

2016 SYDNEY BOYS HIGH SCHOOL
 trial higher school certificate examination

Mathematics Extension I

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided with this paper
- Leave your answers in the simplest exact form, unless otherwise stated
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I
 Pages 3-6

10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II
 60 marks

Pages 8-15

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Examiner: E.C.

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which integral is obtained when the substitution $u=1+3 x$ is applied to $\int x \sqrt{1+3 x} d x$?
(A) $\frac{1}{9} \int(u-1) \sqrt{u} d u$
(B) $\frac{1}{6} \int(u-1) \sqrt{u} d u$
(C) $\frac{1}{3} \int(u-1) \sqrt{u} d u$
(D) $\frac{1}{4} \int(u-1) \sqrt{u} d u$

2 The acceleration of a particle moving along a straight line is given by $\ddot{x}=-2 e^{-x}$, where x metres is the displacement from the origin.
If the velocity of the particle is $v \mathrm{~m} / \mathrm{s}$, which of the following is a correct statement about v^{2} ?
(A) $v^{2}=2 e^{-x}+C$
(B) $\quad v^{2}=2 e^{x}+C$
(C) $v^{2}=4 e^{-x}+C$
(D) $v^{2}=4 e^{x}+C$

3 Find $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)$
(A) $\frac{-2}{\sqrt{1-x^{2}}}$
(B) $\frac{-1}{\sqrt{1-x^{2}}}$
(C) $\cos ^{-1} x$
(D) $\sin ^{-1} x$

(A) $\quad f(x)=-x(x-1)(x+1)$
(B) $\quad f(x)=-x^{2}(x+1)$
(C) $\quad f(x)=-x^{2}(x-1)$
(D) $\quad f(x)=x^{2}(x+1)$

5 If $f(x)=1+\frac{2}{x-3}$, which of the following give the equations of the horizontal and vertical asymptotes of $f^{-1}(x)$?
(A) Vertical asymptote is $x=1$ and horizontal asymptote is $y=2$
(B) Vertical asymptote is $x=1$ and horizontal asymptote is $y=3$
(C) Vertical asymptote is $x=3$ and horizontal asymptote is $y=1$
(D) Vertical asymptote is $x=3$ and horizontal asymptote is $y=2$
$6 \quad$ The polynomial equation $x^{3}-a x^{2}+8 x+(1-a)=0$ has roots α, β and γ. Given that $\alpha+\beta+\gamma<0$ and $\alpha \beta \gamma(\alpha+\beta+\gamma)=20$, what is the value of a ?
(A) -4
(B) 4
(C) -5
(D) 5

7 If $t=\tan \frac{\theta}{2}$, which of the following expressions is equivalent to $4 \sin \theta+3 \cos \theta+5$?
(A) $\frac{2(t+2)^{2}}{1-t^{2}}$
(B) $\frac{(t+4)^{2}}{1-t^{2}}$
(C) $\frac{2(t+2)^{2}}{1+t^{2}}$
(D) $\frac{(t+4)^{2}}{1+t^{2}}$

8 Which of the following is a correct expression for $\tan \left(x+\frac{\pi}{4}\right)$?
(A) $\frac{\cos x+\sin x}{\cos x-\sin x}$
(B) $\frac{\cos x+2 \sin x}{\cos x-\sin x}$
(C) $\frac{\cos x+\sin x}{\cos ^{2} x-\sin x}$
(D) $\frac{\cos x-\sin x}{\cos x-\sin x}$

9 The curve $y=2 x^{\frac{1}{3}}$ is reflected in the line $y=x$.
What is the equation of the reflected curve?
(A) $y=\frac{x^{3}}{16}$
(B) $y=\frac{x^{3}}{8}$
(C) $y=\frac{x^{3}}{4}$
(D) $y=\frac{x^{3}}{2}$

10 A particle is moving in simple harmonic motion with displacement x.
Its velocity is given by $v^{2}=9\left(36-x^{2}\right)$.
What is the amplitude, A, of the motion and the maximum speed of the particle?
(A) $\quad A=3$ and maximum speed $v=6$
(B) $\quad A=3$ and maximum speed $v=18$
(C) $\quad A=6$ and maximum speed $v=18$
(D) $\quad A=6$ and maximum speed $v=6$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Differentiate with respect to x :

$$
\begin{equation*}
y=\tan ^{-1}\left(\frac{2}{x}\right) \tag{2}
\end{equation*}
$$

(b) Evaluate $\int_{0}^{\frac{3}{2}} \frac{d x}{\sqrt{9-4 x^{2}}}$
(c) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$

If the tangents at P and Q intersect at 45°, show that $|1+p q|=|p-q|$.

Question 11 (continued)
(d) State the domain and range of the function $y=2 \cos ^{-1} 3 x$.
(e) The roots of the equation $x^{3}-3 x^{2}+4 x+2=0$ are α, β, and γ.

Find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
(f) Solve the equation $4 \sin \theta+3 \cos \theta=-5$ for $0^{\circ}<\theta<360^{\circ}$.

Leave your answers correct to the nearest degree.
(g) (i) Show that the turning points of the curve $y=\frac{x}{(x+3)(x+4)}$ occur when

$$
x= \pm 2 \sqrt{3} .
$$

(ii) Sketch $y=\frac{x}{(x+3)(x+4)}$ for $x \geq 0$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) The rate at which perfume evaporates is proportional to the amount of the perfume that has not yet evaporated. That is $\frac{d N}{d t}=k(P-N)$, where P is the initial amount of perfume, N is the amount that has evaporated at time t and k is constant.
(i) Show that the function $N=P\left(1-e^{-k t}\right)$ satisfies the differential equation

$$
\frac{d N}{d t}=k(P-N)
$$

(ii) Show that the time it takes for a quarter of the original amount to evaporate is

$$
-\frac{(\ln 3-2 \ln 2)}{k}
$$

(b) In the diagram below, $P A Q$ is the tangent to a circle at A. $A B$ is a diameter and lines $P B$ and $Q B$ cut the circle at S and R respectively.

(i) Copy the diagram to your writing booklet.
(ii) Prove that $P Q R S$ is a cyclic quadrilateral.

Question 12 (continued)
(c) In how many ways would 11 people occupy seats at two circular tables, where one table can accommodate 6 people and the other 5 people?
(d) Consider the function $f(x)=3 x-x^{3}$
(i) Find the largest domain containing the origin for which $f(x)$ has an inverse function $f^{-1}(x)$.
(ii) State the domain of $f^{-1}(x)$.
(e) To an observer on a pier A, the angle of elevation of the top of a cliff $O T$ due North of the observer is 45°. After the observer travelled 100 m by boat from the pier at $\mathrm{N} 60^{\circ} \mathrm{E}$ to B, the angle of elevation of the top of the cliff is 30°.

Find the height of the cliff above the sea level.
(f) A particle moves in a straight line with acceleration at any time t given by $\ddot{x}=-e^{-2 x}$, where x metres is the distance measured from a fixed point O.

Initially the particle is at the origin with velocity $1 \mathrm{~m} / \mathrm{s}$. Show that $x=\ln (t+1)$.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram below shows a circle of centre O and radius 1 m and $\angle A O D=2 \theta$. D is a point on $O B$ such that $\angle D A O=\theta$. Also, C is a point on $O A$ such that $C D \perp O A$.

Let $C D=x$.
(i) Express $A C$ in terms of x and θ, and by considering $\triangle O C D$, show that

$$
x=\frac{2 \tan \theta}{3-\tan ^{2} \theta} .
$$

(ii) If $x=\frac{\sqrt{3}}{4}$, find the value of θ, and hence, show that the area of $\triangle O A B=\frac{\sqrt{3}}{4} \mathrm{~m}^{2}$.
(b) Many calculators compute reciprocals by using the approximation $\frac{1}{a} \doteqdot x_{n+1}$, where $x_{n+1}=x_{n}\left(2-a x_{n}\right)$ for $n=1,2,3, \ldots$
That is if x_{1} is an initial approximation to $\frac{1}{a}$, then $x_{2}=x_{1}\left(2-a x_{1}\right)$ is a better approximation.

This formula makes it possible to use multiplications and subtractions, which can be done quickly, to perform divisions that would be slow to obtain directly.

Apply Newton's method to $f(x)=\frac{1}{x}-a$, using x_{1} as an initial approximation, to show

$$
x_{2}=x_{1}\left(2-a x_{1}\right)
$$

Question 13 (continued)
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x}$
(d) The diagram below shows a circular disc with radius $O A$.

The radius of the disc, $O A$, is one metre and $A B$ is a rod of length k metres $(k>1)$. The end of the rod, B, is free to slide along a horizontal axis with origin O.
The angle between $O A$ and $O B$ is θ.
Let $O B=x$ metres.
(i) Show that $x=\cos \theta+\sqrt{k^{2}-\sin ^{2} \theta}$.
(ii) Find $\frac{d x}{d \theta}$ in terms of k and θ.
(iii) Given that $\frac{d \theta}{d t}=4 \pi \mathrm{rad} / \mathrm{s}$.

Find $\frac{d x}{d t}$ in terms of k when $\theta=\frac{\pi}{6}$.
(iv) Find $\theta, 0 \leq \theta<2 \pi$, when the velocity of point B is zero.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Prove by mathematical induction that $\sum_{r=1}^{n}(r+3) 2^{r}=(n+2) 2^{n+1}-4$ where n is a positive integer.
(b) A particle performs simple harmonic motion on a straight line. It has zero speed at the points A and B whose distances on the same side from a fixed point O are a and b respectively, where $b>a$.
(i) Find the amplitude of oscillation in terms of a and b.
(ii) The particle has a speed V when half way between the points A and B.

Show that the period of oscillation is $\frac{\pi(b-a)}{V}$.
You may use the following formula: $v^{2}=n^{2}\left(c^{2}-\left(x-x_{0}\right)^{2}\right)$
(Do NOT prove this)

Question 14 continues on page 15

Question 14 (continued)
(c) A vertical section of a valley is in the form of the parabola $x^{2}=4 a y$ where a is a positive constant.
A gun placed at the origin fires with speed $\sqrt{2 g h}$ at an angle of elevation α where $0<\alpha<\frac{\pi}{2}$ and h is a positive constant.

The equations of the motion of a projectile fired from the origin with initial velocity $V \mathrm{~ms}^{-1}$ at angle θ to the horizontal are

$$
x=V t \cos \alpha \text { and } y=V t \sin \alpha-\frac{1}{2} g t^{2} \quad \text { (Do NOT prove this) }
$$

(i) If the shell strikes the section of the valley at the point $P(x, y)$ show that

$$
x=\frac{4 a h}{(a+h) \cot \alpha+a \tan \alpha}
$$

(ii) Let $f(\theta)=(a+h) \cot \theta+a \tan \theta$ for $0<\theta<\frac{\pi}{2}$.

Show that the minimum value of $f(\theta)$ occurs when $\tan \theta=\sqrt{\frac{a+h}{a}}$.
(iii) Show that the greatest value of x is given by

$$
x=2 h \sqrt{\frac{a}{a+h}}
$$

End of paper

Mathematics Extension I

Sample Solutions

Question	Teacher
Q11	EC
Q12	RB
Q13	AF
Q14	PB

MC Answers

1. A
2. C
3. B
4. C
5. A
6. B
7. C
8. B
9. A
10. C

Section I
10 marks
Attempt Questions 1-10
Use the multiple-choice answer sheet for Questions 1-10
1 Which integral is obtained when the substitution $u=1+3 x$ is applied to $\int x \sqrt{1+3 x} d x$?
(A) $\frac{1}{9} \int(u-1) \sqrt{u} d u$

$$
\begin{aligned}
& u=1+3 x \\
& \frac{d u}{d x}=3 \\
& d u=3 d x \\
& \frac{d u}{3}=d x \\
& u=1+3 x \\
& \frac{u-1}{3}=x
\end{aligned}
$$

(B) $\frac{1}{6} \int(u-1) \sqrt{u} d u$
(C) $\frac{1}{3} \int(u-1) \sqrt{u} d u$
(D) $\frac{1}{4} \int(u-1) \sqrt{u} d u$

2 The acceleration of a particle moving along a straight line is given by $\ddot{x}=-2 e^{-x}$, where x metres is the displacement from the origin.
If the velocity of the particle is $v \mathrm{~m} / \mathrm{s}$, which of the following is a correct statement about v^{2} ?
(A) $\quad v^{2}=2 e^{-x}+C$
(B) $\quad v^{2}=2 e^{x}+C$
(C) $v^{2}=4 e^{-x}+C$
(D) $v^{2}=4 e^{x}+C$
$\left(1-x^{2}\right)^{\frac{1}{x}} \quad \int \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)^{d x}=\int-2 e^{-x} d x$.

$$
\frac{1}{2} v^{2}=2 e^{-x}+c
$$

3 Find $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)$
(A) $\frac{-2}{\sqrt{1-x^{2}}}$
(B) $\frac{-1}{\sqrt{1-x^{2}}}$
(C) $\cos ^{-1} x$
(D) $\sin ^{-1} x$

4 What is a possible equation of this function?

(A) $f(x)=-x(x-1)(x+1)$
(B) $f(x)=-x^{2}(x+1)$
(C) $\quad f(x)=-x^{2}(x-1)$
(D) $\quad f(x)=x^{2}(x+1)$

5 If $f(x)=1+\frac{2}{x-3}$, which of the following give the equations of the horizontal and vertical asymptotes of $f^{-1}(x)$?
(A) Vertical asymptote is $x=1$ and horizontal asymptote is $y=2$
(B) Vertical asymptote is $x=1$ and horizontal asymptote is $y=3$
(C) Vertical asymptote is $x=3$ and horizontal asymptote is $y=1$
(D) Vertical asymptote is $x=3$ and horizontal asymptote is $y=2$

The bestial asymptote of $f(x)$ is $x=3$
So its inverse, the horizontal assimpto is $y=3$. Hence B.

$$
a=1
$$

$6 \quad$ The polynomial equation $x^{3}-a x^{2}+8 x+(1-a)=0$ has roots α, β and γ.

$$
b=-a
$$ Given that $\alpha+\beta+\gamma<0$ and $\alpha \beta \gamma(\alpha+\beta+\gamma)=20$, what is the value of a ?

(A) -4
(B) 4

$$
\begin{aligned}
& c=8 \\
& d=1-a
\end{aligned}
$$

$\begin{array}{lll}\text { (C) } & -5 \\ \text { (D) } & 5\end{array}$
$\begin{array}{lll}\text { (C) } & -5 \\ \text { (D) } & 5\end{array}$
So

$$
\begin{array}{ll}
\alpha+\beta+\gamma=-\frac{b}{a}=a & \alpha=1-a \\
\alpha \beta+\alpha \gamma+\beta \gamma=8 & \\
\alpha \beta \gamma=-\frac{d}{a}=a-1 & (a-5)(a+4) \\
(a-1) a=20 & a=5 \\
a^{2}-a-20=0 & a=-4
\end{array}
$$

7 If $t=\tan \frac{\theta}{2}$, which of the following expressions is equivalent to $4 \sin \theta+3 \cos \theta+5$?

(C) $\frac{2(t+2)^{2}}{1+t^{2}}$
(D) $\frac{(t+4)^{2}}{1+t^{2}}$

$$
\begin{aligned}
& \frac{4 \times \frac{2 t}{1+t^{2}}+\frac{3 \times\left(1-t^{2}\right)}{1+t^{2}} \pm 5}{8 t+3-3 t^{2}+5+5 t} \\
& \frac{2 t^{2}+8 t+8}{1+t^{2}}=\frac{2(t+2)^{2}}{1+t^{2}}
\end{aligned}
$$

8 Which of the following is a correct expression for $\tan \left(x+\frac{\pi}{4}\right)$?

(A) $\frac{\cos x+\sin x}{\cos x-\sin x}$
(B) $\frac{\cos x+2 \sin x}{\cos x-\sin x}$
(C) $\frac{\cos x+\sin x}{\cos ^{2} x-\sin x}$

$$
\frac{\tan x+1}{1-\tan x}=\frac{\sin x}{\cos x}+\frac{\cos x}{\cos x}
$$

$$
\text { (D) } \frac{\cos x-\sin x}{\cos x-\sin x}
$$

9 The curve $y=2 x^{\frac{1}{3}}$ is reflected in the line $y=x$. What is the equation of the reflected curve?
(A) $y=\frac{x^{3}}{16}$
(B) $-y=\frac{x^{3}}{8}$
(C) $y=\frac{x^{3}}{4}$
cube

$$
\begin{aligned}
& y=2 x^{\frac{1}{3}} \\
& \text { swap } x \text { and } y \\
& x=2 y^{\frac{1}{3}} \\
& \frac{x}{2}=y^{\frac{1}{3}} \\
& \frac{x^{3}}{8}=y
\end{aligned}
$$

(D) $y=\frac{x^{3}}{2}$

10 A particle is moving in simple harmonic motion with displacement x. Its velocity is given by $v^{2}=9\left(36-x^{2}\right)$.
What is the amplitude, A, of the motion and the maximum speed of the particle?
(A) $A=3$ and maximum speed $v=6$
(B) $A=3$ and maximum speed $v=18$
(C) $A=6$ and maximum speed $v=18$
(D) $\quad A=6$ and maximum speed $v=6$

End of Section I

$$
\begin{aligned}
& v^{2}=9\left(36-x^{2}\right) \\
& \equiv n^{2}\left(a^{2}-x^{2}\right) \\
& n=3 \\
& a=6 \\
& v^{2}=9 \times 36 \\
& v^{=3 \times 6}=18
\end{aligned}
$$

$\xrightarrow[\sim]{\sim}$
12)

$$
\begin{aligned}
(a)(i) N & =P\left(1-e^{-k t}\right) \\
N & =P-P e^{-k t} \\
\frac{d N}{d t} & =-P e^{-k t} \times-k \\
& =P k e^{-k t} \\
& =k(P-N)
\end{aligned}
$$

sum tran mu c 20/6.
now

$$
\begin{aligned}
& N=P-P e^{-k t} \\
& P e^{-k t}=P-N
\end{aligned}
$$

(1) Guntratly smell answered
vat some students got
very lost in a quite simple proof
(ii)
$P=$ initial a nouns Mars
$N=$ amount that has
dents assumed.

$$
\begin{aligned}
\frac{1}{4} P & =P\left(1-e^{-k t}\right) \\
\frac{1}{4} & =1-e^{-k t} \\
e^{-k t} & =1-\frac{1}{4}=\frac{3}{4} \\
\ln e^{-k t} & =\ln \left(\frac{3}{4}\right) \\
-k t & =\ln 3-\ln 4 \\
-k t & =\ln 3-2 \ln 2 \\
-t & =\frac{\ln 3-2 \ln 2}{k} \\
t & =-\frac{(\ln 3-2 \ln 2)}{k}
\end{aligned}
$$

$$
P e^{-k t}=P-N
$$

without stating i:
This made the proof
Very inconsistent.
last (ii) well answered by most!
(b)

Generathy well done, AFeed puople stated that SR is also coliameter. vot so!
a pou mettods puthere pavailable iostion is a did.
$\hat{B A P}=90^{\circ}$ (Line betpeen (duameter and tangent line) Q
$\hat{B R A}=90^{\circ}$ (angle in a semi árcle)
$\widehat{S A P}=\hat{A B S}=\theta$ (alternate seapment).
Let $R \hat{B A}=\alpha, \quad \hat{R S A}=\alpha$ (angles standing \quad on
$B \hat{S A}=90^{\circ}$ (opposite angle cyclic quad. $B S A R$. supplementari angles).
$\begin{aligned} \hat{A B S} S & =A \hat{R} T \text { (angles standengy or same are) } \\ & =\theta\end{aligned}$
Why is PQRS a cylicupach?

$$
\begin{aligned}
& P \hat{Q R}=90-\alpha, \quad \hat{R} \hat{S} P=90+\alpha \\
& \text { So } P \hat{O R}+R \hat{R} \hat{S} P=180^{\circ} \text { (opposite cengles in } \\
& \text { cydic guad add to } 180^{\circ} \text {). }
\end{aligned}
$$

(C) 11 pesple.

Qimestron
badly ansnured.
2 circular tables by a nambergor
$\nearrow _{5}^{\text {stumbert. }}$.

5
(d)

$$
\begin{aligned}
f(x) & =3 x-x^{3} \\
& =x\left(3-x^{2}\right) \\
& =x(\sqrt{3}-x)(\sqrt{3}+x)
\end{aligned}
$$

$$
\begin{equation*}
x=3 x-x^{3} \tag{2}
\end{equation*}
$$

$$
x^{3}-2 x=0
$$

$$
\begin{aligned}
& x\left(x^{2}-2\right)=9 \\
& x(x-3) x+3)
\end{aligned}
$$

$$
x\left(x-\frac{3}{2}\right)(x+k)
$$

$$
\begin{aligned}
\text { Let } y & =3 x-x^{3} \\
x & =3 y-y^{3} \\
x & =y\left(3-y^{2}\right) \\
& =y(\sqrt{3}-4)(\sqrt{3}+y)
\end{aligned}
$$

(i) $-1 \leq x \leq 1$
(2) $=y(\sqrt{3}-4)(\sqrt{3}+y)$.
(ii) $-2 \leq x \leq 2$. $\quad x$

Domain of $f=1 /(x)$ is the range of, $f(x)$ in iss speufied
(3)
by neadents i

$$
\begin{aligned}
& \text { studenis i } \\
& \text { A bookulork }
\end{aligned}
$$

tupe ques ticoor
t the deagram

$$
\begin{gathered}
\text { t the diagrad } \\
\text { was triclucled a } \\
\Rightarrow \text { kelps }
\end{gathered}
$$

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{01}{O A} \\
& O A=O T \\
& \tan 30^{\circ}=\frac{O T}{O B} \\
& \frac{D B}{\sqrt{3}}=O T . \Rightarrow O B=\sqrt{3} O T \\
& \triangle A O B,(A O)_{2}^{2}+(B O)^{2}=10000 \\
& \text { Well aroupered } \quad(O T)^{2}+3(O T)^{2}=10000 \\
& \text { by nearty all } \quad 4(0 T)^{2}=10000 \\
& \text { 2. }(.0 T)=2500 \\
& O T=50 \mathrm{~m} \\
& \text { clef is } 50 \mathrm{~m} \text {. }
\end{aligned}
$$

(f)

$$
\begin{aligned}
& x=-e^{-2 x} \\
& \int \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\int-e^{-2 x} d x \cdot\left[\frac{1}{2}\right. \\
& \frac{1}{2} v^{2}=\frac{1}{2} e^{-2 x}+C \\
& d v^{2} / 0 \quad \frac{1}{2}=\frac{1}{2} e^{0}+C \\
& t=0 \quad C=0 \quad \text { 有 } \\
& v_{1}=1 \quad C \quad=-2 x
\end{aligned}
$$

atkemp $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
He key

$$
\begin{array}{rlr}
\frac{1}{2} v^{2} & =\frac{1}{2} e^{-2 x} & \\
v^{2} & =e^{-2 x} & \\
v & =\left(e^{-2 x}\right)^{\frac{1}{2}} & e^{x}=t+1 \\
v & =e^{-x} & 4 e^{x}=\ln (t+1) \\
\frac{d x}{d t} & =e^{-x}=\frac{1}{e^{x}} & \\
d=\ln (t+1) \\
\frac{d t}{d x} & =e^{x} & \text { to }
\end{array}
$$

$$
t=e^{x}+C_{1}
$$

$$
\begin{array}{ll}
W^{k} & t=t \\
t_{1}=0 & \theta=1+c_{1} \\
c_{1}=-1
\end{array}
$$

$$
c_{1}=-1
$$

$$
t=e^{x}-1
$$

$$
\text { 13) a) i) } \begin{aligned}
\tan \theta & =\frac{x}{A C} \\
A C & =\frac{x}{\tan \theta} \\
\tan 2 \theta & =\frac{x}{O C} \\
O C & =\frac{x}{\tan 2 \theta}
\end{aligned}
$$

$$
\begin{aligned}
& A C+O C=1 \\
& \frac{x}{\tan \theta}+\frac{x}{\tan 2 \theta}=1 \\
& \frac{x}{\tan \theta}+\frac{x}{\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)}=1 \\
& \frac{2 x+\tan ^{2} \theta x}{2 \tan \theta}=1 \\
& x\left(3-\tan ^{2} \theta\right)=2 \tan \theta \\
& x=\frac{2 \tan \theta}{3-\tan ^{2} \theta}
\end{aligned}
$$

ii) $\frac{\sqrt{3}}{4}=\frac{2 \tan \theta}{3-\tan ^{2} \theta}$

$$
\begin{aligned}
& 3 \sqrt{3}-\sqrt{3} \tan ^{2} \theta=8 \tan \theta \\
& \sqrt{3} \tan ^{2} \theta+8 \tan \theta-3 \sqrt{3}=0 \\
& \tan \theta=\frac{-(8) \pm \sqrt{(8)^{2}-4(\sqrt{3})(-3 \sqrt{3})}}{2(\sqrt{3})} \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{1}{\sqrt{3}} \text { or }-\frac{9}{\sqrt{3}} \\
& \theta=30^{\circ} \quad(\operatorname{since} \theta \text { is acute) } \\
& 2 \theta=60^{\circ} \\
& A=\frac{1}{2}(1)(1) \sin 60^{\circ} \\
& =\frac{1}{2}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{4} \text { square metres. }
\end{aligned}
$$

COMMENT:
Part (i) was done reasonably well.
Many students failed to recognise that there was a quadratic in $\tan \theta$ which could be solved to find θ.
b)

$$
\begin{aligned}
f(x) & =\frac{1}{x}-a \\
f(x) & =x^{-1}-a \\
f^{\prime}(x) & =-x^{-2} \\
& =-\frac{1}{x^{2}} \\
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{2} & =x_{1}-\frac{1}{x_{1}-a}-\frac{1}{x_{1}^{2}}-\frac{-x_{1}^{2}}{-x_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=x_{1}+x_{1}-a x_{1}^{2} \\
& x_{2}=2 x_{1}-a x_{1}^{2} \\
& x_{2}=x_{1}\left(2-a x_{1}\right)
\end{aligned}
$$

COMMENT:
A different style of question on first impressions. However, it is just a simple application of Newton's method.

$$
\text { c) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x} \\
= & \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times \frac{3 x}{\tan 3 x} \times \frac{2}{3} \\
= & 1 \times 1 \times \frac{2}{3} \\
= & \frac{2}{3}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& x=a+b \\
& x=\cos \theta+\sqrt{k^{2}-\sin ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{1^{2}+x^{2}-k^{2}}{2(1)(x)} \\
& 2 x \cos \theta=1+x^{2}-k^{2} \\
& x^{2}-2 \cos \theta x+1-k^{2}=0 \\
& x^{2}-2 \cos \theta x+\cos ^{2} \theta+\sin ^{2} \theta-k^{2}=0 \\
& (x-\cos \theta)^{2}=k^{2}-\sin ^{2} \theta \\
& x-\cos \theta= \pm \sqrt{k^{2}-\sin ^{2} \theta} \\
& x=\cos \theta \pm \sqrt{k^{2}-\sin ^{2} \theta} \quad \text { metres. } \\
& x=\cos \theta+\sqrt{k^{2}-\sin ^{2} \theta} \quad \text { met }
\end{aligned}
$$

since x is a distance

COMMENT:
Students that assumed AB was a tangent could not get the result.

$$
\text { ii) } \begin{aligned}
x & =\cos \theta+\sqrt{k^{2}-\sin ^{2} \theta} \\
x & =\cos \theta+\left(k^{2}-\sin ^{2} \theta\right)^{\frac{1}{2}} \\
\frac{d x}{d \theta} & =-\sin \theta+\frac{1}{2}\left(k^{2}-\sin ^{2} \theta\right)^{-\frac{1}{2}} \cdot(-2 \sin \theta \cos \theta) \\
\frac{d x}{d \theta} & =-\sin \theta\left(1+\frac{\cos \theta}{\sqrt{k^{2}-\sin ^{2} \theta}}\right) \quad \text { norad. }
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{d x}{d \theta} \times \frac{d \theta}{d t} \\
& \frac{d x}{d t}=-\sin \theta\left(1+\frac{\cos \theta}{\sqrt{k^{2}-\sin ^{2} \theta}}\right) \times 4 \pi
\end{aligned}
$$

when $\theta=\frac{\pi}{6}$.

$$
\begin{aligned}
\frac{d x}{d t} & =-\sin \frac{\pi}{6}\left(1+\frac{\cos \frac{\pi}{6}}{\sqrt{k^{2}-\left(\sin \frac{\pi}{6}\right)^{2}}}\right) 4 \pi \\
& =-\left(\frac{1}{2}\right)\left(1+\frac{\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{k^{2}-\left(\frac{1}{2}\right)^{2}}}\right) 4 \pi \\
& =-2 \pi\left(1+\frac{\sqrt{3}}{2 \sqrt{k^{2}-\frac{1}{4}}}\right) \\
& =-2 \pi\left(1+\frac{\sqrt{3}}{\sqrt{4 k^{2}-1}}\right) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

COMMENT:
This answer could be written a number of different ways.
iv) considering the scenario, the point B will change direction when $\theta=0, \pi$

From the equation $\frac{d x}{d t}=0$ when $\frac{d x}{d \theta}=0$ since $\frac{d \theta}{d t}$ is a constant.

$$
-\sin \theta\left(1+\frac{\cos \theta}{\sqrt{k^{2}-\sin ^{2} \theta}}\right)=0
$$

$$
\sin \theta=0 \quad \text { or } \quad 1+\frac{\cos \theta}{\sqrt{k^{2}-\sin ^{2} \theta}}=0
$$

$$
\theta=0, \pi
$$

$$
\begin{gathered}
\sqrt{k^{2}-\sin ^{2} \theta}+\cos \theta=0 \\
\sqrt{k^{2}-\sin ^{2} \theta}=-\cos \theta \\
k^{2}-\sin ^{2} \theta=\cos ^{2} \theta \\
k^{2}=\sin ^{2} \theta+\cos ^{2} \theta \\
k^{2}=1
\end{gathered}
$$

$$
\text { since } k>1
$$

no solution.

Comment:
students should not be using the equation which has $\theta=\frac{\pi}{6}$ substituted.
This should hare been an easy mark.

Question 14. (xi)
(a) Sim Toproue $\sum_{R=1}^{\pi}(r+3) 2^{r}=(n+2) 2^{x+1}-4$. Para $\in Z^{+}$
StepI when $n=1$

$$
\begin{aligned}
\text { LHS } & =(1+3) 2 & \text { RHS } & =3 \times 4-4 \\
& =8 & & =8
\end{aligned}
$$

\therefore true swhen $n=1$.
Ateh世 Gosume $\sum_{r=1}^{k}(r+3) 2^{r}=(k+2) 2^{k+1}-4$.
Stef"II Ascuming steh II is tive
Prere tive for $n=k+1$.

$$
\text { ie. } \begin{aligned}
\sum_{r=1}^{k+1} & (r+3) 2^{r}=(k+3) 2^{k+2}-4 \\
\text { hew hHS } & =\sum_{r=1}^{k}(r+3) 2^{k}+(k+4) 2^{k+1} \\
& =(k+2) 2^{k+1}-4+(k+\not k) 2^{k+1} \\
& =(2 k+6) 2^{k+1}-4 \\
& =2(k+3) 2^{k+1}-4 \\
& =(k+3) 2^{k+2}-4 \\
& =R+S
\end{aligned}
$$

Steh IV iWe conchude that by Ohe Ariciple of Inarhemalical Induclion The scatemert is taue 18

Connint. This was a straeghtfourard quection on Anductisi and was welldone. Insex sceud full maves.
(b).
(1)

$$
[1]
$$

The anplitude is $\frac{b-a}{2}$.
Coumint the comamon eres was $\frac{a+b}{2}$ which is the centre of moturi.
(il.) Meing $\sim^{2}=n^{2}\left[\left(\frac{\beta-a}{2}\right)^{2}-\left(x-\left(\frac{a+b}{2}\right)\right)^{\alpha}\right]$ we have $\sim_{M A x}^{2}=n^{2}\left(\frac{b-a}{\alpha}\right)^{2}$
ie. $v_{\text {max }}=n \frac{(b-a)}{2}$

$$
\begin{aligned}
\therefore V & =\frac{n(n-a)}{2} \\
n & =\frac{2 V}{n(b-a)}
\end{aligned} \quad[3]
$$

Herce $T=\frac{2 \pi}{n}$

$$
\begin{aligned}
& =\frac{2 \pi}{2 V / \pi(b-a)} \\
& =\frac{\pi(b-a)}{V}
\end{aligned}
$$

Comminnt. not well dove. As is ofter the case corcure the acemer is prinided there was a tendenyy ts conturie the acemer waing a incular argundet.
(c) (1) grien $x=V t \cos \alpha \quad \forall y=V t \sin \alpha-\frac{1}{2} g t^{2}$.

$$
\begin{gather*}
t=\frac{x}{V \cos \alpha .} \\
\therefore y=V \frac{x}{V \cos \alpha} \sin \alpha-\frac{1}{2} \frac{g}{V^{2}} \frac{x^{\alpha}}{\cos ^{2} \alpha .} \tag{A}
\end{gather*}
$$

ie. $y=x \tan \alpha-\frac{1}{2} \frac{g x^{2}}{v^{2}} \sec ^{2} \alpha$.
d $V=\sqrt{2 g h}$ (grien)

$$
\therefore v^{2}=\alpha g h-
$$

\therefore (A) becemes

$$
y=x \tan \alpha-\frac{1}{2} \frac{g x^{2}}{\operatorname{dgh}} \sec ^{2} \alpha
$$

θR.

$$
\begin{align*}
& y=x \tan \alpha-\frac{x^{2}}{4 h}\left(1+\tan ^{2} \alpha\right) \\
& \text { To frand } P
\end{align*}
$$

we solve (B) and $y=\frac{x^{2}}{4 a} \quad C$
ie.

$$
\begin{aligned}
& \text { ie. } \frac{x^{\alpha}}{4 a}=x \tan \alpha-\frac{x^{\alpha}}{4 h}\left(1+\tan ^{\alpha} \alpha\right) \\
& x^{2}\left[\frac{1+\tan ^{2} \alpha}{4 h}+\frac{1}{4 a}\right]-x \tan \alpha=0 \\
& x\left[\left(1+\frac{\tan ^{2} \alpha}{4 h}+\frac{1}{4 a}\right) x-\tan \alpha\right]=0
\end{aligned}
$$

$$
\begin{aligned}
\therefore x=0 \text { on } x & =\frac{\tan \alpha}{\frac{1+\tan ^{2} \alpha+\frac{1}{4 a}}{4 h}} \\
x \neq 0 . & =\frac{4 a h \tan \alpha}{a+\left(1+\tan ^{2} \alpha\right)+h}
\end{aligned}
$$

$$
=\frac{4 a h \tan \alpha}{a+h+a \tan ^{2} \alpha}
$$

$$
=\frac{4 a h}{\frac{a+h}{\tan \alpha}+a \tan \alpha} .
$$

$$
=\frac{4 a h}{(a+h) \cot \alpha+a \tan \alpha}
$$

ConMEnt mostmenliced to ceobue (B) and (C). Mnsorturately net smary vore afte to do so successfully.
(II). given $f(\theta)=(a+h) \cot \theta+a \tan \theta$

$$
f^{\prime}(\theta)=(a+h) x-\operatorname{cosec}^{2} \theta+a \sec ^{2} \theta .
$$

For et. pent.

$$
\begin{aligned}
f^{\prime}(\theta) & =0 \\
\therefore \quad \operatorname{aicc}^{2} \theta & =(a+h) \operatorname{conce}^{2} \theta \\
\frac{a}{\cos ^{2} \theta} & =\frac{(a+h)}{\operatorname{tin}^{2} \theta} \\
\therefore \frac{\sin ^{2} \theta}{\cos ^{2} \theta} & =\frac{a+h}{a} \\
\tan ^{2} \theta & =\frac{a+h}{a} \\
\tan \theta & = \pm \sqrt{\frac{a+h}{a}}
\end{aligned}
$$

$\therefore \tan \theta=\sqrt{\frac{a+k}{a}}$ (as $\tan \theta \neq$ negative Price $0<\theta<\frac{\pi}{2}$)
Clearly this st. Paint is a miximuen pine. $f(\theta) \rightarrow \infty$ as $\theta \rightarrow 0 \quad[\cot \theta \rightarrow \infty]$
Δ for $\rightarrow \infty$ as $\theta \rightarrow \frac{\pi}{2} \quad[\tan \theta]$
Commit Some students failed to jrectify the positive value for ton θ and lost $\frac{1}{2}$ mare.

It was pessitle to shrew that $f^{\prime \prime \prime}(\theta)>0$

$$
\therefore \text { MING. }
$$

(III) Guiven $x=\frac{4 a h}{(a+\alpha) \cot \alpha+a \tan \alpha}$.
the smex. value will accurt.
suter $(a+h) \cot \alpha+a \operatorname{con} \alpha$
isleact. ie. saken $\tan \alpha=\sqrt{\frac{a+h}{a}}$
ie. in D.

$$
x_{\operatorname{MAx}}^{D}=\frac{4 a h}{(a+h) \sqrt{\frac{a}{a+h}}+a \sqrt{\frac{a+h}{a}}}[3]
$$

COMMENT

$$
\begin{aligned}
& =\frac{4 a h .}{\sqrt{a(a+h)+\sqrt{a(a+h)}}} \\
& =\frac{4 a h .}{2 \sqrt{a(a+h)}} \\
& =2 h \sqrt{\frac{a}{a+h}} \\
& \text { asrequied. }
\end{aligned}
$$

recogucrear
the consectroi weith perts (1s α (11).
The question prored exay for the majoily of students

