NORTH SYDNEY GIRLS HIGH SCHOOL

2016 TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Write using black pen.
- Board approved calculators may be used.
- A reference sheet is provided.
- Show all necessary working in questions 11–14.

Total Marks -70

Section I 10 Marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Pages 3 - 6

Pages 7–15

(Section II

60 marks

- Attempt Questions 11–14.
- Allow about 1 hour and 45 minutes for this section.

STUDENT NUMBER: _____

Colour in the circle next to your teacher's name:

NAME: _____

- O Mr T
- O Ms Narayanan
- O Ms Everingham
- O Mrs Juhn
- O Mr Moon
- O Ms Viswanathan

QUESTION	MARK
1 – 10	/10
11	/15
12	/15
13	/15
14	/15
TOTAL	/70

Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

- Which of the following is equivalent to $\int \frac{1}{\sqrt{1-4x^2}} dx$? 1
 - (A) $\sin^{-1}\left(\frac{x}{2}\right) + C$

$$(B) \qquad \sin^{-1}(2x) + C$$

(C)
$$\frac{1}{2}\sin^{-1}\left(\frac{x}{2}\right) + C$$

(D)
$$\frac{1}{2}\sin^{-1}(2x) + C$$

- The point P divides the interval from A(3,-1) to B(9,2) externally in the ratio 5 : 2. 2 What is the *x* coordinate of *P* ?
 - $-7\frac{4}{5}$ (A) $4\frac{5}{7}$ (B) $7\frac{2}{7}$ (C) (D) 13

3 What is the value of
$$\lim_{x\to 0} \frac{x\cos 3x}{\sin 2x}$$
?

(A)
$$\frac{1}{2}$$

(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 2

4 In the diagram below, *CD* is a tangent to the circle at *C* and *AB* is 5 cm long. What is the length of *BD* in centimetres (marked with an *x* on the diagram)?

- (A) 1
- (B) $1\frac{1}{5}$ (C) $2\frac{1}{5}$
- (D) 4

5 The velocity, v, of a particle in simple harmonic motion is given by $v^2 = 4 + 4x - 2x^2$. What is the amplitude and centre of motion?

- (A) amplitude is 3 and centre is x = 1
- (B) amplitude is 3 and centre is x = -1
- (C) amplitude is $\sqrt{3}$ and centre is x = 1
- (D) amplitude is $\sqrt{3}$ and centre is x = -1

6 Which of the following pairs represents the domain and range of $y = \ln(1 + \sqrt{4 - x^2})$?

- (A) $-2 \le x \le 2$ Domain: $y \ge 0$ Range: $-\sqrt{2} \le x \le \sqrt{2}$ Domain: **(B)** $y \ge \ln 3$ Range: (C) Domain: $-2 \le x \le 2$ $0 \le y \le \ln 3$ Range: $-\sqrt{2} \le x \le \sqrt{2}$ Domain: (D) All real y Range:
- 7 Let α , β and γ be the roots of $P(x) = 2x^3 5x^2 + 4x 9$. What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$?
 - (A) $-\frac{5}{9}$ (B) $-\frac{4}{9}$

(C)
$$\frac{4}{9}$$

(D)
$$\frac{5}{9}$$

8 What is the derivative of $y = \cos^{-1}\left(\frac{1}{x}\right)$?

(A)
$$\frac{-1}{\sqrt{x^2 - 1}}$$

(B)
$$\frac{-1}{|x|\sqrt{x^2-1}}$$

(C)
$$\frac{1}{\sqrt{x^2-1}}$$

(D)
$$\frac{1}{|x|\sqrt{x^2-1}}$$

9 Which of the following are true for all real values of x?

Ι	$\sin\left(\frac{\pi}{2}+x\right) = \cos\left(\frac{\pi}{2}-x\right)$
II	$\sin\left(x+\frac{3\pi}{2}\right) = \cos\left(\pi-x\right)$
III	$\sin x \cos x \le \frac{1}{4}$
IV	$2 + 2\sin x - \cos^2 x \ge 0$

- $(A) \quad I \qquad \text{and} \quad II$
- (B) III and IV(C) II and IV
- $(D) \quad I \qquad \text{and} \quad III$
- 10 Oil is spilled from an oil rig in the Gulf of Mexico and spreads in a circle with the circumference changing at a rate of 40 m/s. How fast is the area of the spill increasing when the circumference of the circle is 100π m?
 - (A) $1500 \text{ m}^2 / \text{s}$
 - (B) $2000 \text{ m}^2 / \text{s}$
 - (C) $2100 \text{ m}^2/\text{s}$
 - (D) $2500 \text{ m}^2/\text{s}$

Section II

60 marks Attempt Questions 11 – 14. Allow about 1 hour and 45 minutes for this section.

Answer each question in a NEW writing booklet. Extra pages are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Solve
$$2x-1 \ge \frac{6}{x}$$
.

(b) (i) Show that $\sqrt{3}\sin x + \cos x$ can be written in the form $2\cos\left(x - \frac{\pi}{3}\right)$. 3

(ii) Hence, or otherwise, find the value(s) of x for which $\sqrt{3} \sin x + \cos x$ 2 is a minimum in the interval $0 \le x \le 2\pi$.

3

3

(c) Use the substitution
$$u = \sqrt{x}$$
 to evaluate $\int_{1}^{9} \frac{1}{x + \sqrt{x}} dx$. 3

(d) The diagram below shows the shaded region bounded by the curve $y = 2 \sin x$ and the y axis for $0 \le y \le \sqrt{2}$.

The region is rotated about the *x* axis to generate a solid of revolution.

- (i) Show that the volume, V, of the solid is given by $V = \frac{\pi^2}{2} \pi \int_0^{\frac{\pi}{4}} 4\sin^2 x dx$. 1
- (ii) Find the exact value of V.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Factorise
$$P(x) = 2x^3 + 3x^2 - 1$$
, given that $x = -1$ is a zero. 2

(ii) Solve the equation
$$\sqrt{x^2 + 2x + 5} = x + \sqrt{2x + 3}$$
. 3

(b) Bobby has a can of cola at a temperature of 23°C. He places the can in a fridge which has a temperature of 3°C.

After t minutes, the temperature, c (in °C), of the can of cola satisfies:

$$\frac{dc}{dt} = -\frac{1}{25}(c-3)$$

(i) Show that
$$c = 3 + ae^{-\frac{t}{25}}$$
 satisfies this equation, where *a* is a constant. 1
(ii) Bobby would like to drink the can of cola when its temperature is 5°C. 3

If he put the can in the fridge at 8:50 a.m, when should he drink it? Give your answer to the nearest minute.

(c) (i) Prove by mathematical induction that:

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2} \text{ for integers } n \ge 1$$
(ii) Deduce that $2^{3} + 4^{3} + 6^{3} + \ldots + (2n)^{3} = 2n^{2} (n+1)^{2}$.
(iii) Hence, or otherwise, find a simplified expression for:
 $1^{3} + 3^{3} + 5^{3} + \ldots + (2n-1)^{3}$

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The point $P(3p^2, 6p)$ lies on the parabola $y^2 = 12x$ and the point S is the focus of this parabola. The point $Q(3q^2, 6q)$, where $p \neq q$, also lies on the parabola.

The tangents to the parabola at the points P and Q meet at the point R, as shown in the diagram below.

The equation of the tangent at point *P* is given by $y = \frac{1}{p}x + 3p$.

(i) Prove that
$$SP = 3(1 + p^2)$$
. 1

(ii) Find the coordinates of R. 2

(iii) Hence, or otherwise, prove that $SR^2 = SP \times SQ$. 2

Question 13 continues on page 11

Question 13 (continued)

(b) In the diagram, *EB* is parallel to *DC*. Tangents from *B* meet the circle at *A* and *C*.

Let $\angle BCA = \alpha$.

Prove that:

(i)
$$\angle BCA = \angle BFA$$
. 2

(ii) *ABCF* is a cyclic quadrilateral. 1

(c) Find a general solution of the following equation:

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

2

Question 13 continues on page 12

(d) A bowl is formed by rotating $y = x^{2n}$ (where *n* is an integer $n \ge 1$) about the *y* axis as shown.

The bowl is initially filled with water. The bowl has a small hole in its bottom (initially plugged).

When the hole is unplugged, water flows at a rate described by:

$$\frac{dV}{dt} = -\pi a^2 \sqrt{2gh}$$

where *a* is the radius of the hole, *h* is the depth of water at any time and *g* is a constant.

(i) Show that the volume, *V*, of the water in the bowl is given by: 2

$$V = \frac{n\pi}{n+1} \cdot h^{\frac{1+n}{n}}$$

- (ii) When the hole is unplugged, find the expression which describes the rate 2 at which the water level is changing with respect to time.
- (iii) If the water level falls at a constant rate with respect to time, find the 1 value of n.

End of Question 13

(a) Consider a function f(x). The domain of y = f(x) is a < x < b and the range is all real y. Assume that f'(x) exists for a < x < b and is non-zero.

Let g(x) be the inverse function of f(x). Assume that g'(x) exists.

(i) Show that
$$g'(x) = \frac{1}{f'(g(x))}$$
. 2

(ii) Consider
$$f(x) = 3 + x^2 + 2\tan\left(\frac{\pi x}{2}\right)$$
 for $-1 < x < 1$.
Explain why $g(3) = 0$.

(iii) Show that the gradient of the tangent to the curve
$$y = g(x)$$
 at the point (3, 0) is $\frac{1}{\pi}$.

(b) A particle is executing simple harmonic motion between points A and B.
 O is the centre of motion. Initially, the particle is at C, 10 units to the left of O.
 At this time, it is moving to the right at 6 m/s and its acceleration is 0.625 m/s².

$$A \xrightarrow{K \xrightarrow{10}} B$$

The displacement of the particle after *t* seconds is given by $x = A\cos(nt + \alpha)$ for some constants *A*, *n* and α .

(i) Show that
$$n = \frac{1}{4}$$
.

- (ii) Find the values of A and α . 3
- (iii) M is the midpoint of OB. Find the time when the particle is first at M. 2

Question 14 continues on page 15

Question 14 (continued)

(c) Car *A* and car *B* are travelling in the same direction along a straight, level road at constant speeds V_A and V_B respectively. Initially, car *A* is behind car *B*, but is travelling faster.

When car *A* is exactly *D* metres behind car *B*, car *A* applies its brakes, producing a constant acceleration $-k \text{ m/s}^2$, where k > 0.

(i) Using calculus, show that the speed of car A after it has travelled D metres2 under braking is given by:

$$v = \sqrt{V_A^2 - 2kD}$$

(ii) The distances travelled in t seconds by car A (after braking) and car B, 2 are given by $x_A = V_A t - \frac{1}{2}kt^2$ and $x_B = V_B t$ respectively. (Do NOT prove this).

Prove that the cars will collide if $V_A - V_B \ge \sqrt{2kD}$.

End of paper

2016 Extension 1 Mathematics

Trial HSC Solutions

Multiple Choice

Q1	D
Q2	D
Q3	А
Q4	D
Q5	С
Q6	С
Q7	С
Q8	D
Q9	С
Q10	В

Question 1:

$$\int \frac{1}{\sqrt{1-4x^2}} dx = \int \frac{1}{\sqrt{4\left(\frac{1}{4}-x^2\right)}} dx$$
$$= \frac{1}{2} \int \frac{1}{\sqrt{\frac{1}{4}-x^2}} dx$$
$$= \frac{1}{2} \sin^{-1}(2x) + C$$

Question 2:

$$x = \frac{-5(9) + 2(3)}{5 - 2}$$
$$= \frac{-39}{3}$$
$$= 13$$

Question 3:

$$\lim_{x \to 0} \frac{x \cos 3x}{\sin 2x} = \lim_{x \to 0} \frac{x}{\sin 2x} \times \lim_{x \to 0} (\cos 3x)$$
$$= \frac{1}{2} \lim_{x \to 0} \frac{2x}{\sin 2x} \times 1$$
$$= \frac{1}{2}$$

Question 4:

$$x(x+5) = 36$$

$$x^{2} + 5x - 36 = 0$$

$$(x+9)(x-4) = 0$$

$$x = 4 \quad (as \ x > 0)$$

$$\therefore BD = 4 \text{ cm}$$

Question 5:

$$v^{2} = 4 + 4x - 2x^{2}$$

= 2(2+2x-x^{2})
= 2(3-[x-1]^{2})

This is in the form $v^2 = n^2 \left(a^2 - \left[x - c \right]^2 \right)$ where $a = \sqrt{3}$ and c = 1.

OR at the ends of the motion, v = 0:

$$4+4x-2x^{2} = 0$$
$$x^{2}-2x-2 = 0$$
$$(x-1)^{2} = 3$$
$$x = 1 \pm \sqrt{3}$$

So centre of motion is at x = 1 and amplitude is $\sqrt{3}$

Question 6:

$$1 + \sqrt{4 - x^{2}} > 0$$
So $\sqrt{4 - x^{2}} > 0$
As $0 \le \sqrt{4 - x^{2}} \le 2$
 $1 \le 1 + \sqrt{4 - x^{2}} \le 3$
 $\sqrt{(2 - x)(2 + x)} > 0$
 $\ln(1) \le \ln(1 + \sqrt{4 - x^{2}}) \le \ln(3)$
 $0 \le y \le \ln(3)$

Domain: $-2 \le x \le 2$	Range:	$0 \le y \le \ln(3)$
--------------------------	--------	----------------------

Question 7:

$$\alpha\beta + \beta\gamma + \alpha\gamma = 2 \text{ and } \alpha\beta\gamma = \frac{9}{2}$$
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma}$$
$$= \frac{2}{\left(\frac{9}{2}\right)}$$
$$= \frac{4}{9}$$

Question 8:

$$\frac{dy}{dx} = -\frac{1}{x^2} \times -\frac{1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}}$$
$$u = \frac{1}{x}$$
$$= x^{-1}$$
$$\frac{du}{dx} = -\frac{1}{x^2}$$

<i>y</i> = 0	$\cos^{-1}u$
dy_	1
du –	$-\frac{1}{\sqrt{1-u^2}}$

$$\frac{dy}{dx} = -\frac{1}{x^2} \times \frac{-1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}}$$
$$= \frac{1}{x^2} \times \frac{\sqrt{x^2}}{\sqrt{x^2 - 1}}$$
$$= \frac{1}{x^2} \times \frac{|x|}{\sqrt{x^2 - 1}}$$
$$= \frac{1}{|x|} \sqrt{x^2 - 1}$$

Question 9:

Question 10:

$\frac{dC}{dt} = 40 \text{ m/s}$ $C = 2\pi r$ $\frac{dC}{dr} = 2\pi$	$\frac{dC}{dt} = \frac{dC}{dr} \times \frac{dr}{dt}$ $40 = 2\pi \times \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{20}{\pi} \text{ m/s}$
$A = \pi r^2$ $\frac{dA}{dr} = 2\pi r$	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ $= 2\pi r \times \frac{20}{\pi}$ $= 40r \text{ m}^2/\text{s}$
When $C = 100\pi$: $2\pi r = 100\pi$ r = 50	When $r = 50$: $\frac{dA}{dt} = 40 \times 50$ $= 2000 \text{ m}^2 / \text{ s}$

(a) Solve $2x-1 \ge \frac{6}{x}$.

$$x^{2}(2x-1) \ge 6x$$

$$2x^{3} - x^{2} - 6x \ge 0$$

$$x(2x^{2} - x - 6) \ge 0$$

$$x(2x+3)(x-2) \ge 0$$

$$-\frac{3}{2} \le x < 0, \ x \ge 2$$

(b)	(i)	Show that $\sqrt{3}\sin x + \cos x$ can be written in the form $2\cos x$	$\left(x-\frac{\pi}{3}\right)$).	3
-----	-----	--	--------------------------------	----	---

 $\sqrt{3}\sin x + \cos x \equiv A\cos(x - \alpha)$ $\equiv A\cos x \cos \alpha + A\sin x \sin \alpha$

Equating coefficients of cos *x* and sin *x*:

 $A \cos \alpha = 1$ $A \sin \alpha = \sqrt{3}$ $A = \sqrt{1^2 + (\sqrt{3})^2}$ = 2 $\tan \alpha = \sqrt{3}$ $\alpha = \frac{\pi}{3}$

 $\therefore \sqrt{3}\sin x + \cos x \equiv 2\cos\left(x - \frac{\pi}{3}\right)$

$$0 \le x \le 2\pi$$

$$-\frac{\pi}{3} \le x - \frac{\pi}{3} \le \frac{5\pi}{3}$$

Min. value of $2\cos\left(x - \frac{\pi}{3}\right)$ is -2 .

$$2\cos\left(x - \frac{\pi}{3}\right) = -2$$

$$\cos\left(x - \frac{\pi}{3}\right) = -1$$

$$x - \frac{\pi}{3} = \pi$$

$$x = \frac{4\pi}{3}$$

(c)	Use the substitution $u = \sqrt{x}$ to evaluate	$\int_{1}^{9} \frac{1}{x + \sqrt{x}} dx .$	3
-----	---	---	---

dx = 2udu

When
$$x = 1$$
, $u = 1$

When x = 9, u = 3

(d) The diagram below shows the shaded region bounded by the curve $y = 2 \sin x$ and the y axis for $0 \le y \le \sqrt{2}$.

The region is rotated about the *x* axis to generate a solid of revolution.

(i) Show that the volume, V, of the solid is given by $V = \frac{\pi^2}{2} - \pi \int_0^{\frac{\pi}{4}} 4\sin^2 x dx$. 1

$$V_{1} = \pi \int_{0}^{\frac{\pi}{4}} (2\sin x)^{2} dx \qquad \text{Shaded volume} = \pi \times (\sqrt{2})^{2} \times \frac{\pi}{4} - \pi \int_{0}^{\frac{\pi}{4}} 4\sin^{2} x dx$$
$$= \pi \int_{0}^{\frac{\pi}{4}} 4\sin^{2} x dx \qquad V = \frac{\pi^{2}}{2} - \pi \int_{0}^{\frac{\pi}{4}} 4\sin^{2} x dx$$

(ii) Find the exact value of V.

$$V = \frac{\pi^2}{2} - \pi \int_0^{\frac{\pi}{4}} 4\sin^2 x dx$$

= $\frac{\pi^2}{2} - \pi \int_0^{\frac{\pi}{4}} (2 - 2\sin 2x) dx$
= $\frac{\pi^2}{2} - \pi [2x + \cos 2x]_0^{\frac{\pi}{4}}$
= $\frac{\pi^2}{2} - \pi \left\{ \left(\frac{\pi}{2} + \cos \frac{\pi}{2} \right) - (0 + \cos 0) \right\}$
= $\frac{\pi^2}{2} - \pi \left\{ \frac{\pi}{2} - 1 \right\}$
= $\frac{\pi^2}{2} - \frac{\pi^2}{2} + \pi$
= π units³

Using: $\cos 2x = 1 - 2\sin^{2} x$ $2\sin^{2} x = 1 - \cos 2x$ $4\sin^{2} x = 2 - 2\cos 2x$

Question 12:

(a) (i) Factorise $P(x) = 2x^3 + 3x^2 - 1$, given that $x = -1$ is a root.	
---	--

$$(x+1) \text{ is a factor of } P(x) 2x^{3}+3x^{2}-1 = (x+1)(ax^{2}+bx+c) Equating coefficients:a = 2 and c = -1b+a = 3b+2 = 3b = 1
$$2x^{3}+3x^{2}-1 = (x+1)(2x^{2}+x-1) = (x+1)(2x-1)(x+1) = (x+1)^{2}(2x-1) b = (x+1)^{2}(2x-1)$$$$

(ii) Solve the equation
$$\sqrt{x^2 + 2x + 5} = x + \sqrt{2x + 3}$$

$$\sqrt{x^2 + 2x + 5} = x + \sqrt{2x + 3}$$

Square both sides:

$$x^{2} + 2x + 5 = x^{2} + 2x\sqrt{2x+3} + 2xx + 3$$

$$2 = 2x\sqrt{2x+3}$$

$$x\sqrt{2x+3} = 1$$

$$x^{2} (2x+3) = 1$$

$$2x^{3} + 3x - 1 = 0$$

$$(x+1)^{2} (2x-1) = 0$$

Test $x = \frac{1}{2}$:

$$LHS = \sqrt{\left(\frac{1}{2}\right)^{2} + 2\left(\frac{1}{2}\right) + 5}$$

$$= \frac{5}{2}$$

$$RHS = \frac{1}{2} + \sqrt{2\left(\frac{1}{2}\right) + 3}$$

$$= \frac{5}{2}$$

$$RHS = \frac{1}{2} + \sqrt{2\left(\frac{1}{2}\right) + 3}$$

$$= \frac{5}{2}$$

The exact set of the set of t

Test
$$x = -1$$
:

$$LHS = \sqrt{(-1)^2 + 2(-1) + 5}$$

$$= 2$$

$$RHS = -1 + \sqrt{2(-1) + 3}$$

$$= 0$$

$$\neq LHS$$

The only answer is $x = \frac{1}{2}$

3

(b) Bobby has a can of cola at a temperature of 23°C. He places the can in a fridge which has a temperature of 3°C.

After t minutes, the temperature, c (in °C), of the can of cola satisfies:

$$\frac{dc}{dt} = -\frac{1}{25}(c-3)$$

(i) Show that $c = 3 + ae^{-\frac{t}{25}}$ satisfies this equation, where *a* is a constant.

1

3

$$\frac{dc}{dt} = -\frac{1}{25}(c-3)$$

$$LHS = \frac{dc}{dt}$$

$$= \frac{d}{dt} \left(3 + ae^{-\frac{t}{25}}\right)$$

$$= -\frac{a}{25}e^{-\frac{t}{25}}$$

$$RHS = -\frac{1}{25}(c-3)$$

$$= -\frac{1}{25}\left(3 + ae^{-\frac{t}{25}} - 3\right)$$

$$= -\frac{a}{25}e^{-\frac{t}{25}}$$

$$= LHS$$
So $c = 3 + ae^{-\frac{t}{25}}$ satisfies this equation.

(ii) Bobby would like to drink the can of cola when its temperature is 5°C.
If he put the can in the fridge at 8:50 a.m, when should he drink it?
Give your answer to the nearest minute.

When t = 0:

23 = 3 + a(1)a = 20

When
$$c = 5$$
:
 $5 = 3 + 20e^{-\frac{t}{25}}$
 $2 = 20e^{-\frac{t}{25}}$
 $\frac{1}{10} = e^{-\frac{t}{25}}$
 $e^{\frac{t}{25}} = 10$
 $\frac{t}{25} = \ln(10)$
 $t = 25\ln(10)$
 $= 57.5646...min$

Bobby should drink the cola at 9:48 a.m.

Step 1: Prove true for n = 1

$$LHS = 1^{3}$$

$$= 1$$

$$RHS = \frac{1}{4} \times 1^{2} (1+1)^{2}$$

$$= \frac{1}{4} \times 4$$

$$= 1$$

$$= LHS$$
Proven true for $n = 1$

Step 2: Assume true for n = k.

$$1^{3} + 2^{3} + 3^{3} + \ldots + k^{3} = \frac{1}{4}k^{2}(k+1)^{2}$$

Step 3: Prove true for n = k + 1

RTP
$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{1}{4}(k+1)^{2}(k+2)^{2}$$

LHS = $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$
= $\frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3}$ by assumption
= $\frac{1}{4}(k+1)^{2}[k^{2} + 4(k+1)]$
= $\frac{1}{4}(k+1)^{2}[k^{2} + 4k + 4]$
= $\frac{1}{4}(k+1)^{2}(k+2)^{2}$
= RHS

By principle of mathematical induction, proven true for $n \ge 1$

(ii) Deduce that $2^3 + 4^3 + 6^3 + \ldots + (2n)^3 = 2n^2(n+1)^2$.

$$2^{3} + 4^{3} + 6^{3} + \dots + (2n)^{3} = \sum_{r=1}^{n} (2r)^{3}$$
$$= 8 \sum_{r=1}^{n} r^{3}$$
$$= 8 \times \frac{1}{4} n^{2} (n+1)^{2}$$
$$= 2n^{2} (n+1)^{2}$$

 $1^3 + 3^3 + 5^3 + \ldots + (2n-1)^3$

$$1^{3} + 3^{3} + 5^{3} + \dots + (2n-1)^{3} = (1^{3} + 2^{3} + 3^{3} + \dots + (2n-1)^{3} + (2n)^{3}) - (2^{3} + 4^{3} + 6^{3} + \dots + (2n-2)^{3} + (2n)^{3})$$

$$= \sum_{r=1}^{2n} r^{3} - \sum_{r=1}^{n} (2r)^{3}$$

$$= \frac{1}{4} (2n)^{2} (2n+1)^{2} - 2n^{2} (n+1)^{2}$$

$$= n^{2} (2n+1)^{2} - 2n^{2} (n+1)^{2}$$

$$= n^{2} [(2n+1)^{2} - 2(n+1)^{2}]$$

$$= n^{2} [4n^{2} + 4n + 1 - 2n^{2} - 4n - 2]$$

$$= n^{2} (2n^{2} - 1)$$

Question 13:

(a) The point $P(3p^2, 6p)$ lies on the parabola with $y^2 = 12x$ and the point S is the focus of this parabola. The point $Q(3q^2, 6q)$, where $p \neq q$, also lies on the parabola. The tangent to the parabola at the point P and the tangent to the parabola at Q meet at the point R, as shown in the diagram below. The equation of the tangent at point P is given by $y = \frac{1}{p}x + 3p$.

(Do NOT prove this).

(i) Prove that
$$SP = 3(1 + p^2)$$

For
$$y^2 = 12x$$
, *S* is (3, 0)

$$SP = \sqrt{(3p^{2} - 3)^{2} + (6p)^{2}}$$
$$= \sqrt{9p^{4} - 18p^{2} + 9 + 36p^{2}}$$
$$= \sqrt{9p^{4} + 18p^{2} + 9}$$
$$= \sqrt{9(p^{4} + 2p^{2} + 1)}$$
$$= 3\sqrt{(p^{2} + 1)^{2}}$$
$$= 3(1 + p^{2})$$

Equation tangent at *P*:
$$y = \frac{1}{p}x + 3p$$

Equation tangent at *Q*: $y = \frac{1}{q}x + 3q$

At *R*:

$$\frac{1}{p}x+3p = \frac{1}{q}x+3q$$
$$\frac{1}{p}x-\frac{1}{q}x = 3q-3p$$
$$x\left(\frac{q-p}{pq}\right) = 3(q-p)$$
$$x = 3pq$$

When x = 3pq:

$$y = \frac{1}{p}(3pq) + 3p$$
$$= 3q + 3p$$
$$= 3(q + p)$$

Coordinates of *R* are (3pq, 3(p+q))

(iii) Hence, or otherwise, prove that
$$SR^2 = SP \times SQ$$
.

$$LHS = SR^{2}$$

$$= (3pq-3)^{2} + (3[p+q])^{2}$$

$$= 9p^{2}q^{2} - 18pq + 9 + 9(p^{2} + 2pq + q^{2})$$

$$= 9p^{2}q^{2} - 18pq + 9 + 9p^{2} + 18pq + 9q^{2}$$

$$= 9(p^{2}q^{2} + p^{2} + q^{2} + 1)$$

$$= 9(p^{2}[q^{2} + 1] + 1[q^{2} + 1])$$

$$= 9(p^{2} + 1)(q^{2} + 1)$$

$$RHS = SP \times SQ$$

$$= 3(1 + p^{2}) \times 3(1 + q^{2})$$

$$= 9(p^{2} + 1)(q^{2} + 1)$$

$$= LHS$$

$$\therefore SR^{2} = SP \times SQ$$

(b) In the diagram, *EB* is parallel to *DC*. Tangents from *B* meet the circle at *A* and *C*.

Let $\angle BCA = \alpha$

Prove that:

(i) $\angle BCA = \angle BFA$.

 $\angle CDA = \angle BCA \text{ (angle between tangent and chord is equal to angle in the alternate segment)}$ $= \alpha$ $\angle BFA = \angle CDA \text{ (corresponding angles; } EB \parallel DC\text{)}$ $= \alpha$ $\therefore \angle BCA = \angle BFA$

(ii) *ABCF* is a cyclic quadrilateral.

 $\angle BCA = \angle BFA$ (proven)

: *ABCF* is a cyclic quadrilateral (angles in the same segment)

(c) Find a general solution of the following equation:

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\left(2x + \frac{\pi}{4}\right) = n\pi + (-1)^n \frac{\pi}{3}$$

$$2x = n\pi + (-1)^n \frac{\pi}{3} - \frac{\pi}{4}$$

$$x = \frac{n\pi}{2} - \frac{\pi}{8} + (-1)^n \frac{\pi}{6}$$

$$= \frac{4n\pi - \pi}{8} + (-1)^n \frac{\pi}{6}$$

$$= \frac{\pi (4n - 1)}{8} + (-1)^n \frac{\pi}{6}$$

2

1

(d) A bowl is formed by rotating $y = x^{2n}$ (where *n* is an integer $n \ge 1$) about the *y* axis as shown.

The bowl is initially filled with water to a depth h. The bowl has a small hole in its bottom (initially plugged).

When the hole is unplugged, water flows at a rate described by:

$$\frac{dV}{dt} = -\pi a^2 \sqrt{2gh}$$

where a is the radius of the hole and g is a constant.

(i) Show that the volume, *V*, of the water in the bowl is given by:

$$V = \frac{n\pi}{n+1} \cdot h^{\frac{1+n}{n}}$$

where h is the depth of the water in the bowl.

$$y = x^{2n}$$
$$(x^{2n})^{\frac{1}{2n}} = y^{\frac{1}{2n}}$$
$$x = y^{\frac{1}{2n}}$$
$$V = \pi \int_0^h x^2 dy$$
$$= \pi \int_0^h y^{\frac{1}{2n}} dy$$
$$= \pi \int_0^h y^{\frac{1}{n}} dy$$
$$= \pi \left[\frac{\frac{1}{2^{n+1}}}{\frac{1}{n} + 1} \right]_0^h$$
$$= \pi \left\{ \frac{h^{\frac{1}{n}+1}}{\frac{1}{n} + 1} - 0 \right\}$$
$$= \pi \left\{ \frac{h^{\frac{1}{n}+1}}{\frac{1}{n} + 1} \right\}$$
$$= \frac{n\pi}{1+n} \cdot h^{\frac{1+n}{n}}$$

$$V = \frac{n\pi}{n+1} \cdot h^{\frac{1+n}{n}}$$
$$= \frac{n\pi}{n+1} \cdot h^{\frac{1}{n}+1}$$
$$\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dh}{dt}$$
$$-\pi a^2 \sqrt{2gh} = \pi h^{\frac{1}{n}} \times \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{-a^2 \sqrt{2gh}}{h^{\frac{1}{n}}}$$
$$\frac{dh}{dt} = \frac{-a^2 \sqrt{2gh}}{h^{\frac{1}{n}}}$$

(iii) If the water level falls at a constant rate with respect to time, find the value of *n*.

$$\frac{dh}{dt} = \frac{-a^2 \sqrt{2g}h^{\frac{1}{2}}}{h^{\frac{1}{n}}}$$
$$= -a^2 \cdot \sqrt{2g} \cdot h^{\frac{1}{2} - \frac{1}{n}}$$
For $\frac{dh}{t}$ to be a constant

for
$$\frac{dt}{dt}$$
 to be a constant:
 $\frac{1}{2} - \frac{1}{2} = 0$

$$\frac{1}{2} - \frac{1}{n} = 0$$
$$n = 2$$

(a) Consider a function f(x). The domain of y = f(x) is a < x < b and the range is all real y. Assume that f'(x) exists for a < x < b and is non-zero.

Let g(x) be the inverse function of f(x). Assume that g'(x) exists.

(i) Show that
$$g'(x) = \frac{1}{f'(g(x))}$$
. 2

Using f(g(x)) = x

Differentiate both sides:

$$f'(g(x))g'(x) = 1$$
$$g'(x) = \frac{1}{f'(g(x))}$$

(ii) Consider
$$f(x) = 3 + x^2 + 2\tan\left(\frac{\pi x}{2}\right)$$
 for $-1 < x < 1$.
Explain why $g(3) = 0$.

 $f(0) = 3 + 0^2 + 2 \tan 0$ = 3

Since g(x) is the inverse of f(x), g(3) = 0

(iii) Show that the gradient of the tangent to the curve y = g(x) at the **2** point (3, 0) is $\frac{1}{\pi}$.

$$g'(x) = \frac{1}{f'(g(x))}$$
$$g'(3) = \frac{1}{f'(g(3))}$$
$$= \frac{1}{f'(0)}$$

$$f(x) = 3 + x^{2} + 2\tan\left(\frac{\pi x}{2}\right)$$
$$f'(x) = 2x + 2 \cdot \frac{\pi}{2}\sec^{2}\left(\frac{\pi x}{2}\right)$$
$$= 2x + \pi \sec^{2}\left(\frac{\pi x}{2}\right)$$
$$f'(0) = 2(0) + \pi \sec^{2} 0$$
$$= \pi$$

So
$$g'(3) = \frac{1}{\pi}$$

and the gradient of the tangent at x = 3 is $\frac{1}{\pi}$.

(b) A particle is executing simple harmonic motion between points *A* and *B*. *O* is the centre of motion. Initially, the particle is at *C*, 10 units to the left of *O*. At this time, it is moving to the right at 6 m/s and its acceleration is 0.625 m/s^2 .

The displacement of the particle after *t* seconds is given by $x = A\cos(nt + \alpha)$ for some constants *A*, *n* and α .

(i) Show that
$$n = \frac{1}{4}$$
. 1

$$x = A\cos(nt + \alpha)$$

$$\dot{x} = -An\sin(nt + \alpha)$$

$$\ddot{x} = -An^{2}\cos(nt + \alpha)$$

$$= -n^{2} \times A\cos(nt + \alpha)$$

$$= -n^{2}x$$

When
$$x = -10$$
, $\ddot{x} = 0.625$:
 $0.625 = -n^2 \times -10$
 $n^2 = 0.0625$
 $n = 0.25$

$$x = A\cos\left(\frac{1}{4}t + \alpha\right)$$
$$\dot{x} = -\frac{A}{4}\sin\left(\frac{1}{4}t + \alpha\right)$$

When t = 0:

$$-10 = A\cos(\alpha) - --(1)$$
$$6 = -\frac{A}{4}\sin(\alpha)$$
$$-24 = A\sin(\alpha) - --(2)$$

To find A:

$$A = \sqrt{(-10)^2 + (-24)^2}$$

 $= 26$

As both $\sin \alpha$ and $\cos \alpha$ are negative, α is in 3rd quadrant.

To find
$$\alpha$$
 (sub into 1):
 $-10 = 13 \cos \alpha$
 $\cos \alpha = -\frac{5}{13}$
 $\alpha \approx \pi + \cos^{-1}\left(\frac{5}{13}\right)$
 ≈ 4.3176

(iii) *M* is the midpoint of *OB*. Find the time when the particle is first at *M*.

As the amplitude is 26, at M, x = 13:

$$13 = 26 \cos\left(\frac{1}{4}t + 4.3176...\right)$$
$$\frac{1}{2} = \cos\left(\frac{1}{4}t + 4.3176...\right)$$
$$\left(\frac{1}{4}t + 4.3176...\right) = \frac{\pi}{3}, \frac{5\pi}{3}, ...$$
$$\left(\frac{1}{4}t + 4.3176...\right) = \frac{5\pi}{3} \text{ (as } t \ge 0\text{)}$$
$$t \approx 3.67\text{s}$$

(c) Car *A* and car *B* are travelling in the same direction along a straight, level road at constant speeds V_A and V_B respectively. Initially, car *A* is behind car *B*, but is travelling faster.

When car *A* is exactly *D* metres behind car *B*, car *A* applies its brakes, producing a constant acceleration $-k \text{ m/s}^2$, where k > 0.

(i) Using calculus, show that the speed of car *A* after it has travelled *D* metres2 under braking is given by:

$$v = \sqrt{V_A^2 - 2kD}$$

$$\ddot{x} = -k$$
$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -k$$
$$\frac{1}{2}v^2 = -kx + C$$

When x = 0, $v = v_A$:

$$\frac{1}{2}v_{A}^{2} = C$$
$$\frac{1}{2}v^{2} = -kx + \frac{1}{2}v_{A}^{2}$$
$$v^{2} = -2kx + v_{A}^{2}$$

When x = D:

$$v^{2} = -2kD + v_{A}^{2}$$

 $v = \sqrt{v_{A}^{2} - 2kD}$ (since speed cannot be negative)

(ii) The distances travelled in t seconds by car A (after braking) and car B,

are given by $x_A = V_A t - \frac{1}{2}kt^2$ and $x_B = V_B t$ respectively.

(Do NOT prove this).

Prove that the cars will collide if $V_A - V_B \ge \sqrt{2kD}$.

When car A is exactly D m behind B, upon braking:

2

 $x_B = x_A - D:$

$$V_{B}t = V_{A}t - \frac{1}{2}kt^{2} - D$$
$$-\frac{1}{2}kt^{2} + (V_{A} - V_{B})t - D = 0$$
$$t = \frac{(V_{B} - V_{A}) \pm \sqrt{(V_{A} - V_{B})^{2} - 4 \cdot (-\frac{1}{2}k)(-D)}}{2(-\frac{1}{2}k)}$$
$$= \frac{(V_{B} - V_{A}) \pm \sqrt{(V_{A} - V_{B})^{2} - 2kD}}{-k}$$

Real roots occur when $\Delta \ge 0$:

$$\Delta = (V_A - V_B)^2 - 2kD$$

$$(V_A - V_B)^2 - 2kD \ge 0$$

$$(V_A - V_B)^2 \ge 2kD$$

$$(V_A - V_B) \ge \sqrt{2kD}$$
 (as speed is positive)