2016
 TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working Time - 2 hours
- Write using black pen.
- Board approved calculators may be used.
- A reference sheet is provided.
- Show all necessary working in questions 11-14.

Total Marks - 70

Section I
Pages 3-6
10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II

60 marks

- Attempt Questions 11-14.
- Allow about 1 hour and 45 minutes for this section.

NAME: \qquad

Colour in the circle next to your teacher's name:Mr TMs NarayananMs EveringhamMrs JuhnMr MoonMs Viswanathan
O
\qquad

QUESTION	MARK
$1-10$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
TOTAL	$/ 70$

Section I

10 marks

Attempt Questions 1 - 10.
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1 - 10 .

1 Which of the following is equivalent to $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$?
(A) $\sin ^{-1}\left(\frac{x}{2}\right)+C$
(B) $\sin ^{-1}(2 x)+C$
(C) $\frac{1}{2} \sin ^{-1}\left(\frac{x}{2}\right)+C$
(D) $\quad \frac{1}{2} \sin ^{-1}(2 x)+C$

2 The point P divides the interval from $A(3,-1)$ to $B(9,2)$ externally in the ratio $5: 2$. What is the x coordinate of P ?
(A) $-7 \frac{4}{5}$
(B) $4 \frac{5}{7}$
(C) $7 \frac{2}{7}$
(D) 13

3 What is the value of $\lim _{x \rightarrow 0} \frac{x \cos 3 x}{\sin 2 x}$?
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 2

In the diagram below, $C D$ is a tangent to the circle at C and $A B$ is 5 cm long. What is the length of $B D$ in centimetres (marked with an x on the diagram)?

(A) 1
(B) $1 \frac{1}{5}$
(C) $2 \frac{1}{5}$
(D) 4

5 The velocity, v, of a particle in simple harmonic motion is given by $v^{2}=4+4 x-2 x^{2}$. What is the amplitude and centre of motion?
(A) amplitude is 3 and centre is $x=1$
(B) amplitude is 3 and centre is $x=-1$
(C) amplitude is $\sqrt{3}$ and centre is $x=1$
(D) amplitude is $\sqrt{3}$ and centre is $x=-1$

6 Which of the following pairs represents the domain and range of $y=\ln \left(1+\sqrt{4-x^{2}}\right)$?
(A) Domain: $\quad-2 \leq x \leq 2$

Range: $\quad y \geq 0$
(B) Domain: $\quad-\sqrt{2} \leq x \leq \sqrt{2}$

Range: $\quad y \geq \ln 3$
(C) Domain: $-2 \leq x \leq 2$

Range: $\quad 0 \leq y \leq \ln 3$
$\begin{array}{lll}\text { (D) } & \text { Domain: } & -\sqrt{2} \leq x \leq \sqrt{2} \\ \text { Range: } & \text { All real } y\end{array}$
$7 \quad$ Let α, β and γ be the roots of $P(x)=2 x^{3}-5 x^{2}+4 x-9$. What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$?
(A) $-\frac{5}{9}$
(B) $-\frac{4}{9}$
(C) $\frac{4}{9}$
(D) $\frac{5}{9}$
$8 \quad$ What is the derivative of $y=\cos ^{-1}\left(\frac{1}{x}\right)$?
(A) $\frac{-1}{\sqrt{x^{2}-1}}$
(B) $\frac{-1}{|x| \sqrt{x^{2}-1}}$
(C) $\frac{1}{\sqrt{x^{2}-1}}$
(D) $\frac{1}{|x| \sqrt{x^{2}-1}}$

9 Which of the following are true for all real values of x ?

$$
\begin{aligned}
& \text { I } \quad \sin \left(\frac{\pi}{2}+x\right)=\cos \left(\frac{\pi}{2}-x\right) \\
& \text { II } \quad \sin \left(x+\frac{3 \pi}{2}\right)=\cos (\pi-x) \\
& \text { III } \\
& \text { IV } \quad \sin x \cos x \leq \frac{1}{4} \\
& \text { IV } \quad 2+2 \sin x-\cos ^{2} x \geq 0
\end{aligned}
$$

(A) I and II
(B) III and IV
(C) II and IV
(D) I and III

10 Oil is spilled from an oil rig in the Gulf of Mexico and spreads in a circle with the circumference changing at a rate of $40 \mathrm{~m} / \mathrm{s}$. How fast is the area of the spill increasing when the circumference of the circle is $100 \pi \mathrm{~m}$?
(A) $1500 \mathrm{~m}^{2} / \mathrm{s}$
(B) $2000 \mathrm{~m}^{2} / \mathrm{s}$
(C) $2100 \mathrm{~m}^{2} / \mathrm{s}$
(D) $2500 \mathrm{~m}^{2} / \mathrm{s}$

Section II
60 marks
Attempt Questions 11 - 14.
Allow about 1 hour and 45 minutes for this section.
Answer each question in a NEW writing booklet. Extra pages are available.
In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Solve $2 x-1 \geq \frac{6}{x}$.
(b) (i) Show that $\sqrt{3} \sin x+\cos x$ can be written in the form $2 \cos \left(x-\frac{\pi}{3}\right)$.
(ii) Hence, or otherwise, find the value(s) of x for which $\sqrt{3} \sin x+\cos x$ is a minimum in the interval $0 \leq x \leq 2 \pi$.
(c) Use the substitution $u=\sqrt{x}$ to evaluate $\int_{1}^{9} \frac{1}{x+\sqrt{x}} d x$.
(d) The diagram below shows the shaded region bounded by the curve $y=2 \sin x$ and the y axis for $0 \leq y \leq \sqrt{2}$.

The region is rotated about the x axis to generate a solid of revolution.
(i) Show that the volume, V, of the solid is given by $V=\frac{\pi^{2}}{2}-\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x$.
(ii) Find the exact value of V.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Factorise $P(x)=2 x^{3}+3 x^{2}-1$, given that $x=-1$ is a zero. 2
(ii) Solve the equation $\sqrt{x^{2}+2 x+5}=x+\sqrt{2 x+3}$.
(b) Bobby has a can of cola at a temperature of $23^{\circ} \mathrm{C}$. He places the can in a fridge which has a temperature of $3^{\circ} \mathrm{C}$.

After t minutes, the temperature, $c\left(\right.$ in ${ }^{\circ} \mathrm{C}$), of the can of cola satisfies:

$$
\frac{d c}{d t}=-\frac{1}{25}(c-3)
$$

(i) Show that $c=3+a e^{-\frac{t}{25}}$ satisfies this equation, where a is a constant.
(ii) Bobby would like to drink the can of cola when its temperature is $5^{\circ} \mathrm{C}$.

If he put the can in the fridge at 8:50 a.m, when should he drink it?
Give your answer to the nearest minute.
(c) (i) Prove by mathematical induction that:

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2} \text { for integers } n \geq 1
$$

(ii) Deduce that $2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3}=2 n^{2}(n+1)^{2}$.
(iii) Hence, or otherwise, find a simplified expression for:

$$
1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}
$$

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The point $P\left(3 p^{2}, 6 p\right)$ lies on the parabola $y^{2}=12 x$ and the point S is the focus of this parabola. The point $Q\left(3 q^{2}, 6 q\right)$, where $p \neq q$, also lies on the parabola.

The tangents to the parabola at the points P and Q meet at the point R, as shown in the diagram below.

The equation of the tangent at point P is given by $y=\frac{1}{p} x+3 p$.
(Do NOT prove this).

(i) Prove that $S P=3\left(1+p^{2}\right)$.
(ii) Find the coordinates of R.
(iii) Hence, or otherwise, prove that $S R^{2}=S P \times S Q$.
(b) In the diagram, $E B$ is parallel to $D C$. Tangents from B meet the circle at A and C.

Let $\angle B C A=\alpha$.
Prove that:
(i) $\angle B C A=\angle B F A$.
(ii) $A B C F$ is a cyclic quadrilateral.
(c) Find a general solution of the following equation:

$$
\sin \left(2 x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}
$$

Question 13 (continued)
(d) A bowl is formed by rotating $y=x^{2 n}$ (where n is an integer $n \geq 1$) about the y axis as shown.

The bowl is initially filled with water. The bowl has a small hole in its bottom (initially plugged).

When the hole is unplugged, water flows at a rate described by:

$$
\frac{d V}{d t}=-\pi a^{2} \sqrt{2 g h}
$$

where a is the radius of the hole, h is the depth of water at any time and g is a constant.
(i) Show that the volume, V, of the water in the bowl is given by:

$$
V=\frac{n \pi}{n+1} \cdot h^{\frac{1+n}{n}}
$$

(ii) When the hole is unplugged, find the expression which describes the rate at which the water level is changing with respect to time.
(iii) If the water level falls at a constant rate with respect to time, find the value of n.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Consider a function $f(x)$. The domain of $y=f(x)$ is $a<x<b$ and the range is all real y. Assume that $f^{\prime}(x)$ exists for $a<x<b$ and is non-zero.

Let $g(x)$ be the inverse function of $f(x)$. Assume that $g^{\prime}(x)$ exists.
(i) Show that $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$.
(ii) Consider $f(x)=3+x^{2}+2 \tan \left(\frac{\pi x}{2}\right)$ for $-1<x<1$.

Explain why $g(3)=0$.
(iii) Show that the gradient of the tangent to the curve $y=g(x)$ at the point $(3,0)$ is $\frac{1}{\pi}$.
(b) A particle is executing simple harmonic motion between points A and B.
O is the centre of motion. Initially, the particle is at $C, 10$ units to the left of O.
At this time, it is moving to the right at $6 \mathrm{~m} / \mathrm{s}$ and its acceleration is $0.625 \mathrm{~m} / \mathrm{s}^{2}$.

The displacement of the particle after t seconds is given by $x=A \cos (n t+\alpha)$ for some constants A, n and α.
(i) Show that $n=\frac{1}{4}$.
(ii) Find the values of A and α.
(iii) $\quad M$ is the midpoint of $O B$. Find the time when the particle is first at M.
(c) $\quad \mathrm{Car} A$ and car B are travelling in the same direction along a straight, level road at constant speeds V_{A} and V_{B} respectively. Initially, $\operatorname{car} A$ is behind car B, but is travelling faster.

When car A is exactly D metres behind car B, car A applies its brakes, producing a constant acceleration $-k \mathrm{~m} / \mathrm{s}^{2}$, where $k>0$.
(i) Using calculus, show that the speed of car A after it has travelled D metres under braking is given by:

$$
v=\sqrt{V_{A}^{2}-2 k D}
$$

(ii) The distances travelled in t seconds by car A (after braking) and car B, are given by $x_{A}=V_{A} t-\frac{1}{2} k t^{2}$ and $x_{B}=V_{B} t$ respectively.
(Do NOT prove this).

Prove that the cars will collide if $V_{A}-V_{B} \geq \sqrt{2 k D}$.

End of paper

2016 Extension 1 Mathematics

Trial HSC Solutions

Multiple Choice

Q1	D
Q2	D
Q3	A
Q4	D
Q5	C
Q6	C
Q7	C
Q8	D
Q9	C
Q10	B

Question 1:

$$
\begin{aligned}
\int \frac{1}{\sqrt{1-4 x^{2}}} d x & =\int \frac{1}{\sqrt{4\left(\frac{1}{4}-x^{2}\right)}} d x \\
& =\frac{1}{2} \int \frac{1}{\sqrt{\frac{1}{4}-x^{2}}} d x \\
& =\frac{1}{2} \sin ^{-1}(2 x)+C
\end{aligned}
$$

Question 2:

$$
\begin{aligned}
x & =\frac{-5(9)+2(3)}{5-2} \\
& =\frac{-39}{3} \\
& =13
\end{aligned}
$$

Question 3:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \cos 3 x}{\sin 2 x} & =\lim _{x \rightarrow 0} \frac{x}{\sin 2 x} \times \lim _{x \rightarrow 0}(\cos 3 x) \\
& =\frac{1}{2} \lim _{x \rightarrow 0} \frac{2 x}{\sin 2 x} \times 1 \\
& =\frac{1}{2}
\end{aligned}
$$

Question 4:

$$
\begin{aligned}
x(x+5) & =36 \\
x^{2}+5 x-36 & =0 \\
(x+9)(x-4) & =0 \\
x & =4 \quad(\text { as } x>0) \\
& \therefore B D=4 \mathrm{~cm}
\end{aligned}
$$

Question 5:

$$
\begin{aligned}
v^{2} & =4+4 x-2 x^{2} \\
& =2\left(2+2 x-x^{2}\right) \\
& =2\left(3-[x-1]^{2}\right)
\end{aligned}
$$

This is in the form $v^{2}=n^{2}\left(a^{2}-[x-c]^{2}\right)$ where $a=\sqrt{3}$ and $c=1$.
OR at the ends of the motion, $v=0$:

$$
\begin{aligned}
4+4 x-2 x^{2} & =0 \\
x^{2}-2 x-2 & =0 \\
(x-1)^{2} & =3 \\
x & =1 \pm \sqrt{3}
\end{aligned}
$$

So centre of motion is at $x=1$ and amplitude is $\sqrt{3}$

Question 6:

$$
\begin{aligned}
& 1+\sqrt{4-x^{2}}>0 \\
& \text { So } \sqrt{4-x^{2}}>0 \\
& \sqrt{(2-x)(2+x)}>0
\end{aligned}
$$

$$
\text { As } 0 \leq \sqrt{4-x^{2}} \leq 2
$$

$$
1 \leq 1+\sqrt{4-x^{2}} \leq 3
$$

$$
\ln (1) \leq \ln \left(1+\sqrt{4-x^{2}}\right) \leq \ln (3)
$$

$$
0 \leq y \leq \ln (3)
$$

Domain: $\quad-2 \leq x \leq 2$
Range: $\quad 0 \leq y \leq \ln (3)$

Question 7:

$$
\begin{aligned}
& \alpha \beta+\beta \gamma+\alpha \gamma=2 \quad \text { and } \alpha \beta \gamma=\frac{9}{2} \\
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
&=\frac{2}{\left(\frac{9}{2}\right)} \\
&=\frac{4}{9}
\end{aligned}
$$

Question 8:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{1}{x^{2}} \times-\frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \\
& u=\frac{1}{x} \\
&=x^{-1} \\
& \frac{d u}{d x}=-\frac{1}{x^{2}} \\
& \frac{d y}{d x}=-\frac{1}{x^{2}} \times \frac{-1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \\
&=\frac{1}{x^{2}} \times \frac{\sqrt{x^{2}}}{\sqrt{x^{2}-1}} \\
&=\frac{1}{x^{2}} \times \frac{|x|}{\sqrt{x^{2}-1}} \\
&=\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

Question 9:

A. $\begin{aligned} \text { LHS } & =\sin \frac{\pi}{2} \cos x+\cos \frac{\pi}{2} \sin x \\ & =\cos x \\ \text { RHS } & =\cos \frac{\pi}{2} \cos x+\sin \frac{\pi}{2} \sin x \\ & =\sin x \\ & \neq \text { LHS } \end{aligned}$	B. $\begin{aligned} \text { LHS } & =\sin x \cos \frac{3 \pi}{2}+\cos x \sin \frac{3 \pi}{2} \\ & =-\cos x \\ \text { RHS } & =\cos \pi \cos x+\sin \pi \sin x \\ & =-\cos x \\ & =\text { LHS } \end{aligned}$
C. $\begin{aligned} \text { LHS } & =\sin x \cos x \\ & =\frac{1}{2} \sin 2 x \\ -\frac{1}{2} & \leq \frac{1}{2} \sin 2 x \leq \frac{1}{2} \\ -\frac{1}{2} & \leq \sin x \cos x \leq \frac{1}{2} \end{aligned}$	D. $\begin{aligned} L H S & =2+2 \sin x-\cos ^{2} x \\ & =2+2 \sin x-\left(1-\sin ^{2} x\right) \\ & =\sin ^{2} x+2 \sin x+1 \\ & =(\sin x+1)^{2} \\ & \geq 0 \end{aligned}$

Question 10:

$$
\begin{aligned}
\frac{d C}{d t} & =40 \mathrm{~m} / \mathrm{s} \\
C & =2 \pi r \\
\frac{d C}{d r} & =2 \pi
\end{aligned}
$$

$$
A=\pi r^{2}
$$

$$
\frac{d A}{d r}=2 \pi r
$$

When $C=100 \pi$:

$$
\begin{aligned}
2 \pi r & =100 \pi \\
r & =50
\end{aligned}
$$

$$
\begin{aligned}
\frac{d C}{d t} & =\frac{d C}{d r} \times \frac{d r}{d t} \\
40 & =2 \pi \times \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{20}{\pi} \mathrm{~m} / \mathrm{s} \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} \\
& =2 \pi r \times \frac{20}{\pi} \\
& =40 r \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

When $r=50$:

$$
\begin{aligned}
\frac{d A}{d t} & =40 \times 50 \\
& =2000 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Question 11:

(a) Solve $2 x-1 \geq \frac{6}{x}$.

$$
\begin{aligned}
& x^{2}(2 x-1) \geq 6 x \\
& 2 x^{3}-x^{2}-6 x \geq 0 \\
& x\left(2 x^{2}-x-6\right) \geq 0 \\
& x(2 x+3)(x-2) \geq 0 \\
&-\frac{3}{2} \leq x<0, x \geq 2
\end{aligned}
$$

(b) (i) Show that $\sqrt{3} \sin x+\cos x$ can be written in the form $2 \cos \left(x-\frac{\pi}{3}\right)$. 3

$$
\begin{aligned}
\sqrt{3} \sin x+\cos x & \equiv A \cos (x-\alpha) \\
& \equiv A \cos x \cos \alpha+A \sin x \sin \alpha
\end{aligned}
$$

Equating coefficients of $\cos x$ and $\sin x$:

$$
\begin{aligned}
& A \cos \alpha=1 \\
& A \sin \alpha=\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
A & =\sqrt{1^{2}+(\sqrt{3})^{2}} & \tan \alpha & =\sqrt{3} \\
& =2 & \alpha & =\frac{\pi}{3}
\end{aligned}
$$

$$
\therefore \sqrt{3} \sin x+\cos x \equiv 2 \cos \left(x-\frac{\pi}{3}\right)
$$

$$
\begin{gathered}
0 \leq x \leq 2 \pi \\
-\frac{\pi}{3} \leq x-\frac{\pi}{3} \leq \frac{5 \pi}{3}
\end{gathered}
$$

$$
\text { Min. value of } 2 \cos \left(x-\frac{\pi}{3}\right) \text { is }-2
$$

$$
2 \cos \left(x-\frac{\pi}{3}\right)=-2
$$

$$
\cos \left(x-\frac{\pi}{3}\right)=-1
$$

$$
x-\frac{\pi}{3}=\pi
$$

$$
x=\frac{4 \pi}{3}
$$

(c) Use the substitution $u=\sqrt{x}$ to evaluate $\int_{1}^{9} \frac{1}{x+\sqrt{x}} d x$.

When $x=1, u=1$
When $x=9, u=3$

$$
\begin{aligned}
& u=\sqrt{x} \\
& =x^{\frac{1}{2}} \\
& \text { Let } \quad \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}} \\
& \int_{1}^{9} \frac{1}{x+\sqrt{x}} d x=\int_{1}^{3} \frac{2 u}{u^{2}+u} d u \\
& =\int_{1}^{3} \frac{2}{u+1} d u \\
& =2[\ln (u+1)]_{1}^{3} \\
& =2(\ln 4-\ln 2) \\
& 2 \sqrt{x} d u=d x \\
& d x=2 u d u \\
& =2 \ln 2
\end{aligned}
$$

(d) The diagram below shows the shaded region bounded by the curve $y=2 \sin x$ and the y axis for $0 \leq y \leq \sqrt{2}$.

The region is rotated about the x axis to generate a solid of revolution.
(i) Show that the volume, V, of the solid is given by $V=\frac{\pi^{2}}{2}-\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x$.

$$
\begin{aligned}
V_{1} & =\pi \int_{0}^{\frac{\pi}{4}}(2 \sin x)^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x
\end{aligned}
$$

Shaded volume $=\pi \times(\sqrt{2})^{2} \times \frac{\pi}{4}-\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x$

$$
V=\frac{\pi^{2}}{2}-\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x
$$

(ii) Find the exact value of V.

$$
\begin{aligned}
V & =\frac{\pi^{2}}{2}-\pi \int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} x d x \\
& =\frac{\pi^{2}}{2}-\pi \int_{0}^{\frac{\pi}{4}}(2-2 \sin 2 x) d x \\
& =\frac{\pi^{2}}{2}-\pi[2 x+\cos 2 x]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi^{2}}{2}-\pi\left\{\left(\frac{\pi}{2}+\cos \frac{\pi}{2}\right)-(0+\cos 0)\right\} \\
& =\frac{\pi^{2}}{2}-\pi\left\{\frac{\pi}{2}-1\right\} \\
& =\frac{\pi^{2}}{2}-\frac{\pi^{2}}{2}+\pi \\
& =\pi \text { units }^{3}
\end{aligned}
$$

Using:

$$
\begin{aligned}
\cos 2 x & =1-2 \sin ^{2} x \\
2 \sin ^{2} x & =1-\cos 2 x \\
4 \sin ^{2} x & =2-2 \cos 2 x
\end{aligned}
$$

Question 12:

(a) (i) Factorise $P(x)=2 x^{3}+3 x^{2}-1$, given that $x=-1$ is a root.
$(x+1)$ is a factor of $P(x)$
$2 x^{3}+3 x^{2}-1=(x+1)\left(a x^{2}+b x+c\right)$
Equating coefficients:

$$
\begin{aligned}
a=2 & \text { and } c=-1 \\
b+a & =3 \\
b+2 & =3 \\
b & =1
\end{aligned}
$$

(ii) Solve the equation $\sqrt{x^{2}+2 x+5}=x+\sqrt{2 x+3}$.

$$
\sqrt{x^{2}+2 x+5}=x+\sqrt{2 x+3}
$$

Square both sides:

$$
\begin{aligned}
x^{2}+2 x+5 & =x^{2}+2 x \sqrt{2 x+3}+2 x+3 \\
2 & =2 x \sqrt{2 x+3} \\
x \sqrt{2 x+3} & =1 \\
x^{2}(2 x+3) & =1 \\
2 x^{3}+3 x-1 & =0 \\
(x+1)^{2}(2 x-1) & =0
\end{aligned}
$$

Test $x=\frac{1}{2}$:

$$
\begin{aligned}
\text { LHS } & =\sqrt{\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)+5} \\
& =\frac{5}{2} \\
\text { RHS } & =\frac{1}{2}+\sqrt{2\left(\frac{1}{2}\right)+3} \\
& =\frac{5}{2} \\
& =L H S
\end{aligned}
$$

Test $x=-1$:

$$
\begin{aligned}
L H S & =\sqrt{(-1)^{2}+2(-1)+5} \\
& =2 \\
\text { RHS } & =-1+\sqrt{2(-1)+3} \\
& =0 \\
& \neq L H S
\end{aligned}
$$

The only answer is $x=\frac{1}{2}$
(b) Bobby has a can of cola at a temperature of $23^{\circ} \mathrm{C}$. He places the can in a fridge which has a temperature of $3^{\circ} \mathrm{C}$.

After t minutes, the temperature, $c\left(\right.$ in ${ }^{\circ} \mathrm{C}$), of the can of cola satisfies:

$$
\frac{d c}{d t}=-\frac{1}{25}(c-3)
$$

(i) Show that $c=3+a e^{-\frac{t}{25}}$ satisfies this equation, where a is a constant.

$$
\begin{array}{rlrl}
\frac{d c}{d t}= & -\frac{1}{25}(c-3) \\
\text { LHS } & =\frac{d c}{d t} & R H S & =-\frac{1}{25}(c-3) \\
& =\frac{d}{d t}\left(3+a e^{-\frac{t}{25}}\right) & & =-\frac{1}{25}\left(3+a e^{-\frac{t}{25}}-3\right) \\
& =-\frac{a}{25} e^{-\frac{t}{25}} & & =-\frac{a}{25} e^{-\frac{t}{25}} \\
& & =\text { LHS }
\end{array}
$$

So $c=3+a e^{-\frac{t}{25}}$ satisfies this equation.
(ii) Bobby would like to drink the can of cola when its temperature is $5^{\circ} \mathrm{C}$. If he put the can in the fridge at $8: 50 \mathrm{a} . \mathrm{m}$, when should he drink it? Give your answer to the nearest minute.

When $t=0$:

$$
\begin{aligned}
23 & =3+a(1) \\
a & =20
\end{aligned}
$$

When $c=5$:

$$
\begin{aligned}
5 & =3+20 e^{-\frac{t}{25}} \\
2 & =20 e^{-\frac{t}{25}} \\
\frac{1}{10} & =e^{-\frac{t}{25}} \\
e^{\frac{t}{25}} & =10 \\
\frac{t}{25} & =\ln (10) \\
t & =25 \ln (10) \\
& =57.5646 \ldots \min
\end{aligned}
$$

Bobby should drink the cola at 9:48 a.m.
(c) (i) Prove by mathematical induction that $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ for integers $n \geq 1$

Step 1: Prove true for $n=1$

$$
\begin{aligned}
\text { LHS } & =1^{3} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\text { RHS } & =\frac{1}{4} \times 1^{2}(1+1)^{2} \\
& =\frac{1}{4} \times 4 \\
& =1 \\
& =\text { LHS }
\end{aligned}
$$

Proven true for $n=1$

Step 2: Assume true for $n=k$.

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\frac{1}{4} k^{2}(k+1)^{2}
$$

Step 3: Prove true for $n=k+1$

$$
\begin{aligned}
& \text { RTP } 1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& \text { LHS }=1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3} \\
& =\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \text { by assumption } \\
& =\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right] \\
& =\frac{1}{4}(k+1)^{2}\left[k^{2}+4 k+4\right] \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =\text { RHS }
\end{aligned}
$$

By principle of mathematical induction, proven true for $n \geq 1$
(ii) Deduce that $2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3}=2 n^{2}(n+1)^{2}$.

$$
\begin{aligned}
2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3} & =\sum_{r=1}^{n}(2 r)^{3} \\
& =8 \sum_{r=1}^{n} r^{3} \\
& =8 \times \frac{1}{4} n^{2}(n+1)^{2} \\
& =2 n^{2}(n+1)^{2}
\end{aligned}
$$

(iii) Hence, or otherwise, find a simplified expression for:

$$
1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}
$$

$$
\begin{aligned}
1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3} & =\left(1^{3}+2^{3}+3^{3}+\ldots+(2 n-1)^{3}+(2 n)^{3}\right)-\left(2^{3}+4^{3}+6^{3}+\ldots+(2 n-2)^{3}+(2 n)^{3}\right) \\
& =\sum_{r=1}^{2 n} r^{3}-\sum_{r=1}^{n}(2 r)^{3} \\
& =\frac{1}{4}(2 n)^{2}(2 n+1)^{2}-2 n^{2}(n+1)^{2} \\
& =n^{2}(2 n+1)^{2}-2 n^{2}(n+1)^{2} \\
& =n^{2}\left[(2 n+1)^{2}-2(n+1)^{2}\right] \\
& =n^{2}\left[4 n^{2}+4 n+1-2 n^{2}-4 n-2\right] \\
& =n^{2}\left(2 n^{2}-1\right)
\end{aligned}
$$

Question 13:

(a) The point $P\left(3 p^{2}, 6 p\right)$ lies on the parabola with $y^{2}=12 x$ and the point S is the focus of this parabola. The point $Q\left(3 q^{2}, 6 q\right)$, where $p \neq q$, also lies on the parabola.

The tangent to the parabola at the point P and the tangent to the parabola at Q meet at the point R, as shown in the diagram below.

The equation of the tangent at point P is given by $y=\frac{1}{p} x+3 p$.
(Do NOT prove this).
(i) Prove that $S P=3\left(1+p^{2}\right)$

For $y^{2}=12 x, S$ is $(3,0)$

$$
\begin{aligned}
S P & =\sqrt{\left(3 p^{2}-3\right)^{2}+(6 p)^{2}} \\
& =\sqrt{9 p^{4}-18 p^{2}+9+36 p^{2}} \\
& =\sqrt{9 p^{4}+18 p^{2}+9} \\
& =\sqrt{9\left(p^{4}+2 p^{2}+1\right)} \\
& =3 \sqrt{\left(p^{2}+1\right)^{2}} \\
& =3\left(1+p^{2}\right)
\end{aligned}
$$

Equation tangent at $P: \quad y=\frac{1}{p} x+3 p$
Equation tangent at $Q: \quad y=\frac{1}{q} x+3 q$
At R :

$$
\begin{aligned}
\frac{1}{p} x+3 p & =\frac{1}{q} x+3 q \\
\frac{1}{p} x-\frac{1}{q} x & =3 q-3 p \\
x\left(\frac{q-p}{p q}\right) & =3(q-p) \\
x & =3 p q
\end{aligned}
$$

When $x=3 p q$:

$$
\begin{aligned}
y & =\frac{1}{p}(3 p q)+3 p \\
& =3 q+3 p \\
& =3(q+p)
\end{aligned}
$$

Coordinates of R are $(3 p q, 3(p+q))$
(iii) Hence, or otherwise, prove that $S R^{2}=S P \times S Q$.

$$
\begin{aligned}
L H S & =S R^{2} \\
& =(3 p q-3)^{2}+(3[p+q])^{2} \\
& =9 p^{2} q^{2}-18 p q+9+9\left(p^{2}+2 p q+q^{2}\right) \\
& =9 p^{2} q^{2}-18 p q+9+9 p^{2}+18 p q+9 q^{2} \\
& =9\left(p^{2} q^{2}+p^{2}+q^{2}+1\right) \\
& =9\left(p^{2}\left[q^{2}+1\right]+1\left[q^{2}+1\right]\right) \\
& =9\left(p^{2}+1\right)\left(q^{2}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
R H S & =S P \times S Q \\
& =3\left(1+p^{2}\right) \times 3\left(1+q^{2}\right) \\
& =9\left(p^{2}+1\right)\left(q^{2}+1\right) \\
& =L H S \\
\therefore S R^{2} & =S P \times S Q
\end{aligned}
$$

(b) In the diagram, $E B$ is parallel to $D C$. Tangents from B meet the circle at A and C.

Let $\angle B C A=\alpha$
Prove that:
(i) $\angle B C A=\angle B F A$.
$\angle C D A=\angle B C A$ (angle between tangent and chord is equal to angle in the alternate segment)

$$
=\alpha
$$

$\angle B F A=\angle C D A($ corresponding angles; $E B \| D C)$

$$
=\alpha
$$

$$
\therefore \angle B C A=\angle B F A
$$

(ii) $A B C F$ is a cyclic quadrilateral.

$\angle B C A=\angle B F A($ proven $)$
$\therefore A B C F$ is a cyclic quadrilateral (angles in the same segment)
(c) Find a general solution of the following equation:

$$
\sin \left(2 x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
\sin \left(2 x+\frac{\pi}{4}\right) & =\frac{\sqrt{3}}{2} \\
\left(2 x+\frac{\pi}{4}\right) & =n \pi+(-1)^{n} \frac{\pi}{3} \\
2 x & =n \pi+(-1)^{n} \frac{\pi}{3}-\frac{\pi}{4} \\
x & =\frac{n \pi}{2}-\frac{\pi}{8}+(-1)^{n} \frac{\pi}{6} \\
& =\frac{4 n \pi-\pi}{8}+(-1)^{n} \frac{\pi}{6} \\
& =\frac{\pi(4 n-1)}{8}+(-1)^{n} \frac{\pi}{6}
\end{aligned}
$$

(d) A bowl is formed by rotating $y=x^{2 n}$ (where n is an integer $n \geq 1$) about the y axis as shown.

The bowl is initially filled with water to a depth h. The bowl has a small hole in its bottom (initially plugged).

When the hole is unplugged, water flows at a rate described by:

$$
\frac{d V}{d t}=-\pi a^{2} \sqrt{2 g h}
$$

where a is the radius of the hole and g is a constant.
(i) Show that the volume, V, of the water in the bowl is given by:

$$
V=\frac{n \pi}{n+1} \cdot h^{\frac{1+n}{n}}
$$

where h is the depth of the water in the bowl.

$$
\begin{aligned}
& y=x^{2 n} \\
&\left(x^{2 n}\right)^{\frac{1}{2 n}}=y^{\frac{1}{2 n}} \\
& x=y^{\frac{1}{2 n}} \\
& V=\pi \int_{0}^{h} x^{2} d y \\
&= \pi \int_{0}^{h}\left(y^{\frac{1}{2 n}}\right)^{2} d y \\
&= \pi \int_{0}^{h} y^{\frac{1}{n}} d y \\
&= \pi\left[\frac{y^{\frac{1}{n}+1}}{\frac{1}{n}+1}\right]_{0}^{h} \\
&= \pi\left\{\frac{h^{\frac{1}{n}+1}}{\frac{1}{n}+1}-0\right\} \\
&= \pi\left\{\frac{\frac{1+n}{n}}{\frac{1+n}{n}}\right\} \\
&= \frac{n \pi}{1+n} \cdot h^{\frac{1+n}{n}}
\end{aligned}
$$

(ii) When the hole is unplugged, find the expression which describes the rate at which the water level is changing with respect to time.

$$
\begin{aligned}
V & =\frac{n \pi}{n+1} \cdot h^{\frac{1+n}{n}} \\
& =\frac{n \pi}{n+1} \cdot h^{\frac{1}{n}+1} \\
\frac{d V}{d h} & =\frac{n \pi}{n+1} \cdot\left(\frac{1}{n}+1\right) h^{\frac{1}{n}} \\
& =\frac{n \pi}{n+1}\left(\frac{1+n}{n}\right) h^{\frac{1}{n}} \\
& =\pi h^{\frac{1}{n}}
\end{aligned}
$$

(iii) If the water level falls at a constant rate with respect to time, find the value of n.

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{-a^{2} \sqrt{2 g} h^{\frac{1}{2}}}{h^{\frac{1}{n}}} \\
& =-a^{2} \cdot \sqrt{2 g} \cdot h^{\frac{1}{2}-\frac{1}{n}}
\end{aligned}
$$

For $\frac{d h}{d t}$ to be a constant:

$$
\begin{aligned}
\frac{1}{2}-\frac{1}{n} & =0 \\
n & =2
\end{aligned}
$$

Question 14:

(a) Consider a function $f(x)$. The domain of $y=f(x)$ is $a<x<b$ and the range is all real y. Assume that $f^{\prime}(x)$ exists for $a<x<b$ and is non-zero.

Let $g(x)$ be the inverse function of $f(x)$. Assume that $g^{\prime}(x)$ exists.
(i) Show that $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$.

Using $f(g(x))=x$
Differentiate both sides:

$$
\begin{aligned}
f^{\prime}(g(x)) g^{\prime}(x) & =1 \\
g^{\prime}(x) & =\frac{1}{f^{\prime}(g(x))}
\end{aligned}
$$

(ii) Consider $f(x)=3+x^{2}+2 \tan \left(\frac{\pi x}{2}\right)$ for $-1<x<1$.

Explain why $g(3)=0$.

$$
\begin{aligned}
f(0) & =3+0^{2}+2 \tan 0 \\
& =3
\end{aligned}
$$

Since $g(x)$ is the inverse of $f(x), g(3)=0$
(iii) Show that the gradient of the tangent to the curve $y=g(x)$ at the point $(3,0)$ is $\frac{1}{\pi}$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{f^{\prime}(g(x))} \\
g^{\prime}(3) & =\frac{1}{f^{\prime}(g(3))} \\
& =\frac{1}{f^{\prime}(0)}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =3+x^{2}+2 \tan \left(\frac{\pi x}{2}\right) \\
f^{\prime}(x) & =2 x+2 \cdot \frac{\pi}{2} \sec ^{2}\left(\frac{\pi x}{2}\right) \\
& =2 x+\pi \sec ^{2}\left(\frac{\pi x}{2}\right) \\
f^{\prime}(0) & =2(0)+\pi \sec ^{2} 0 \\
& =\pi
\end{aligned}
$$

So $g^{\prime}(3)=\frac{1}{\pi}$
and the gradient of the tangent at $x=3$ is $\frac{1}{\pi}$.
(b) A particle is executing simple harmonic motion between points A and B.
O is the centre of motion. Initially, the particle is at $C, 10$ units to the left of O.
At this time, it is moving to the right at $6 \mathrm{~m} / \mathrm{s}$ and its acceleration is $0.625 \mathrm{~m} / \mathrm{s}^{2}$.

The displacement of the particle after t seconds is given by $x=A \cos (n t+\alpha)$ for some constants A, n and α.
(i) Show that $n=\frac{1}{4}$.

$$
\begin{aligned}
x & =A \cos (n t+\alpha) \\
\dot{x} & =-A n \sin (n t+\alpha) \\
\ddot{x} & =-A n^{2} \cos (n t+\alpha) \\
& =-n^{2} \times A \cos (n t+\alpha) \\
& =-n^{2} x
\end{aligned}
$$

When $x=-10, \ddot{x}=0.625$:

$$
\begin{aligned}
0.625 & =-n^{2} \times-10 \\
n^{2} & =0.0625 \\
n & =0.25
\end{aligned}
$$

$$
\begin{aligned}
& x=A \cos \left(\frac{1}{4} t+\alpha\right) \\
& \dot{x}=-\frac{A}{4} \sin \left(\frac{1}{4} t+\alpha\right)
\end{aligned}
$$

When $t=0$:

$$
\begin{aligned}
-10 & =A \cos (\alpha)---(1) \\
6 & =-\frac{A}{4} \sin (\alpha) \\
-24 & =A \sin (\alpha)---(2)
\end{aligned}
$$

To find A :

$$
\begin{aligned}
A & =\sqrt{(-10)^{2}+(-24)^{2}} \\
& =26
\end{aligned}
$$

As both $\sin \alpha$ and $\cos \alpha$ are negative, α is in $3^{\text {rd }}$ quadrant.

To find α (sub into 1):

$$
\begin{aligned}
-10 & =13 \cos \alpha \\
\cos \alpha & =-\frac{5}{13} \\
\alpha & \approx \pi+\cos ^{-1}\left(\frac{5}{13}\right) \\
& \approx 4.3176
\end{aligned}
$$

(iii) $\quad M$ is the midpoint of $O B$. Find the time when the particle is first at M.

As the amplitude is 26 , at $M, x=13$:

$$
\begin{aligned}
13 & =26 \cos \left(\frac{1}{4} t+4.3176 \ldots\right) \\
\frac{1}{2} & =\cos \left(\frac{1}{4} t+4.3176 \ldots\right) \\
\left(\frac{1}{4} t+4.3176 \ldots\right) & =\frac{\pi}{3}, \frac{5 \pi}{3}, \ldots \\
\left(\frac{1}{4} t+4.3176 \ldots\right) & =\frac{5 \pi}{3}(\text { as } t \geq 0) \\
t & \approx 3.67 \mathrm{~s}
\end{aligned}
$$

(c) Car A and car B are travelling in the same direction along a straight, level road at constant speeds V_{A} and V_{B} respectively. Initially, $\operatorname{car} A$ is behind car B, but is travelling faster.

When car A is exactly D metres behind car B, car A applies its brakes, producing a constant acceleration $-k \mathrm{~m} / \mathrm{s}^{2}$, where $k>0$.
(i) Using calculus, show that the speed of car A after it has travelled D metres under braking is given by:

$$
v=\sqrt{V_{A}^{2}-2 k D}
$$

$$
\begin{aligned}
\ddot{x} & =-k \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-k \\
\frac{1}{2} v^{2} & =-k x+C
\end{aligned}
$$

When $x=0, v=v_{A}$:

$$
\begin{aligned}
\frac{1}{2} v_{A}{ }^{2} & =C \\
\frac{1}{2} v^{2} & =-k x+\frac{1}{2} v_{A}{ }^{2} \\
v^{2} & =-2 k x+v_{A}{ }^{2}
\end{aligned}
$$

When $x=D$:

$$
\begin{aligned}
v^{2} & =-2 k D+v_{A}^{2} \\
v & =\sqrt{v_{A}^{2}-2 k D} \quad(\text { since speed cannot be negative })
\end{aligned}
$$

(ii) The distances travelled in t seconds by car A (after braking) and car B, are given by $x_{A}=V_{A} t-\frac{1}{2} k t^{2}$ and $x_{B}=V_{B} t$ respectively.
(Do NOT prove this).

Prove that the cars will collide if $V_{A}-V_{B} \geq \sqrt{2 k D}$.

When car A is exactly $D \mathrm{~m}$ behind B, upon braking:

$x_{B}=x_{A}-D:$

$$
\begin{aligned}
& V_{B} t=V_{A} t-\frac{1}{2} k t^{2}-D \\
& -\frac{1}{2} k t^{2}+\left(V_{A}-V_{B}\right) t-D=0 \\
& t=\frac{\left(V_{B}-V_{A}\right) \pm \sqrt{\left(V_{A}-V_{B}\right)^{2}-4 \cdot\left(-\frac{1}{2} k\right)(-D)}}{2\left(-\frac{1}{2} k\right)} \\
& =\frac{\left(V_{B}-V_{A}\right) \pm \sqrt{\left(V_{A}-V_{B}\right)^{2}-2 k D}}{-k}
\end{aligned}
$$

Real roots occur when $\Delta \geq 0$:

$$
\begin{aligned}
& \Delta=\left(V_{A}-V_{B}\right)^{2}-2 k D \\
& \begin{aligned}
\left(V_{A}-V_{B}\right)^{2}-2 k D & \geq 0 \\
\left(V_{A}-V_{B}\right)^{2} & \geq 2 k D \\
\left(V_{A}-V_{B}\right) & \geq \sqrt{2 k D} \quad \text { (as speed is positive) }
\end{aligned}
\end{aligned}
$$

