

North Sydney Boys HIGH SCHOOL
 2016 HSC ASSESSMENTTASK 3 (TRIALHSC)

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Class Teacher:

(Please tick or highlight)
O MrBery
O MrIreland
O DrJomaa
O MsLee
O MrLin
O MsZazia nis

- Attempt all questions

Student Number:

(To be used by the exam markers only.)

Question No	$\mathbf{1 - 1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	$\overline{100}$

Section I

10 Marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10

1. What is the natural domain of the function $f(x)=\sqrt{x+1}-\sqrt{x+2}$
(A) $x \leq-2$
(B) $x \geq-1$
(C) $-1 \leq x \leq-2$
(D) $x \leq-2$ or $x \geq-1$
2. Given that $t=\tan \theta$, which of the following is the equivalent of $\sec 2 \theta$?
(A) $\frac{1+t^{2}}{1-t^{2}}$
(B) $\frac{1+4 t^{2}}{1-4 t^{2}}$
(C) $2\left(\frac{1+t^{2}}{1-t^{2}}\right)$
(D) $\frac{1+\left(\frac{t}{2}\right)^{2}}{1-\left(\frac{t}{2}\right)^{2}}$
3. Which of the following is the solution to $\frac{x+1}{x-2} \geq 1$?
(A) $x>2$
(B) $-1 \leq x<2$
(C) $x \leq-1$
(D) All real x but $x \neq 2$
4. Which of the following is equivalent to $\sqrt{3} \cos x-\sin x$?
(A) $2 \cos \left(x+\frac{\pi}{3}\right)$
(B) $2 \cos \left(x-\frac{\pi}{3}\right)$
(C) $2 \cos \left(x+\frac{\pi}{6}\right)$
(D) $2 \cos \left(x-\frac{\pi}{6}\right)$
5. What is the gradient of the tangent to the function $y=\sin ^{-1} 2 x$ at the point $\left(\frac{1}{4}, \frac{\pi}{6}\right)$?
(A) $\frac{\pi}{6}$
(B) $\frac{1}{\sqrt{3}}$
(C) 1
(D) $\frac{4}{\sqrt{3}}$
6. In the diagram below, $B C$ and $D C$ are tangents, then:

(A) $2 \alpha+\beta=180^{\circ}$
(B) $\alpha+2 \beta=180^{\circ}$
(C) $2 \alpha-\beta=90^{\circ}$
(D) $2 \beta-\alpha=90^{\circ}$
7. Let α, β and γ be the roots of $P(x)=x^{3}+2 x^{2}+3 x+4$.

What is the value of $\frac{2}{\alpha}+\frac{2}{\beta}+\frac{2}{\gamma}$
(A) $-\frac{3}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$
8.

Which of the following could be used to describe the above graph:
(A) $\sin \left(\sin ^{-1} x\right)$
(B) $\cos ^{-1}(\cos x)$
(C) $\tan \left(\tan ^{-1} x\right)$
(D) None of the above
9. What is the equation of the chord of contact to the parabola $x^{2}=8 y$ from the point $(3,-2)$?
(A) $x-8 y=0$
(B) $2 x-3 y+6=0$
(C) $x+2 y-5=0$
(D) $3 x-4 y+8=0$
10.

What is $\int \frac{d x}{\sqrt{x}+x}$?
(A) $\ln \left(x+\sqrt{x^{2}-1}\right)+C$
(B) $2 \ln (1+\sqrt{x})+C$
(C) $\ln \left(x+\sqrt{x^{2}+1}\right)+C$
(D) $2 \tan ^{-1}(\sqrt{x})+C$

Section II

60 Marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section

Answer each question on a NEW page. Extra writing booklets are available.

In Questions 11-14, your responses should include all relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW page.

(a) Given $A(2,1)$ and $B(7,3)$, find the coordinates of point C which divides the interval $A B$ externally in the ratio $2: 3$.
(b) Find the value(s) of k such that $(x-2)$ is a factor of the polynomial:
$P(x)=x^{3}-2 x^{2}+k x+k^{2}$
2
(c) The acute angle between the lines $y=2 x+2$ and $y=m x+1$ is 45°. Find the value(s) of m.
(d) Use the substitution $u=e^{x}$ to find:

$$
\int \frac{d x}{e^{x}+9 e^{-x}}
$$

(e) Evaluate, expressing your answer in simplest form:

$$
\int_{0}^{\frac{\pi}{6}} \sin (x) \cos ^{2}(x) d x
$$

(f) Find, showing full working:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{2-2 \cos 2 x}
$$

Question 12 (15 Marks) Start a NEW page.
(a) The polynomial $P(x)=4 x^{3}+2 x^{2}+1$ has one real root in the interval $-1<x<1$.
(i) Find any stationary points and determine their nature.
(ii) Find any points of inflexion
(iii) Hence sketch $y=P(x)$ for $-1<x<1$
(iv) Let $x=-\frac{1}{4}$ be a first approximation to the root. Apply Newton's method once to obtain another approximation for the root.
(v) Explain why the application of Newton's method in part (ii) was NOT effective in improving the approximation of the root.
(b) Prove by mathematical induction that for $n \geq 1$:
$\sum_{j=1}^{n} j \times 2^{j-1}=1+(n-1) 2^{n}$
(c)

AB is a common tangent in two circles which intersect at P and Q as illustrated in the diagram below.
$X P B$ and $Y P A$ are straight lines. $X A$ and $Y B$ intersect at T.

(i) Copy or trace this diagram into your writing book.
(ii) Explain why $\angle S B Y=\angle B P Y$
(iii) Prove that $A T=T B$

Question 13 (15 Marks) Start a NEW page.
(a) A young gentleman wishes to eat a meal of chicken tenders. His mother puts his chicken tenders in the oven and heats them to a temperature of $70^{\circ} \mathrm{C}$. They cool to $60^{\circ} \mathrm{C}$ in 5 minutes.

If the surrounding air temperature $S^{\circ} \mathrm{C}$ is $23^{\circ} \mathrm{C}$ and assuming Newton's Law of Cooling:

$$
\frac{d T}{d t}=-k(T-S)
$$

(i) Show that $T=23+A e^{-k t}$ is a solution to the differential equation, where A is a constant.
(ii) Find the temperature of the chicken tenders 15 minutes from the time they were taken out of the oven.
(b) A polynomial $P(x)$ has a remainder p when divided by $(x-p)$ and has a remainder q when divided by $(x-q)$, where p and q are real constants such that $p \neq q$.

Show that when $P(x)$ is divided by $(x-p)(x-q)$, the remainder is x.
(c) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line. Its velocity $v \mathrm{~m} / \mathrm{s}$ is given by $v=-\frac{1}{8} x^{3}$. The particle is initially 2 metres to the right of O.
(i) Show that the acceleration a, is given by: $a=\frac{3}{64} x^{5}$
(ii) Find an expression for x in terms of t.
(iii) Describe the limiting motion of the particle.
(d)

An acrobat is walking at a constant speed along the top of a 45 m high tightrope. An observer at point O sees her on a bearing of $335^{\circ} T$ from O with an angle of elevation of 28°.

After 1 minute the acrobat has a bearing of $025^{\circ} T$ from O and a new angle of elevation of 53°.

Find the distance the acrobat has travelled in that minute.

Question 14 (15 Marks) Start a NEW page.
(a)

The sketch above shows the parabola $f(x)=(x-2)^{2}$
(i) Explain why an inverse function, $f^{-1}(x)$ exists for $x \geq 2$.
(ii) State the domain and range of this inverse function.
(iii) For what value of x does $f(x)=f^{-1}(x)$?
(iv) If $k<2$, find, in simplest form, $f^{-1}(f(k))$
(b) From a point $A(p, q)$ perpendicular lines $A P$ and $A Q$ are drawn to meet the x and y axes at $P(p, 0)$ and $Q(0, q)$ respectively.
(i) Find the equation of $P Q$
(ii) Show that the condition for the line $P Q$ to be a tangent to the parabola

$$
x^{2}=4 a y \text { is } a q+p^{2}=0
$$

(iii) If the points $P(p, 0)$ and $Q(0, q)$ move on the x and y axes respectively such that $P Q$ is a tangent to the parabola $x^{2}=4 a y$ then the point $A(p, q)$ traces out a curve as P and Q move:

Find the equation of the locus of A and describe the path that it traces out,
providing all relevant details.
(c) A point A lies on the y-axis, 1 unit away from the origin in the positive direction. Another point P lies on the line $y=x \tan \theta$ where θ is a constant such that $0^{\circ}<\theta<90^{\circ}$. P travels along the line with some speed $S \mathrm{~ms}^{-1}$. Let k be the distance from P to the origin, and let $\angle O A P$ be α.

(i) Prove that $k=\frac{\sin \alpha}{\cos (\alpha-\theta)}$
(ii) Let $\dot{\alpha}=\frac{d \alpha}{d t}$ and $\ddot{\alpha}=\frac{d^{2} \alpha}{d t^{2}}$. Show that when $\alpha=2 \theta$,
(1) $\dot{\alpha}=S \cos \theta$
(2) $\ddot{\alpha}=-\dot{\alpha} \times S \times k$

1. B
2. A
3. A
4. C
5. D
6. A
7. A
8. C
9. D
10. B

	Question 11	
(a)	$\begin{aligned} C & =\left(\frac{(3) \times(2)+(-2) \times(7)}{(3)+(-2)}, \frac{(3) \times(1)+(-2) \times 3}{3+(-2)}\right) \\ & =(-8,-3) \end{aligned}$	$\checkmark \times$ coordinate \checkmark y coordinate
(b)	$\begin{aligned} 2^{3}-2 \times 2^{2}+2 k+k^{2} & =0 \\ k^{2}+2 k & =0 \\ k(k+2) & =0 \\ k & =0 \text { or } k=-2 \end{aligned}$	\checkmark creating quadratic \checkmark solving for k
(c)	$\tan 45^{\circ}=\left\|\frac{m-2}{1+2 m}\right\|$ case 1: $\begin{aligned} \frac{m-2}{1+2 m} & =1 \\ m-2 & =1+2 m \\ m & =-3 \end{aligned}$ case 2 : $\begin{aligned} \frac{m-2}{1+2 m} & =-1 \\ m-2 & =-1-2 m \\ 3 m & =1 \\ m & =\frac{1}{3} \end{aligned}$	\checkmark substituting into formula \checkmark solving for m
(d)	$\begin{aligned} & u=e^{x} \\ & \frac{d u}{d x}=e^{x} \\ & d u=e^{x} d x \\ & \int \frac{d x}{e^{x}+9 e^{-x}} \\ & =\int \frac{d x}{e^{x}+\frac{9}{e^{x}}} \\ & =\int \frac{e^{x} d x}{e^{2 x}+9} \\ & =\int \frac{d u}{u^{2}+9} \\ & =\frac{1}{3} \tan ^{-1} \frac{u}{3}+C \\ & =\frac{1}{3} \tan ^{-1} \frac{e^{x}}{3}+C \end{aligned}$	expression for $d u$ \checkmark integral in terms of u final answer in terms of x

Question 12

(a) (i)

$$
P^{\prime}(x)=12 x^{2}+4 x
$$

when $P^{\prime}(x)=0$
$12 x^{2}+4 x=0$
$4 x(3 x+1)=0$

$$
x=0 \text { or } x=-\frac{1}{3}
$$

Stationary points at $(0,1)$ and $\left(-\frac{1}{3}, \frac{29}{27}\right)$

$$
P^{\prime \prime}(x)=24 x+4
$$

$$
P^{\prime \prime}\left(-\frac{1}{3}\right)=-4
$$

$$
<0
$$

$\therefore\left(-\frac{1}{3}, \frac{29}{27}\right)$ is a maximum

$$
P^{\prime \prime}(0)=4
$$

$$
>0
$$

$\therefore(0,1)$ is a minimum
(ii)

$$
\begin{aligned}
P^{\prime \prime}(x) & =0 \\
24 x+4 & =0 \\
24 x & =-4 \\
x & =-\frac{1}{6} \\
y & =\frac{28}{27}
\end{aligned}
$$

\therefore possible point of inflexion at $\left(-\frac{1}{6}, \frac{28}{27}\right)$
-

x	-1	$-\frac{1}{6}$	0
$P^{\prime \prime}(x)$	-20	0	4

\therefore change in concavity so $\left(-\frac{1}{6}, \frac{28}{27}\right)$ is a point of inflexion
finding stationary points
testing stationary points
finding point of inflexion
showing change in concavity

(b) Base case $n=1$.

$$
\begin{aligned}
\mathrm{LHS} & =1 \times 2^{1-1} \\
& =1
\end{aligned}
$$

$$
\text { RHS }=1+(1-1) \times 2^{1}
$$

$$
=1
$$

LHS $=$ RHS
\therefore true for $n=1$
$\frac{\text { Assume true for } n=k}{k}$

$$
\text { assume } \sum_{j=1} j \times 2^{j-1}=1+(k-1) 2^{k}
$$

Prove true for $n=k+1$

Prove that: $\sum_{j=1}^{k+1} j \times 2^{j-1}=1+((k+1)-1) 2^{k+1}$

$$
\mathrm{LHS}=\sum_{j=1}^{k+1} j \times 2^{j-1}
$$

$$
=\sum_{j=1}^{k} j \times 2^{j-1}+(k+1) \times 2^{(k+1)-1}
$$

$$
=1+(k-1) 2^{k}+(k+1) \times 2^{k} \text { from assumption }
$$

$$
=1+2^{k}((k-1)+(k+1))
$$

$$
=1+2^{k}(2 k)
$$

$$
=1+2^{k+1}(k)
$$

$$
=1+((k+1)-1) 2^{k+1}
$$

$$
=\text { RHS }
$$

testing base case
substitution from assumption

LHS $=$ RHS

Therefore the proposition is true by the process of mathematical induction.
(c)

(ii) Angle between a chord and the tangent and the point of contact is equal to the angle subtended by the chord at the circumference in the alternate segment.
(iii)
$\angle T B A=\angle S B Y$ (vertically opposite angles)
$\angle S B Y=\angle B P Y$ (shown in part (i))
$\angle B P Y=\angle A P X$ (vertically opposite angles)
$\angle A P X=\angle R A X$ (alternate segment theorem)
$\angle R A X=\angle T A B$ (vertically opposite angles)
$\therefore \angle T A B=\angle T B A$
$\therefore \quad \mathrm{AT}=\mathrm{TB}$ (equal sides opposite equal angles in $\triangle A B T$)
\checkmark correct reason
$\checkmark 2$ relevant applications of vertically opposite angles
\checkmark second application of alternate segment theorem
\checkmark base angles of isosceles triangle equal

Question 13

(a) (i)

$$
\begin{aligned}
T & =23+A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k\left(23+A e^{-k t}-23\right) \\
& =-k(T-S) \quad\left(\text { as } T=23+A e^{-k t} \text { and } S=23\right)
\end{aligned}
$$

$\therefore \quad T=23+A e^{-k t}$ is a solution to the differential equation
(ii)

$$
\begin{aligned}
T & =23+A e^{-k t} \\
\text { when } t & =0 \\
70 & =23+A e^{-0 k} \\
70 & =23+A \\
\therefore \quad A & =47 \\
T & =23+47 e^{-k t}
\end{aligned}
$$

when $t=5, A=60$

$$
\begin{aligned}
60 & =23+47 e^{-5 k} \\
37 & =47 e^{-5 k} \\
-5 k & =\log _{e}\left(\frac{37}{47}\right) \\
\therefore \quad k & =-\frac{\log _{e}\left(\frac{37}{47}\right)}{5}
\end{aligned}
$$

when $t=15$

$$
\begin{aligned}
T & =23+47 e^{-15 k} \\
& =46^{\circ} \mathrm{C} \text { (to the nearest degree Celcius) }
\end{aligned}
$$

\checkmark differentiation and substitution

$$
P(x)=(x-p)(x-q) Q(x)+(a x+b)
$$

sub in $x=p$

$$
P(p)=0+a p+b
$$

$\therefore \quad p=a p+b$... (1)
sub in $x=q$

$$
\begin{aligned}
& P(q) & =0+a q+b \\
\therefore \quad & q & =a q+b \ldots
\end{aligned}
$$

(1) - (2)
$p-q=(a p+b)-(a q+b)$
$p-q=a p-a q$
$p-q=a(p-q)$
$\therefore \quad a=1$
sub back into (1)

$$
\begin{aligned}
& \quad p=1 p+b \\
& \therefore \quad b=0 \\
& \text { since } a=1 \text { and } b=0 \\
& a x+b=x
\end{aligned}
$$

using the remainder theorem to create at least one of the two equations
solving
simultaneous equations to find values for a and b
(c) (i)

$$
\left.\begin{array}{rl}
v & =-\frac{1}{8} x^{3} \\
v^{2} & =\frac{1}{64} x^{6} \\
\frac{1}{2} v^{2} & =\frac{1}{128} x^{6} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\frac{6}{128} x^{5} \\
& =\frac{3}{64} x^{5} \\
\therefore \quad & a
\end{array}\right)=\frac{3}{64} x^{5} .
$$

(ii)
$\frac{d x}{d t}=-\frac{1}{8} x^{3}$
$\frac{d t}{d x}=-8 x^{-3}$
$t=4 x^{-2}+C$
when $t=0, x=2$

$$
\begin{aligned}
0 & =4(2)^{-2}+C \\
C & =-\frac{4}{(2)^{2}} \\
& =-1
\end{aligned}
$$

$$
t=\frac{4}{x^{2}}-1
$$

$$
\frac{4}{x^{2}}=t+1
$$

$$
\frac{x^{2}}{4}=\frac{1}{t+1}
$$

$$
x^{2}=\frac{4}{t+1}
$$

$$
x=\sqrt{\frac{4}{t+1}} \quad \text { as } \mathrm{x}>0 \text { and the particle cannot }
$$

cross the origin as it will stop there)

$$
x=\frac{2}{\sqrt{(t+1)}}
$$

(iii) As time approaches infinity the particle will approach 0 from the positive direction. Velocity will be negative but approaching 0 . Acceleration will be positive but also approaching 0 . So the particle will be continually slowing down but never quite stopping and also never quite reaching the origin.
$\checkmark \quad$ correct application of formula
\checkmark correct differentiation to get to the answer
\checkmark expression for t
\checkmark evaluating C
expression for x
\checkmark correct description
(d)

Let A, B, C and D be as shown
in $\triangle A D O$:

$$
\begin{aligned}
\tan \left(62^{\circ}\right) & =\frac{O D}{\mathrm{AD}} \\
\therefore \quad \mathrm{OD} & =\mathrm{AD}\left(\tan \left(62^{\circ}\right)\right) \\
& =45 \tan \left(62^{\circ}\right)
\end{aligned}
$$

in $\triangle B C O$:

$$
\tan \left(37^{\circ}\right)=\frac{\mathrm{OC}}{\mathrm{BC}}
$$

$\therefore \quad \mathrm{OC}=\mathrm{BC}\left(\tan \left(37^{\circ}\right)\right)$

$$
=45 \tan \left(37^{\circ}\right)
$$

in $\triangle D O C$:

$$
\begin{aligned}
\mathrm{DC}^{2} & =O \mathrm{D}^{2}+O \mathrm{C}^{2}-2(O \mathrm{D})(O C) \cos (\angle D O C) \\
& =\left(45 \tan \left(62^{\circ}\right)\right)^{2}+\left(45 \tan \left(37^{\circ}\right)\right)^{2}-2 \times\left(45 \tan \left(62^{\circ}\right)\right) \times\left(45 \tan \left(37^{\circ}\right)\right) \times \cos \left(50^{\circ}\right)
\end{aligned}
$$

$\therefore \mathrm{AB}=68 \mathrm{~m}$ (to the nearest metre)
expression for OD and/or OC
\checkmark correct use of cosine rule in triangle DOC
correct answer

Question 14

(a)
(i) Because when $x \geq 2$ each y value on $f(x)$ has only one corresponding x value (i.e. it passes the horizontal line test for inverse functions).

Correct answer
(ii) $x \geq 0$ and $y \geq 2$
(iii)

Since $f(x)$ and $f^{-1}(x)$ meet on the line $y=x$

$$
\begin{aligned}
f(x) & =x \\
(x-2)^{2} & =x \\
x^{2}-4 x+4 & =x \\
x^{2}-5 x+4 & =0 \\
(x-1)(x-4) & =0
\end{aligned}
$$

since $x \geq 2$
$x=4$
(iv) $4-k$
(b) (i)

$$
\begin{aligned}
m & =-\frac{p}{q} \\
b & =q \\
\therefore y & =-\frac{q}{p} x+q
\end{aligned}
$$

(ii)

$$
\begin{align*}
x^{2} & =4 a y \\
y & =\frac{x^{2}}{4 a} \tag{2}
\end{align*}
$$

(1) $=(2$
$-\frac{q}{p} x+q=\frac{x^{2}}{4 a}$
$-4 a q x+4 a p q=p x^{2}$
$p x^{2}+4 a q x-4 a p q=0$
for tangent $\Delta=0$
$(4 a q)^{2}-4(p)(-4 a p q)=0$

$$
16 a^{2} q^{2}+16 a p^{2} q=0
$$

$\therefore \quad a q+p^{2}=0$
(iii)
$a q+p^{2}=0$

$$
p^{2}=-a q
$$

$$
x^{2}=-a y
$$

This is a concave down parabola with vertex at $(0,0)$ and a focal length of $\frac{a}{4}$

Solving
simultaneous equations

Discriminant $=$ 0
\checkmark Correct result

Equation

Description

(c)	$\text { (i) } \begin{aligned} \angle A O P & =90-\theta \text { (complementary adjacent angles) } \\ \angle A P O & =180-\angle P A O-\angle A O P \\ & =180-\alpha-(90-\theta) \\ & =90-a+\theta \\ & =90-(\alpha-\theta) \\ \frac{O P}{\sin \angle P A O} & =\frac{A O}{\sin \angle A P O} \\ \frac{k}{\sin \alpha} & =\frac{1}{\sin (90-(\alpha-\theta))} \\ \therefore \quad & k \end{aligned}$	\checkmark Correct solution
	(ii) - (1) $\begin{aligned} & \frac{d k}{d \alpha}=\frac{\cos \alpha(\cos (\alpha-\theta))-(-\sin (\alpha-\theta)(\sin \alpha))}{\cos ^{2}(\alpha-\theta)} \\ & \frac{d \alpha}{d k}=\frac{\cos ^{2}(\alpha-\theta)}{\cos \alpha(\cos (\alpha-\theta))-(-\sin (\alpha-\theta)(\sin \alpha))} \end{aligned}$	
	$\begin{aligned} & =\frac{(\cos (\alpha-\theta))^{2}}{\cos \alpha(\cos (\alpha-\theta)+\sin \alpha(\sin (\alpha-\theta))} \\ & =\frac{(\cos (\alpha-\theta))^{2}}{\cos (\alpha-(\alpha-\theta))} \\ & =\frac{(\cos (\alpha-\theta))^{2}}{\cos \theta} \end{aligned}$	
	$\begin{aligned} & \begin{aligned} & \frac{d \alpha}{d t}=\frac{d k}{d t} \times \frac{d \alpha}{d k} \\ &=S \times \frac{(\cos (\alpha-\theta))^{2}}{\cos \theta} \\ &=\frac{S(\cos (\alpha-\theta))^{2}}{\cos \theta} \\ & \text { when } \alpha=2 \theta \end{aligned} \\ & \frac{d \alpha}{d t}=\frac{S(\cos (2 \theta-\theta))^{2}}{\cos \theta} \end{aligned}$	\checkmark Correct application of chain rule
	$\begin{aligned} & =\frac{S \cos ^{2}(\theta)}{\cos \theta} \\ & =S \cos \theta \end{aligned}$	\checkmark Correct answer

(ii) - (2)

$$
\begin{aligned}
\dot{\alpha} & =\frac{S \cos (\alpha-\theta)^{2}}{\cos \theta} \quad \text { (from part 1) } \\
& =\frac{S}{\cos \theta} \times \cos (\alpha-\theta)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \dot{\alpha}}{d \alpha} & =\frac{S}{\cos \theta} \times 2(-\sin (\alpha-\theta)(\cos (\alpha-\theta) \\
& =\frac{-2 S(\sin (\alpha-\theta))(\cos (\alpha-\theta))}{\cos \theta} \\
\ddot{\alpha} & =\frac{d \dot{\alpha}}{d t} \\
& =\frac{d \alpha}{d t} \times \frac{d \dot{\alpha}}{d \alpha} \\
& =\dot{\alpha} \times \frac{-2 S(\sin (\alpha-\theta))(\cos (\alpha-\theta))}{\cos \theta} \\
& =-\alpha \dot{S} \times \frac{2(\sin (\alpha-\theta))(\cos (\alpha-\theta))}{\cos \theta} \\
& =-\dot{\alpha} S \times \frac{\sin (2(\alpha-\theta))}{\cos \theta}
\end{aligned}
$$

when $\alpha=2 \theta$

$$
\begin{aligned}
k & =\frac{\sin 2 \theta}{\cos (2 \theta-\theta)} \\
& =\frac{\sin 2 \theta}{\cos \theta} \\
\ddot{\alpha} & =-\dot{\alpha} S \times \frac{\sin (2(2 \theta-\theta))}{\cos \theta} \\
& =-\dot{\alpha} S \times \frac{\sin (2 \theta)}{\cos \theta} \\
& =-\dot{\alpha} \times S \times k
\end{aligned}
$$

\checkmark Correct application of chain rule

