I_{n}=\frac{n}{n+3} I_{n-2}$ for $\mathrm{n} \geq 2$.
(iii) Hence evaluate $\int_{0}^{1} \sqrt{x}(1-x)^{\frac{5}{2}} d x$.
(c) The frustrum shown below is obtained by cutting the top of a right circular cone. The top and bottom of the frustrum are circles with radii $r \mathrm{~cm}$ and $R \mathrm{~cm}$ respectively. The height of the frustrum is $h \mathrm{~cm}$. Use the method of slices to show that the volume of the frustrum is $\frac{\pi h}{3}\left(R^{2}+R r+r^{2}\right) \mathrm{cm}^{3}$.
(Hint: turn the frustrum on its side)


## End of Paper

| Endenever 22016 brial |  |  |  |
| :---: | :---: | :---: | :---: |
| (1) $\int x^{2} \ln x d x$ B | () $2 x y+x^{2} y^{\prime}-y^{2}-2 x y \cdot y^{\prime}=0 \cdot B \quad$ i) $\bar{z}=\bar{i}(C)$ |  |  |
| hy pouts | $4 \times 3+4 y^{\prime}-9-12 y^{\prime}=0$ $-8 y^{\prime}=-3$ |  | $\therefore \text { Tone for } n=k+1$ |
| $\mu=\ln x r^{\prime}=x^{3}$ |  | , | pinape of MI, true fr |
| $\mu^{\prime}=\frac{1}{2} \quad v=\frac{1}{4} x^{\varphi}$ |  |  |  |
| $\frac{1}{4} \ln x \cdot x^{4}-\frac{1}{4} \sqrt{4}$ |  |  |  |
| $=\frac{1}{4} x^{4} \ln x-\frac{1}{16}$ | + $+\frac{1}{c^{+}+i}$ |  | $\text { (ii) } w=\sqrt{3}-i$ |
| (2) $y=\sin ^{-1} e^{\prime \prime}$ |  |  | $\omega^{5}=32 \cos \left(-\frac{5 \pi}{6}\right)$ |
|  |  |  |  |
|  | $\text { (8.) } D=\frac{\operatorname{lig}_{2 y}^{2 y}}{} \quad D$ |  |  |
| a | $\delta A=\frac{1}{2} \cdot \frac{2 y}{2}, 2 y$. $\delta v=2 y^{2} \delta x$ | - ${ }_{\text {ch }}$ | $=-16(\sqrt{3}+i)$ |
| $=\tan y$ |  | (tyo) 2 | (dxijoug $\left(7^{-3)}\right.$ is the anget tee inferval 3 to 3 makes wicta |
|  | (9) $m_{O P}=\frac{l \tan \theta}{\operatorname{asc} \theta}=\frac{\operatorname{lin} \theta}{a} \theta$ |  | the $x$-axis (say $\alpha$ ) |
|  |  |  |  |
| 4 |  |  | $\theta$ interval 3 to -1 makes , |
| $=x y .$ |  |  |  |
| (4) $a=\sqrt{k}, b=\sqrt{k-1} B$ | $\operatorname{Mop} \operatorname{mog} \theta=-1$$\Rightarrow \operatorname{Min} \lambda \min \theta=-\frac{a^{2}}{R^{2}}$ |  | $\sim_{0-\beta \text { Sinee }}$ |
|  |  |  |  |
|  | Craph of gai) needr a $\pm$ $=\operatorname{cts} \Rightarrow \Rightarrow$ thef form Aume the fon $n=k$ b $k \tau^{t}$ |  | of $\Delta=$ Sum of intuis |
|  |  |  |  |
| $e=\sqrt{k-(k-1)}$ |  |  |  |
|  |  |  | $\therefore$ Centre lis or lime <br> (ii) Cente of chord is ( 1,0 |
|  | $f g(x)$ would be undiynic $\sin x= \pm \pm \sin \operatorname{g}( \pm)=0$. | $(\cos \theta+i \operatorname{si\theta } \theta)^{k+1}$ <br> $u(\cos \theta+i n \theta)^{n}=\cos k \theta+i \sin k$ inove true for $n=k+1$ $(\cos \theta+i \sin \theta)^{k+1}$ |  |
| $1-e^{2} \Rightarrow e^{2}=\frac{23}{144}+1$ D |  |  |  |
|  | $\begin{aligned} & =\cos k \theta \cos \theta-i k \theta \sin \theta+i(\sin k \theta \cos \\ & =\cos (k \theta+\theta)+i \sin (k \theta+\theta) \end{aligned}$$=\cos (k+1) \theta+i \sin (k+1) \theta$ |  |  |
|  |  |  |  |  |



(a)




