

Student Number

2016

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Extension 1 Mathematics

General Instructions

- Reading time 5 minutes
- Working tine 2 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks – 70

Section I - Pages *** 10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - Pages ****

60 marks

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

Question	Marks
1 - 10	/10
11	/15
12	/15
13	/15
14	/15
Total	/70

THIS QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

This assessment task constitutes 40% of the Higher School Certificate Course Assessment

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for questions 1 – 10 (Detach from paper)

1)	In how	many ways can 8 students be arranged if the tallest is first and the shortest
-)	is last?	
	(A)	${}^{8}C_{6}$
	(B)	⁶ <i>C</i> ₆
	(C)	⁸ <i>P</i> ₆
		⁶ <i>P</i>
	(D)	<i>1</i> ₆
	If	1. $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$ $(1 + 1)$
2)	If $x =$	1.6 is a close root of the equation $x^2 - 4x + 2 = 0$, find a better
	approx	imation to two decimal places.
	(A)	1.68
	(B)	13.71
	(C)	0.43
	(D)	4.96
3)	Evalua	te $\sin^{-1}\left(-\frac{1}{2}\right)$ as an exact answer.
	(A)	$\frac{\pi}{6}$
	(B)	$\frac{5\pi}{6}$
	(C)	$-\frac{\pi}{6}$
	(D)	$-\frac{5\pi}{6}$

10)	The sp	beed v m/s of a point moving along the x axis is given by $v^2 = 36 + 6x - 6$					
	$2x^2$, v	where x is in meters.					
	The pe	eriod and amplitude of the motion are:					
	(A) Period π and amplitude $\frac{9}{2}$						
	(B)	Period 2π and amplitude $\frac{\sqrt{63}}{2}$					
	(C)	Period $\sqrt{2}\pi$ and amplitude $\frac{9}{2}$					
	(D)	Period $\sqrt{2}\pi$ and amplitude $\frac{3}{2}$					
11)	A part	ticle undergoes linear acceleration according to the equation $a = (x + a)$					
	4) ³ m	$/s^2$. Given that the particle commences motion at the origin with a velocity					
	4 <i>m/s</i> ,	what is the particle's displacement when $v = 10 m/s$, given that $x < 0$?					
	(A)	-0.1313					
	(B)	-7.7606					
	(C)	-8.5378					
	(D)	-20.0478					

Section II

70 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Solve
$$\frac{3}{2x-1} < 2$$

(b) $\operatorname{Find} \int_{0}^{\frac{\pi}{2}} \frac{dx}{9+4x^2}$ giving your answer in exact form
(c) Let *A* be the point (-2, 5) and *B* be the point (4, 1)
2

Find the coordinates of the point *P* that divides the interval externally in the ratio 4: 3.

(d) Evaluate
$$\int \frac{x \, dx}{\sqrt{x-2}}$$
 using the substitution $u^2 = x-2$

(e)
$$\operatorname{Evaluate} \lim_{x \to 0} \frac{\sin\left(\frac{x}{3}\right)}{2x}$$
 2

(f) Find
$$\frac{d}{dx} \left(e^{\sin^{-1}(3x)} \right)$$
 2

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) ST is a tangent at T, AT = 24cm, BT = 10cm, BS =15cm and ST = h cm. O is the centre of the circle.

Find the value of *h* correct to one decimal place

(b) i) Express
$$\sqrt{3}\cos\theta - \sin\theta$$
 in the form $R\cos(\theta + \alpha)$ where $R > 0$ and $0 < \alpha < 2\pi$ 2

- ii) Hence or otherwise solve the equation $\sqrt{3}\cos\theta \sin\theta = 1$, for $0 \le \theta \le 2\pi$ 2
- (c) Solve the equation $x^3 21x^2 + 126x 216 = 0$ given that the three roots form a geometric series **3**

(d) The acceleration of a particle moving in a straight line is given by $\frac{d^2x}{dt^2} = -2e^{-x}$ where *x* is the displacement (in metres) from the origin. Initially the particle is at the origin and is moving with a velocity of $2ms^{-1}$

i) Prove that
$$v = 2e^{\frac{x^2}{2}}$$

ii) Find an expression for the displacement x at any time t. 2

Question 12 continues on page 8

Question 12 (continued)

(e) The diagram shows a conical wheat flue. The flue is being filled at the rate of $2m^3$ / minute. The height of wheat at any time, 't' minutes, is 'h' metres, and the radius of the wheat's top surface is 'r' metres.

i) Show that
$$r = \frac{3h}{10}$$
 1

ii) Find the rate at which the height is increasing when the height of wheat is 8 m 3 (The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$ Question 13 (15 marks) Use a SEPARATE writing booklet

(a) Consider the function $f(x) = 2\sin^{-1}(x-1)$.

iii)	Find the domain and range of the function.	1
iv)	Sketch the graph of the function.	1
v)	Find the equation of the inverse function.	2
Four are of	people go to a pizza festival, where four different gourmet pizzas A, B, C and D ffered. Each person chooses a pizza at random to try.	
i)	Find the probability that they all choose different pizzas.	2
ii)	Find the probability that exactly two of the people choose pizza A.	2

- (c) i) $T(2at, at^2)$ is a point on the parabola $x^2 = 4ay$. Show that the normal to the parabola at T has equation $x + ty 2at at^3 = 0$.
 - ii) *P* and *Q* are points on the parabola $x^2 = 4ay$ with parameter values t = 1 and t = 2 respectively. Show that the normal to the parabola at *P* and *Q* intersect at a point *R* on the parabola.

3

(d) The formula for the nth term a_n of the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34,...

is given by,

(b)

$$a_n = \begin{cases} 1 \text{ for } n = 1 \text{ and } 2\\ a_{n-2} + a_{n-1} \text{ for } n > 2 \end{cases}$$

Prove by mathematical induction that,

$$a_n = \frac{\left(1 + \sqrt{5}\right)^n - \left(1 - \sqrt{5}\right)^n}{\sqrt{5} \, 2^n}$$

In the diagram above, P is the midpoint of the chord AB in the circle with centre O. A second chord ST passes through P, and the tangents at the endpoints meet, AB produced at M and N respectively.

Join OS.

(a)

i)	Explain why <i>OPNT</i> is a cyclic quadrilateral.	2
ii)	Explain why OPSM is also cyclic.	1
iii)	Let $\angle OTS = \theta$. Show that $\angle ONP = \angle OMP = \theta$.	2
iv)	Hence, prove that $AM = BN$.	1

Question 14 continues on page 11

In the diagram above, a large number of projectiles are fired simultaneously from O, each with the same velocity V m/s, but different angles of projection θ , at a wall d meters from O. The projectiles are fired so that they all lie in the same vertical plane perpendicular to the wall.

You may assume that the equations of motion at time *t* are given by:

$$x = Vtcos\theta$$
 and $y = -\frac{1}{2}gt^2 + Vtsin\theta$.

i) Using these two equations of motion, prove that the relationship between the height *y* and time *t* is:

$$4y^{2} + 4gt^{2}y + (g^{2}t^{4} + 4x^{2} - 4v^{2}t^{2}) = 0.$$

ii) Show that the first impact at the wall occurs at time $t = \frac{d}{V}$ and that this projectile was fired horizontally.

1

2

2

- iii) Hence, find where this projectile hits the wall.
- iv) Show that for $t > \frac{d}{V}$, there are *two* impacts at time *t*, and that the distance between these is:

$$2\sqrt{V^2t^2-d^2}.$$

v) Given that V = 10 m/s and d = 10 metres, what are the initial angles of projection of the two projectiles that will strike the wall simultaneously $20\sqrt{3}$ metres apart.

End of Examination 🕲

choices S ۱ ŕ 16 . 2 32-4 -f"(-x) = 3.68 = 1:68 <u>(</u>3_ Sam 7 e×+2 ex_2 ex+2 when 2 4 211 Sin²n A= 2x2n-1- Cosen dre 1/2/ = 411-211 T Z = 411 hnn ۵ 31

657 (7 Gostic = Sin (73-21) 4 one the graph, there are solutions or o, Sin (Sin 2 donan Ronge -1 = 1 4 2420 E 21 36 d. <u>37 - 76</u> 18 d the = 2(- 2 3 - 2rl 3 . = 212 12 TC n=12 T = N = 3X - 18 =x=6 x=-3 a= (n-b)(n+3) = 0

il Cont.

c) let the 3 mots be a, a and ar 5 mots - a t a t ar = 21 0 a) $\frac{k}{k} = \frac{\sqrt{3} + 1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$: 13 630 - Sint = 265 (0+1/2) Ind groot a. a. ar = 216 . The 3 roots are 3, 6 and 12 2 (2 (2 + O) 2 0) 2 : 0 = 1/2 and 31/2 D+1/2 = 1/3 , 51/2 ++6+6r = 21 (2r-1)(r-2) = 0 -> r=2 or 2 br- 15r+b = 0 a = 216 0 - dus d = 0 1 Correct answers < Coment Warking Correct values of a · few students had no polynomial division four students used generally will done this problem. generally well in idea how to expressed

1/2 12

$\frac{k}{v} = \frac{1+1}{2} \ln \left(\frac{t+1}{2} \right)$	dt = 1 e 2 + C => t = 0 = 2 + C when t = 0 = 2 + C = - 1	$(i) \frac{dx}{dt} = \frac{-3}{2e}$	When $t = s_1 \times \ldots \times $	1 2 2 2 2 X	4v = 2e + C when a = 0, b = 2	$\frac{c}{dt} \frac{d}{dt} \frac{1}{v^2} \frac{v^2}{\sqrt{2}} \frac{-2e}{\sqrt{2}}$
V lorn et casuler	V correct expression for t		V final annuler whith reason	Correct answer of uz	V Connect expression of 2	
	generally well done.			that w = 22 ~ without	mary students assumed	

.

1/1 way1

(a)	Consider the function $f(x) = 2\sin^{-1}(x-1)$.	
	i) Find the domain and range of the function.	1
	Criteria Marks	
	Provides a correct solution	İ
	Sample answer: Domain: $\{-1 \le x - 1 \le 1\}$ Mostl 1 $: \{0 \le x \le 2\}$ dwne wellRange: $\{-\pi \le y \le \pi\}$ ii) Sketch the graph of the function.	2
	Criteria Marks	
	Draws a correct sketch	
	Draws a graph showing the correct shape, or equivalent merit	<u> </u>
	лиг лиг ниг ниг ниг ниг ниг ниг ниг н	

I.

.

	iii) Find the equation of the inverse function.		2
	Critería	Marks	
	 Provides a correct solution 	2	
	 Swaps variables and makes some progress towards a correct solution, or equivalent merit 	1	
	Sample solutions:	·	
}	Swap unknowns		
	$y = 2\sin^{-1}(x-1)$		
	$\frac{1}{2}y = \sin^{-1}(x-1)$		
	$\sin\left(\frac{y}{2}\right) = x - 1$		
	$x = 1 + \sin\left(\frac{y}{2}\right)$		
	hence	11 done	
	$\int f^{-1}(x) = 1 + \sin\left(\frac{x}{2}\right) \text{ for } -\pi \le x \le \pi$	<i>u v</i> ~	
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas.	cas A, B, C and D	1
(b)	Four people go to a pizza festival, where four different gourmet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas.	cas A, B, C and D	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria	Marks	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria Provides a correct solution Sample colution:	as A, B, C and D Marks 1	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4!}$	Marks	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: $P(\text{all different}) = \frac{4!}{4^4}$	Marks	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: $P(\text{all different}) = \frac{4!}{4^4}$ $= \frac{3}{32}$	Marks	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ • $= \frac{3}{32}$ ii) Find the probability that exactly two of the people choose pizz	Tas A, B, C and D Marks 1 za A.	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. ii) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ · · ii) Find the probability that exactly two of the people choose piz Criteria	Marks 1	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ • $\frac{3}{32}$ ii) Find the probability that exactly two of the people choose piz Criteria • Provides a correct solution	Tas A, B, C and D Marks 1 za A. Marks 2	1
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ • a $\frac{3}{32}$ ii) Find the probability that exactly two of the people choose piz • Criteria • Provides a correct solution • Makes progress towards an answer with at most one option missed or one element unconsidered, or equivalent merit.	Tas A, B, C and D Marks 1 za A. Marks 2 1	2
(b)	Four people go to a pizza festival, where four different gournet pizz are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ • a $\frac{3}{32}$ ii) Find the probability that exactly two of the people choose piz • Criteria • Provides a correct solution • Makes progress towards an answer with at most one option missed or one element unconsidered, or equivalent merit. Sample solution:	Tas A, B, C and D Marks 1 za A. Marks 2 1	2
(b)	Four people go to a pizza festival, where four different gournet pizza are offered. Each person chooses a pizza at random to try. i) Find the probability that they all choose different pizzas. Criteria • Provides a correct solution Sample solution: P(all different) = $\frac{4!}{4^4}$ • Provides a correct solution Sample solution: Provides a correct solution Sample solution: Provides a correct solution Sample solution: Oriteria Provides a correct solution • Makes progress towards an answer with at most one option missed or one element unconsidered, or equivalent merit. Sample solution: P(exactly 2 choose A) = ${}^4C_2 \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^2$	za A, B, C and D Marks 1 za A. <u>Marks</u> 2 1 Marks 2 1 Marks 2 5 5 Marks	2

. . •

(c)	<i>P</i> and <i>Q</i> are points on the parabola $x^2 = 4ay$ with parameter values	t = 1 and $t = 2$	
	respectively		
	i) Given the equation of the normal at T is $x + ty - 2at - at^3 = 0$	(Do not prove).	
	Find the equation of the normal at P and at Q .		
	Criteria	Marks	
	Provides a correct solution	1	-
	Sample solution:	Ladorto	
	when t is 1 the normal at P: Mq^{γ}	STOLDU	
	$x+1.y-2.a.1-a.1^3=0$	abo as	
	x + y = 3a Confused	Lad	
	perialles	instant	
	when t is 2 the normal at Q :	their 12-	4
	which it is 2 at a normal at g :	.0	
	x + 2.y - 2u.z - u.z = 0		
	x + 2y = 12a		
	the second secon	a point R on the	+
	ii) Show that the normal to the parabola at F and Q intersect at a	a point it on alo	
	parabola.		
	parabola.	Marks	1
	parabola.	Marks 2	
	parabola. Criteria Provides a correct solution	Marks 2	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Samula solution:	Marks 2 1	
	 parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a 1 	Marks 2 1	
	parabola. Criteria • Provides a correct solution • Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a 1 x + 2y = 12a2	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x+y=3a1 x+2y=12a2 subtracting 2 from 1	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a 1 x + 2y = 12a2 subtracting 2 from 1 y = -9a	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 0a	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a	Marks 2 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a 1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1	Marks 2 1	
	parabola.	Marks 2 1	
	parabola. Provides a correct solution • Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1 x + 9a = 3a x = -6a	Marks 2 1	
	parabola. Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1 x + 9a = 3a x = -6a giving $R(-6a, 9a)$ as the point of intersection	Marks 2 1	
	parabola.	Marks 2 1 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1 x + 9a = 3a x = -6a giving $R(-6a,9a)$ as the point of intersection $x^2 = 36a^2$ = 4a(9a)	Marks 2 1 1	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1 x + 9a = 3a x = -6a giving $R(-6a,9a)$ as the point of intersection $x^2 = 36a^2$ = 4a(9a) = 4ay	Marks 2 1 1 of strate to thew point lies of	
	parabola. Criteria Provides a correct solution Solve the normal equations simultaneously and attempt to demonstrate solution lies on the parabola, or equivalent merit Sample solution: x + y = 3a1 x + 2y = 12a2 subtracting 2 from 1 -y = -9a y = 9a substituting into 1 x + 9a = 3a x = -6a giving $R(-6a,9a)$ as the point of intersection $x^2 = 36a^2$ = 4a(9a) = 4ay	Marks 2 1 1 of stude boint lies of	

1

ſ	(d)	i) Prove the following by the process of mathematical induction.	3
		$\ln(2) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) + \dots + \ln\left(\frac{n+1}{n}\right) = \ln(n+1)$	
·		Criteria Marks	
		Provides a correct solution	
		Demonstrate that k implies k+1	
-		Sample solution: when n = 1	
		$\ln\left(\frac{1+1}{1}\right) = \ln(2)$	
		$=\ln(1+1)$	ļ i
	,	\therefore statement true for $n = 1$	
		Assume true for $n = k$	
		that is:	
		$\ln(2) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) + \dots + \ln\left(\frac{k+1}{k}\right) = \ln(k+1)$	
		when $n = k + 1$	
		$\ln(2) + \ln\left(\frac{3}{2}\right) + \ln\left(\frac{4}{3}\right) + \dots + \ln\left(\frac{k+1}{k}\right) + \ln\left(\frac{k+1+1}{k+1}\right)$	
		$= \ln(k+1) + \ln\left(\frac{k+1+1}{k+1}\right)$ Some students	
		$=\ln((k+1)+1)$ (ade log) (9117	
		as required file statements.	
		\therefore as n=1 is true and n=k true proves n=k+1 is true leave the proven	
		the statement is true by the principle of mathematical induction. A induction	7
ľ		ii) Hence find p for which $\sum_{n=1}^{p} \ln\left(\frac{n+1}{n}\right) \ge \pi$	1
		Criteria Marks	
		Provides a correct solution	
		$\left(\frac{1}{2} \right) \left(\frac{n+1}{2} \right)$	
2	($\left \sum_{n} \ln \left \frac{n+1}{n} \right \ge \pi$	
F	ŗ	$\prod_{ n (p+1) \ge \pi} (p+1) \ge \pi$	
5		$n+1 \ge e^{\pi}$	
-		$\int e^{\pi} = 1$ $\int e^{\pi} = 1$	
		$\sum_{n>22} \frac{1}{14}$	
		p = 22.17	
		·· p 25	

ļ	14a)	From the equations of motion,		
	(1)	$V \cos \theta = \frac{x}{t}$ $V \sin \theta = \frac{y}{t} + \frac{1}{2}gt$ $\left(\frac{x}{t}\right)^{2} + \left(\frac{y}{t} + \frac{1}{2}gt\right)^{2} = V^{2}(\cos^{2}\theta + \sin^{2}\theta)$ $(x)^{2} + \left(y + \frac{1}{2}gt^{2}\right)^{2} = V^{2}t^{2}$ $x^{2} + y^{2} + ygt^{2} + \frac{1}{4}g^{2}t^{4} = V^{2}t^{2}$ $(x)^{2} + (4yt^{2} + (4y^{2} + g^{2}t^{4} - 4y^{2}t^{2})) = 0$	2 marks: correct proof 1 mark: substantial progress is made in trying to eliminate sin θ and $\cos \theta$	Students who could understand, "eliminate θ was the purpose of the question did it correctly. Well done by many students
	(11)	$t = \frac{x}{V \cos \theta}$ where $x = d$ and V are constants. Hence, t is minimum when $\cos \theta$ is maximum which occurs when $\theta = 0$. ie. The projectile is	1 mark: proves angle of projection $\theta = 0$.	Very few students realised that "first" impact means, you need to minimise t.
		fired horizontally. 1 mark $\theta = 0$, then $\cos \theta = 1$. Hence, $t = \frac{x}{V \cos \theta} = \frac{d}{V}$ seconds. 1 mark	1 mark: proves the result with correct working and reasoning.	Most of the students <u>used</u> $\theta = 0$ to prove $t = \frac{d}{V}$ and vice versa. These students were awarded 0 marks. They have not proved any of the required results.
	(111)	$y = -\frac{1}{2}gt^{2} + Vt\sin\theta$ $\theta = 0, \text{ then } \sin\theta = 0.$ $y = -\frac{1}{2}g\left(\frac{d}{V}\right)^{2} = -\frac{gd^{2}}{2V^{2}} \text{ (hits below the basis)}$	1 mark: substitutes $\theta = 0$ into the equation and gives the correct result.	Most students got this mark, except those who did not realise $\theta = 0$.
	(iv)	To have two impacts on the wall, there need to prove that here are two solutions for y when $t > \frac{d}{V}$. $4y^2 + 4gt^2y + (g^2t^4 + 4x^2 - 4V^2t^2) = 0$ x = d, $\Delta = (4gt^2)^2 - 4 \times 4(g^2t^4 + 4d^2 - 4V^2t^2)$ $= 16g^2t^4 - 16(g^2t^4 + 4d^2 - 4V^2t^2)$ $= 64(V^2t^2 - d^2)$. When $t > \frac{d}{V}$, $Vt > d$.	1 mark: proves $\Delta > 0$ for	Many students did not attempt this question. Those who realised two impacts at given t meant that there are two values for y. Majority of the students who attempted this question got 1 mark for setting $\Delta > 0$.
		Hence, $y^{-}t^{-} - a > 0$, and $a > 0$. le. There are two solutions for y.	the quadratic in y.	
		This means that there are two real and		

	distinct roots for y and so, there are two		
	impacts at the same t. 1 mark.	· .	
	Now the distance between the impacts equals		· .
	the difference between the roots.		
	$-b \pm \sqrt{\Delta}$		
	The roots are $\frac{2a}{2a}$		
2		1 mark: correct answer	
	Hence the difference = $\frac{2\sqrt{\Delta}}{2} = \frac{\sqrt{\Delta}}{2}$	from correct working	
	2a a	_	
	$\sqrt{64(V^2t^2-d^2)}$		
	$=\frac{\sqrt{1-1}}{4}$		
	$\left(\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		
	$= 2\sqrt{(V^2t^2 - d^2)}$ 1 mark		
	Another approach:		
	•••		
-			
	$u + u = -\alpha t^2$		
	$y_1 + y_2 = -gi$		
	$g^{2}t^{4} + 4x^{2} - 4v^{2}t^{2}$		
	$y_1 y_2 =$		
	$\sqrt{(2)^2}$		
	$y_1 + y_2 = \sqrt{(y_1 + y_2)^2 - 4y_1y_2}$		
	$=\sqrt{a^2t^4-a^2t^4-4r^2+4v^2t^2}$		
	$=2\sqrt{\nu^2 t^2 - x^2}$		
	$2\sqrt{2}$, $2\sqrt{2}$		
	$=2\sqrt{v^2t^2-d^2}$		
(v)	Distance = $2\sqrt{V^2t^2-d^2}$		1
			Students who cooliced this
	$= 2\sqrt{(100t^2 - 100)}$		students who realised this
	$20\left(\frac{1}{2},\frac{1}{2}\right)$		ful oot the mark
	$= 20\sqrt{(r-1)}$		ny got the mark.
	$20\sqrt{t^2-1} = 20\sqrt{3}$		1 4
			wany set $y = 20\sqrt{3}$ in
	$t^{-1}=3$		$v = V \sin \theta t - \frac{1}{2} g t^2$ and
	t=2, t>0		2 2
	$\cos\theta = \frac{x}{10} = \frac{10}{10} = \frac{1}{10}$		tried to solve for t
	$Vt = 10 \times 2 = 2$		unsuccessfully.
	Hence, θ = 60° and -60° are the angles of		
	projection.		

..----

·	14b) (i)	∠OTN = 90° (OT ⊥ TN, angle between tangent and radius is 90° ∠OPN = 90° (the line from the centre that <u>bisects the chord</u> is perpendicular to the chord) 1 mark OPNT is cyclic as the opposite angles add to 180° 1 mark	1 mark: both reasoning statements are correct 1 mark: gives the reason for the quadrilateral to be cyclic.	Well done. A very common error the statement: Line from the centre to the tangent makes 90° : Cleary the diagram above doesn't. Also, as shown in the answers, only if the chord is bisected, it is perpendicular. Note: you need to learn and present the statements of the theorems accurately.
	(ii)	Similarly, $\angle OPM = 90^{\circ}$ (from (i) $OP \perp PN$ and hence MN .) $\angle OSM = 90^{\circ}$ (angle between tangent and radius is 90° OPSM is cyclic as the angles subtended by arc OM in the same segment are equal.) 1 mark	1 mark: gives the correct reasoning for the quadrilateral to be cyclic.	
	(iii)	$\angle OTS = \angle OST = \theta$ (OT = OS radii, angles opposite equal sides of isosceles $\triangle OTS$ 1 mark Now, $\angle OTP = \angle ONP = \theta$ and $\angle OSP = \angle OMP = \theta$ angles in the same segment of cyclic quadrilaterals OTNP and OPSM. 1 mark Hence, $\angle ONP = \angle OMP = \theta$.	2 marks: both reasoning correct 1 mark only: if substantial progress	A common error was in the interpretation of the diagram. Some students misunderstood the notation on the diagram meant $MP = PN$, rather than $AP = PB$. You always need to verify the diagram from the description of facts stated in the question.
	(iv)	ΔOMN is isosceles (OM = MN as $\angle ONP = \angle OMP = \theta$, sides opposite equal angles are equal) OP is the altitude. Hence, MP = PN (perpendicular bisects the opposite side) Hence, MP - AP = PN - PB (equals subtracted from equals) Ie. AM = BN	1 mark: correct reasoning	Well done