

Girraween High School

2016 Year 12 Trial Higher School Certificate Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Calculators and ruler may be used
- All necessary working out must be shown
- Write on both sides of the paper

Total Marks - 70

- Attempt all questions
- Marks may be deducted for careless or badly arranged work

Section I 10 marks Attempt Questions 1-10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Question 1-10

Question 1 (1 mark)

Line AT is a tangent to the circle at A. TB is a secant cutting the circle at B and C. If AT = 6, TB = x and BC = 9, what is the value of x?

- A. 2
- B. 3
- C. 4
- D. 12

What is the derivative of $\cos^{-1}(3x)$?

A.
$$\frac{1}{3\sqrt{1-9x^2}}$$

B.
$$\frac{-1}{3\sqrt{1-9x^2}}$$

C.
$$\frac{3}{\sqrt{1-9x^2}}$$

D.
$$\frac{-3}{\sqrt{1-9x^2}}$$

Question 3 (1 mark)

What is the value of $\lim_{x\to 0} \frac{2\sin 3x}{x}$? A. $\frac{2}{3}$ B. 2

- C. 6
- D. undefined

Question 4 (1 mark)

The point P divides the interval AB in the ratio -1: 2. Which of the following diagrams is correct?

Question 5 (1 mark)

The degrees of two polynomials P(x) and Q(x) are m and n respectively, where m > n. What is the degree of P(x) + Q(x)?

A. m + n
B. mn
C. m
D. n

Question 6 (1 mark)

What is the term independent of x in the expansion of $\left(x^2 - \frac{2}{x}\right)^9$?

A. ${}^{9}C_{3} (-2)^{3}$ B. ${}^{9}C_{3} (2)^{3}$ C. ${}^{9}C_{6} (-2)^{6}$ D. ${}^{9}C_{6} (2)^{6}$

Question 7 (1 mark)

A hotel has 3 different rooms.

How many different ways can 4 people be accommodated?

A. 3^4 B. 4^3 C. 4C_3

D. ${}^{4}P_{3}$

Question 8 (1 mark)

The position function of a particle is given by $x = 2 \sin \pi t + 1$. Which of the following is true?

- A. The maximum velocity of the particle occurs at $t = \frac{1}{2}$ at x = 3
- B. The maximum velocity of the particle occurs at $t = \frac{3}{2}$ at x = -1
- C. The maximum velocity of the particle occurs at t = 2 at x = 1
- D. The maximum velocity of the particle occurs at t = 6 at x = -1

Question 9 (1 mark)

For which of the following is true?

- A. If $f(x) = \sin x$ for $0 \le x \le \pi$ then $f^{-1}(x)$ exists
- B. If $f(x) = x^2$ for all real x then $f^{-1}(x)$ exists
- C. If f(x) = mx for all real x then $f^{-1}(x)$ exists for any real value of m

D. $f^{-1}(x)$ does not exist for any of the above

Question 10 (1 mark)

Projectiles A and B are launched at same time at velocity V and angle α . However projectile A is launched from a higher position. The two projectiles land in the same horizontal plane. Which of the following is always true?

- A. A and B will reach the ground at the same time
- B. A and B will have the same range
- C. A will reach its maximum height earlier than B
- D. The maximum speed of A is greater than the maximum speed of B

Question 11 on the next page

Section II
60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Write your answers on the paper provided.
In Questions 11-14, your responses should include relevant mathematical reasoning

Question 11 (15 marks)

and/or calculations.

(a) Solve
$$\frac{3}{x+2} < 4.$$
 [3]

(b) Find the size of the acute angle between the lines 2x + y = 5 and 3x - y = 1. [3]

(c) The point P divides the interval joining A(-1, -2) to B(9,3) internally in the [2] ratio 4:1. Find the coordinates of P.

(d) If
$$\cos \theta = \frac{4}{5}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$ find the exact value of $\sin 2\theta$. [2]

(e) Using the substitution
$$u = \sqrt{x}$$
 find $\int \frac{1}{\sqrt{x}(1+x)} dx.$ [3]

(f) Find the value of a if $P(x) = x^3 + ax^2 + ax + 5$ gives the same remainders when [2] it is divided by x + 2 or x - 4.

Question 12 (15 marks)

(a) Prove by mathematical induction that for all integers $n \ge 1$, [3]

$$1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + n \times 2^{n-1} = 1 + (n-1)2^{n}$$

- (b) i. Find the coefficient of x in the expansion of $\left(3x \frac{1}{2x}\right)^7$. [2]
 - ii. Hence state the constant term in the expansion of $\left(1+\frac{1}{x}\right)^2 \left(3x-\frac{1}{2x}\right)^7$. [1]
- (c) Consider the function $f(x) = x^3 + x$.
 - i. State the domain of f(x). [1]
 - ii. Show that f(x) does not have any stationary points. [2]
 - iii. By giving reasons, state whether $f^{-1}(x)$ exists. [1]
- (d) The diagram shows a circle with diameter AB. EF is a tangent to the circle at C. AC is extended to D such that DE is perpendicular to AE. Let $\angle BAC = \theta$.

i. Copy the diagram and prove that BCDE is a cyclic quadrilateral. [2]

[3]

ii. Prove that EC = ED.

Question 13 (15 marks)

- (a) i. A fair coin is tossed 4 times, what is probability of getting more heads than [2] tails?
 - ii. A person decides to flip a two dollar coin 4 times each day, and if he gets [1] more heads than tails he will contribute the coin towards his savings. He does this for 7 days. What is the probability that he will contribute four dollars towards his savings by the end of the 7 days? Give your answer to one decimal place.
- (b) A particle moves along a straight line with displacement x m and velocity $v ms^{-1}$. Initially the particle is at the origin at with velocity $-1 ms^{-1}$. The acceleration of a particle is given by

$$\ddot{x} = 4x + 2$$

[2]

[1]

i. Show that $v^2 = 4x^2 + 4x + 1$

ii. Show that
$$x = \frac{1}{2}(e^{-2t} - 1)$$
 [3]

- iii. What happens to x as $t \to \infty$?
- (c) A particle moves in a straight line and its position at time t is given by

$$x = 5 + \sqrt{3}\sin 3t - \cos 3t$$

- i. Express $\sqrt{3}\sin 3t \cos 3t$ in the form $R\sin(3t \alpha)$, where α is in radians. [2]
- ii. Prove that the particle is undergoing simple harmonic motion and find its [2] period.
- iii. State the particle's maximum displacement. [1]
- iv. When does the particle first reach its minimum acceleration? [1]

Question 14 (15 marks)

(a) A person walks a length of d metres due north along a road from point A to point B. The point A is due east of a mountain OM, where M is the top of the mountain. The point O is directly below point M and is on the same horizontal plane as the road. The height of the mountain above point O is h metres.
From point A, the angle of elevation to the top of the mountain is 2θ.

From point B, the angle of elevation to the top of the mountain is θ .

i. Find the expressions for OA and OB in terms of h and θ . [1]

ii. Show that
$$d^2 = \frac{h^2 \operatorname{cosec}^2 \theta}{4} (3 - \tan^2 \theta)$$
 [3]

(b) A projectile is launched from a height of 5 m above the ground at $V = 60 m s^{-1}$ at 30° to the horizontal. You may assume $g = 10 m s^{-2}$.

i. Derive the equations for x and y .	2

- ii. Find the maximum height of the projectile. [1]
- iii. Find the speed and angle (to nearest degree) at which the projectile hits the [3] ground.

(c) The diagram shows a point $P(2at, at^2)$ on the parabola $x^2 = 4ay$. The tangent to the parabola at P cuts the reflection of the parabola in the x axis at points A and B. The point M is the midpoint of the interval AB.

i.	Show that the equation of the tangent is $y = tx - at^2$.	[1]
ii.	Show that the coordinates of M are $(-2at, -3at^2)$	[3]
	. 4	

iii. Show that the locus of
$$M$$
 is $x^2 = -\frac{4}{3}ay$ [1]

End of exam

mn thing n to the n + bhy n + - + bo P(n) + Q(n)] = m _'. () term occurs when 2)3(-2)6 (-2) " n" 26 i. D ~ C rsm can divor on 3 rooms : 3×3×3×3 = 3 4 ... @ 1 3 V occurs at n=1 23 = 2 Vocans when t=0 It is at the centre instradly will return to this hn at t=2 - i. C

f(n) = n² 13 clarly even as f(-w) = (-w)² = n² = f(w). As even functions are symmetrical about the y-and they are not 1:1 . B 13 false

If m=o then f(n)=mn a a borrizontal line which a clearly not 1:1 .: C a false ... D

RIJ Since $j = Vsm \sigma - gt$ for loth projectiles they will reach the bighted points at the same time : C a false A clausty has a longer flight time he it needs to fail a greater ventral distance : A a false with longer flight time A

must tinked a longor horizontal dostonue .'. B B false. . D is true as it will quin a more mynthe vertread valuesty; resulting in greatur maximum spearl. 011/ $(a) = \frac{3}{n+2} < 4$ 3(2+2) < 4 (21+2)² 4(21-22) 2 - 3 (21-22) > 0 (n+2) [4(n+2)-3]70 (n+2) (4n+5) 70 -2 -2 ·. nc-2 & n)-5. (b) q=-2n+5 : m,=-2 g= 3n+1 -: Mz=3 $fan \theta = \left| \frac{-2-2}{1-6} \right| = 1$: 0=45°

$$\begin{array}{ll} (a) \\ (c) \\ (c)$$

(11)
(A)
$$\therefore$$
 free for $n \ge k \ne 1$
 \therefore $3j$ the primerple of induction
 $\pi + i2$ force for $n \ge 1$.
(b)
(i) $T_{k \ne 1} = {\binom{7}{k}} (3n)^{7-k} {\binom{-1}{2n}}^{k}$.
 $= {\binom{7}{k}} 3^{7-k} {\binom{-2}{2n}}^{-k} {\binom{-2}{2n}}^{k} n^{-k}$
 $= {\binom{7}{k}} 3^{7-k} {\binom{-2}{2n}}^{-k} {\binom{-2}{2n}}^{-k} n^{-k}$
 $\therefore 7-2k=1 \stackrel{2}{\longrightarrow} 2k=6 \therefore k=3$
 \therefore Coefficient is ${\binom{7}{3}} 3^{4} {\binom{-2}{3}}^{-3}$
 $= -\frac{2 335}{3}$
(ii)
 $(1+\frac{2}{n}+\frac{1}{n^{2}}) {\binom{3n-\frac{1}{2n}}}^{7}$
 $only my h sot constant is
multiplying $\stackrel{2}{=} urt k n term from$
 $(3n-\frac{1}{2n})^{7}$
 \therefore constant is $2x - \frac{2835}{8} = -\frac{2835}{4}$.
(c) (i) 9! all real n.
 (ii) $f^{1}(n) = 3n^{2} + 1 \neq 0$ for all n.
 (iii) $f^{1}(n) \ge 1$ for all n.
 $i = f$ is a monotomically hereasy form
 $forchorn 1 \le 7 + i \le 1:1$
 $\therefore f^{-1} exist 1$.$

(d)
(d)
(e)
(i)

$$L ACB = 90 (L in a semi circle
 $DaTA diamar AB)$
 $L CBE = 90 + 0 Centener L of
 ΔABC .
 $L CBE = 90 - 0 CL sam of ΔADE)
 $L CBE + LADE = 180$
 $CBE + LADE = 180$
 $BCDE A a gular gradininternal
 $Copporter L's are supplementary$.
(ii)
 $LABC = 90 - 0 CL sam f ΔABC).
 $LABC = 90 - 0 CL sam f ΔABC).
 $LACF = 90 - 0 CL sam f ΔABC .
 $LACF = 90 - 0 CL sam f ΔABC .
 $LACF = 90 - 0 CL sam f ΔABC .
 $LACF = 90 - 0 CL sam f ΔABC .
 $LACF = 90 - 0 CL sam f ΔABC .
 $LACF = 90 - 0 CL sam f ΔABC .
 $LDCE = 90 - 0 (Vertratty opposite
 $L'S$.
 $LDCE = LADE = 90 - 0$
 $Custometry opposite
 $L'S$.
 $LDCE = ED (Zgual sides opposite
 $Qual L'S of \Delta ECD$.$$$$$$$$$$$$$$$$

$$(4)$$

$$(1): \frac{3\pi t}{2-1} > 0$$

$$(3\pi t)(2n-1) > 0$$

$$(1): \frac{1}{2} (n) = \frac{1}{2} \sqrt{n-1} (n-1)$$

$$f(n) = \frac{1}{2} \times \frac{-2}{(n+1)(n-1)}$$

$$f(n) = \frac{1}{2} \times \frac{-2}{(n+1)(n-1)}$$

$$f(n) = \frac{1}{2} (n-1) (n-1)$$

$$(4)$$

$$(7)$$

$$= P(3H) + P(9H)$$

$$= (\frac{9}{3})(\frac{1}{2})^{9} + (\frac{9}{4})(\frac{1}{2})^{7}$$

$$= \frac{1}{16}$$

$$(7)(\frac{7}{2})(\frac{5}{16})^{2}(\frac{11}{16})^{5}$$

$$= 31.5 \frac{9}{6}(1/4p)$$

$$(6)$$

$$(7)(\frac{1}{2})^{4} + \frac{1}{16}v^{2} = 4n\pi v$$

$$= \frac{1}{2}v^{4} = \int 4n\pi v$$

$$= \frac{1}{2}v^{4} = \int 4n\pi v$$

$$= \frac{1}{2}v^{4} = 2n^{2} + 2n\pi v$$

$$= \frac{1}{2}v^{2} = (2n\pi v)$$

$$\begin{array}{l} \left(l_{i} \right) \\ \left(l_{i}$$

$$\int \sqrt{3} \sin 3t - \cos 3t = 2 \sin (3t - \frac{\pi}{6}),$$

$$(11) \quad \pi = 5 + 2 \sin (7t - \frac{\pi}{6}),$$

$$\overline{\pi} = -18 \sin (3t - \frac{\pi}{6}),$$

$$\overline{\pi} = -3^{2} x 2 \sin (3t - \frac{\pi}{6}),$$

$$\overline{\pi} = -3^{2} (n - 5),$$

$$\therefore 5HM \text{ with } 7 = \frac{2\pi}{3},$$

$$(11) \quad \pi_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(12) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(12) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(12) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(12) \quad m_{max} = 5 + 2 = 7,$$

$$(11) \quad m_{max} = 5 + 2 = 7,$$

$$(12) \quad m_{max} = 5 + 2 = 7,$$

$$(13) \quad m_{max} = 5 + 2 = 7,$$

$$(14) \quad m_{max} = 5 + 2 = 7,$$

$$(15) \quad m_{max} = 5 + 2 = 7,$$

$$(16) \quad m_{max} = 5,$$

$$(17) \quad m_{max}$$

$$\begin{array}{l} \begin{array}{l} (A) \\ (A) \\ (C) \\ (A) \\ (C) \\ (A) \\ = \frac{h^2}{4m^2 \theta} - \frac{4^2}{4m^2 2\theta} \\ = \frac{h^2}{4m^2 \theta} - \frac{4^2}{4m^2 \theta} \\ = \frac{h^2}{4m^2 \theta} \\ = \frac{h^2}{4m^2 \theta} - \frac{4^2}{4m^2 \theta} \\ = \frac{h^2}{4m^2 \theta} - \frac{4^2}{4m^2 \theta} \\ = \frac{h^2}{4m^2 \theta} \\ = \frac{1}{4m^2 \theta} \\$$