Name:	Maths Teacher:
-------	----------------

SYDNEY TECHNICAL HIGH SCHOOL

Year 12

Mathematics Extension 2 TRIAL HSC 2016

Time allowed: 3 hours **plus** 5 minutes reading time

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Marks for each question are indicated on the question.
- Board Approved calculators may be used
- In Questions 11- 16, show relevant mathematical reasoning and/or calculations.
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a **new** page
- Write using black pen
- All answers are to be in the writing booklet provided
- A BOSTES reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Total marks - 100

Section 1 Mu

Multiple Choice

10 Marks

- Attempt Questions 1-10
- Allow 15 minutes for this section

Section II

90 Marks

- Attempt Questions 11-16
- Allow 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple- choice answer sheet located in your answer booklet for Questions 1-10

1. Which conic has eccentricity $\frac{\sqrt{3}}{3}$?

(A)
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

(B)
$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$

(c)
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$

(D)
$$\frac{x^2}{3^2} - \frac{y^2}{2^2} = 1$$

2. What value of z satisfies; $z^2 = 20i - 21$?

(A)
$$-2+5i$$

(B)
$$2-5i$$

(C)
$$2+5i$$

(D)
$$5-2i$$

3. Which graph represents the curve, $y = (x+3)^2(x-1)^3$?

4. The polynomial $2x^4 - 17x^3 + 45x^2 - 27x - 27$ has a triple root at $X = \alpha$.

What is the value of lpha ?

- (A) $-\frac{1}{2}$
- (B) $\frac{1}{2}$
- (C) -3
- (D) 3
- 5. If $z_1 = 1 + 2i$ and $z_2 = 3 i$ then $z_1 \div \overline{z_2}$ is,
- (A) $\frac{1}{2} \frac{1}{2}i$
- (B) $\frac{1}{2} + \frac{1}{2}i$
- (C) 4+3i
- (D) $\frac{5}{8} + \frac{5}{8}i$
- 6. Which expression is equal to, $\int \frac{x^2}{\cos^2 x} dx$?
- (A) $2x \tan x 2 \int \tan x dx$
- (B) $\frac{1}{3}(x^3 \sec^2 x \int x^3 \tan x dx)$
- (C) $x^2 \tan x 2 \int x \tan x dx$
- (D) $x^2 \tan x 2 \int x \sec^2 x dx$
- 7. What is the natural domain of the function $f(x) = \frac{1}{2}(x\sqrt{x^2-1} \ln(x + \sqrt{x^2-1}))$?
- (A) $x \le -1$ or $x \ge 1$
- (B) $-1 \le x \le 1$
- (C) $x \ge 1$
- (D) $x \le -1$

8. If α, β, δ are the roots of $x^3 + x - 1 = 0$, then an equation with roots

$$\frac{(\alpha+1)}{2}, \frac{(\beta+1)}{2}, \frac{(\delta+1)}{2}$$
 is?

(A)
$$x^3 - 3x^2 + 4x - 3 = 0$$

(B)
$$x^3 + 3x^2 + 4x + 1 = 0$$

(C)
$$x^3 - 6x^2 + 16x - 24 = 0$$

(D)
$$8x^3 - 12x^2 + 8x - 3 = 0$$

9. The complex number Z satisfies |Z+2|=1

What is the smallest positive value of the arg(z) on the Argand diagram?

(A)
$$\frac{\pi}{3}$$

(B)
$$\frac{5\pi}{6}$$

(C)
$$\frac{2\pi}{3}$$

(D)
$$\frac{\pi}{6}$$

10. The base of a solid is the region bounded by the parabola $x = 4y - y^2$ and the y axis.

Vertical cross sections are right angled isosceles triangles perpendicular to the x-axis as shown.

Which integral represents the volume of this solid?

$$(A) \int_{0}^{4} 2\sqrt{4-x} dx$$

(B)
$$\int_{0}^{4} \pi \left(4 - x\right) dx$$

(C)
$$\int_{0}^{4} (8-2x) dx$$

(D)
$$\int_{0}^{4} (16-4x) dx$$

Question 11 (15 marks)

(a) Express $\frac{18+4i}{3-i}$ in the form, x+iy, where x and y are real.

2

(b) Consider the complex numbers $z = -1 + \sqrt{3}i$ and $w = \sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$

- (I) Evaluate |z|
- (II) Evaluate arg(z)
- (III) Find the argument of $\frac{w}{z}$
- (c) (i) Find A, B and C such that

$$\frac{1}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$$

(ii) Hence, or otherwise, find;

$$\int \frac{dx}{x(x^2+4)}$$

(d)

A particle moves along the x – axis. At time, t = 0, the particle is at x = 0.

Its velocity v at time t is shown on the graph above.

Copy or trace this graph onto your answer page.

(i) At what time is the acceleration the greatest? Explain your answer.

1

(ii) At what time does the particle first return to x = 0? Explain your answer.

1

(iii) Sketch the displacement time graph for the particle in the interval, $0 \le t \le 9$.

2

Question 12 (15 marks) START THIS QUESTION ON A NEW PAGE.

- (a) Find $\int x\sqrt{x+1}dx$ 2
- (b) Evaluate

(i)
$$\int_{0}^{\frac{\pi}{4}} \sin x \cos 2x dx$$
 2
(ii)
$$\int_{1}^{e} \frac{\ln x}{x^{2}} dx$$
 2

(ii)
$$\int_1^e \frac{\ln x}{x^2} dx$$

- (c) Find the equation of the normal to the curve, $3x^2y^3 + 4xy^2 = 6 + y$ at the point (1,1). 4
- (d) (i) Prove that,

$$\cos(A-B)x - \cos(A+B)x = 2\sin Ax\sin Bx$$

Using the above result, express the equation $\sin 3x \sin x = 2\cos 2x + 1$, 2 as a quadratic equation in terms of $\cos 2x$

1

2 Hence, solve, $\sin 3x \sin x = 2\cos 2x + 1$ for $0 \le x \le 2\pi$ (iii)

Question 13 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) The function y = f(x) is defined by the equation;

$$f(x) = \frac{x(x-4)}{4}$$

Without the use of calculus, draw sketches of each of the following, clearly labelling any Intercepts, asymptotes and turning points.

(i)
$$y = f(x)$$

(ii)
$$y^2 = f(x)$$

(iii)
$$y = \frac{x|x-4|}{4}$$

(iv)
$$y = \tan^{-1} f(x)$$

$$(v) y = e^{f(x)}$$

(b) Sketch the locus of z satisfying

(i)
$$Re(z) = |z|$$

(ii)
$$Im(z) \ge 2$$
 and $|z-1| \le 2$

(c) Write down the domain and range of
$$y = 2\sin^{-1}\sqrt{1-x^2}$$

Question 14 (15 marks) START THIS QUESTION ON A NEW PAGE.

- (a) Use the substitution $t = \tan \frac{x}{2}$ to find
 - $\int_{0}^{\pi/2} \frac{1}{5 + 4\cos x + 3\sin x} dx$

4

4

- (b) The area enclosed by the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the y axis.
 - Use the method of *cylindrical shells* to find the volume of the solid formed.

Question 14 continues on the next page....

(c)

 $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

The tangent at P meets the line x = -a and x = a at R and Q respectively.

- (i) Show that the equation of the tangent is given by $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$.
- (ii) Find the coordinates of Q and R.
- (iii) Show that QR subtends a right angle at the focus S(ae,0).
- (iv) Deduce that Q, S, R, S' are concyclic.

Question 15 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) In the diagram, AB and AC are tangents from A to the circle with centre O, meeting the circle at B and C respectively. ADE is a secant of the circle. G is the midpoint of DE. CG produced meets the circle at F.

- (i) Copy the diagram, using about one third of the page, into your answer booklet and prove that ABOC and AOGC are cyclic quadrilaterals
- (ii) Explain why $\angle OGF = \angle OAC$.
- (iii) Prove that $BF \parallel AE$

(b) Let
$$I_n = \int_0^1 x^n \sqrt{1 - x^3} \, dx$$
 for $n \ge 2$.

Show that: $I_n = \frac{2n-4}{2n+5} I_{n-3}$ for $n \ge 5$

- (ii) Hence find I_8
- (c) A sequence of numbers is given by $T_1=6$ $T_2=27$ and $T_n=6T_{n-1}-9T_{n-2}$ for $n\geq 3$. Prove by Mathematical Induction that:

$$T_n = (n+1) \times 3^n \text{ for } n \ge 1$$

3

Question 16 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) Show that the minimum value of $ae^{mx} + be^{-mx}$ is $2\sqrt{ab}$ if a,b and m are all positive constants.

4

4

- (b) A particle of mass 1 kilogram is projected upwards under gravity (g) with a speed of 2k in a medium in which resistance to motion is $\frac{g}{k^2}$ times the square of the speed, where k is a positive constant.
 - (i) Show that the maximum height (H) reached by the particle is

$$H = \frac{k^2}{2g} \ln 5$$

(ii) Show that the speed with which the particle returns to its starting point

is given by
$$V = \frac{2k}{\sqrt{5}}$$

(c) The shaded region in the diagram is bounded by the curves $y = \sin x$, $y = \cos x$ and the line y = 1.

This region is rotated around the y – axis.

Calculate the volume of the solid formed, using the process of Volume by Slicing.

STHS - Ext 2 Trial - Suggestion solution

	1=A(4) -> A=/4		: 1= A(x2+4) + oc (8x+c)	c) $\frac{1}{x(x^2+4)} = \frac{1}{x} + \frac{1}{x^2+4}$		11 1 = 17	= - m/4 - 2m/3	") $\alpha g \left(\frac{2}{5} \right) = \alpha g(\omega) - \alpha g(\frac{2}{3})$		11) $arg(z) = 2\pi/3$, t	1) 2 = /1+3	b) w= Jzcis(-1/4) z=-1+53i	- 5 + 3,	10	= 50 + 30;	10	= 54 + 18 : + 12 : - 4	3-1.3+1.	a) 18+4; x 3+;	Question 11	Section 2	(au gives)	6. 0 * 7. 0 8.	1. A &. C 3.
9		0 4		11.	X.	below :: at t = 4	the t-axis equals area	11. When the area above	is greatest acc)	inflection on vel curve	d) 1. t = 6.5 (point of	- 4444444	= = 1/10x - = 10(x2+4) +C		Now $\int \frac{dx}{x(x^2+4)} = \int \frac{1}{4x} - \frac{x_1}{x^2+4} dx$	=.	ie A=4 8=4 C=0	0 = 0	8=-1/4	equating: 0 = A + B				D 9. B 10. C	C 4. D 5. B

	3/12 .3		1	$=\frac{-2}{3}(\sqrt{2})^{3}+\sqrt{2}-\left[\frac{-2}{3}(1)^{3}+1\right]$		= -2 cos3x + cosx	7 1/4	= (T/4 asinx (cosx) - sinx dx	0	= ("/4 sin x (20052x -1) dx		b) 1. (1/4 sinx cos2x dx		x+1)3/2 C	2/3 (= 1 (13/2 - 11/2 olu	ا	= (u-1) Ju du	X	dy = 1 du = dx	let u=x+1	one method:	a) 2 2 2 + 1 dz	Question 12
ر	1	S I		MT = -5/8 :: MN = 8/5	9x -19	ι 1	at (1,1)	6x43+4x2= dy/dx (1-9x242-8x1)		+442=0	3x2[342=4] + 43.6x + 4x 24 dy	($3x^2y^3 + 4xy^2 = 6 + y = 0(1,1)$	<u>c)</u>	= -2/e	= -1/e + (-1/e - (-1)	Le 7 L 71	= -[1 -0] + [-1/x]e	ر المح	= - Lnx) e + (e x-2 dx	1 2	= lnx.x - 1/x x dx	_	= (e x 2 hn oc olx	11. E My doc

= 2 スェロ x=T/2Question 14 V= Ax >0 $\Delta v = a\pi o (\sqrt{x} - x^2) \Delta x$ = 1/6 ij O ٥ ھ 0 = 2TT [2/5-1/4 -0] = 3TT 3 24(1 O 5 X 5(1+t2) +.4(1-t2) +6t ⁻²/₄)-5+4(1-+2)+3(2+21) (1 (++3)-2 out 62+6+49 6 +3 Jo ا بع (++3)2 على لم t = tan T/4 = 1 6 = tan 0 = 0 4 = x 2 2 2 1 x (12 - x2) 6x 2 - x 3 dx (-2/3) ح> 4= رح ξţ 5 A(x) x 211 + 2 + 1 يز-بلال - tan 6 4 Now ۍ asine y - absinte = bx f avis y - bsin = b at (2) x = Plaseco, btane) Seco 2x/a2 - 24/b2. 3 = 0 2 122 a Seco 1/cos + - 3/0 Sint - cost ы× + #an# 4 4 U18 4 So) 8 02 y = b _ 4an⊕ y = ason= avis a/a - 1 dy/dx = x b2 SIn20 - 1 y = b(1-cose) MT = b/asine Cosa <u>ب</u> cos e ŋ (500 -1) о 5 Ф (+ ab) 2056

(E) (*)

= -1 . LOSR=90°

		,						-																
<u>'</u>	= - b2 but	240°E	= -62(1-10525)		$= -b(1-(ose)) \qquad b(1+cose)$	Now MSB x MPS	a(e+1)	MRS = b(1+(0Sb)	a[e-1]	Sin &	= -b(1-cose)	ae - a		$m_{SQ} = 0 - b(1 - cos\theta)$	11) S (ae, o)	+an #	02 & y = -b(1+ seco)	A US	y = -b- bcose	σ	-1 - 4 sin = cose		- 0.5ec+ - 4-1an+ = 1	at R=-0
								The second secon	d	ö	quad as opposite angles	y. S	and LBSR + Las R = 180°	· · / @S' R = 90°	0 1	-b ²	<u>₽</u> 62	-a2(e2-1) sin20	= b2 (1-cos24)	" Mos! y Mas!	-a(e+1)sin+	MRS1 = b(1+cos+)	۱ ،	1v) Mas1 = b(1-cose)

1. LOGF=LOAC (radii to tangent at point of contact is 90°) 1. LABO = LOCA = 90° exterior angle of a cyclic NOW, LABO=90° ABOC is a cyclic quadrilateral interior angle (AOGC) quadrilateral equals opposite midpt to centre is perpendicular) ABOC are supplementary and . A O GC is a cyclic quad Question 15 AD is a diameter of line from LOBC = LOAC fangles in the ·: LfGE = 90 - x (straight as opposite angles are supplementary. .: opposite angles in 100A = LOCA Join AO, BF - 90° 100f= LOAC = 2 of circle DG-CA (angles at 80 NOW In ABOC 05 BO = OC radio arc SC) half the angle of the contic on angle at the circumference is are equal ·· LBFC=LFGE and the alternate angles L 008 = LCBO . BF | AE LBFC=90- 2 1 BOC = 180-2x 11 9-(equal angles apposite equal (90-x) angle sum

							<u></u>	<u> </u>	T T
	اً ا	21 10+5	+5 +		9 14	$\frac{1}{1} \left(\frac{1+2(n-a)}{9} \right) = \frac{2(n-a)}{9} \left(\frac{1}{9} \right)$	2(n-2) (1 xn-3 /1-x3 dx	$= \frac{\int_{0}^{1} \chi^{n-2} \cdot \chi^{2} \int_{1-\chi^{3}}^{1} dx}{\int_{0}^{1} (1-\chi^{3})^{3/2} - \frac{1}{2} - ((n-2)\chi^{n-3})^{2} - 2(1-\chi^{3})^{2}}$	Question 15 con't
4 1 2	7 -9 1-		Now $I_2 = \int_0^1 x^2 \sqrt{1-x^3} dx$	n-3	n-3	9 Up	2 (7 - 2)	1-x3) 1-x3 dx	

aum to prove Question 15 con 7 TK+1=6TK-9K-1=(K+1+1).3K+1 Assume true for n=K TR+1=6TR -9K-1 Prove true for n=K+1 Where 7,06 ie Tk = (K+1)3K : True for n=1 In = (n+1)3" Test n= 1 TK = 6 TK-1 - 9 TK-2 Tn= 6Tn-1 -9Tn-2 0>3 $T_1 = (1+1) \times 3^1$ = 2(K+1).3K+1.- k3K+1 = (2K+2-K)3K+) 52(K+1) x3x3K -32, K, 3K-1 $= 6(K+1).3^{K}-9[k(3^{K-1})]$ 1 2×3 = 6 which is given an required (K+1+1),3K+1 T2=27 (K+2).3K+) かっるし By
assumption

(statement Required).

= Jab + Jba = 2Jab.	a 1 6	= (226 + 620	V al V b	+ 6	6 12 1 p/v	= ae 1/2 ln b/a + be 1/2 ln b/a	be	ρ = m(1/2mln b/a) = m(2mln b/s)	or = am in (b/a)	min value is when	and a, b, m>0	dx1 / emx >0	gl2ρ > o as emx>0	at x = 1/2 m in (b/a)	dip/dx = maemx+mibemx	test	1	$x = 1 \ln(b)$	2m2 = Ln (b/a)	e 2mx = b/a	627	ŧ1	or aemx = be-mx	- mbe-mz	ķ	Question 16
	ويم	= K ² J = 5.	= K2/29 lo [5K2/K2]	$x = -\frac{K^2}{29} \ln \left(\frac{K^2 + \frac{K^2}{29} \ln \left(\frac{5K^2}{2} \right)}{1 + \frac{1}{29} \ln \left(\frac{5K^2}{2} \right)}$	max height v=0	, 29 ,	x=-K2 lm (K2+v2) + K2 lm (5K2)	00	: C= K2/2g Ln(5K2)	V = 2k	ره ه	. "	9 J K ² +v ²	x=-k² (v dv	ره	dz = -1 VK2	$\frac{dv}{dx} = -9 \left(\frac{R^2 + v^2}{VK^2} \right)$	dx (K2)	$V \frac{dV}{dV} = -9 \left(K^2 + V^2 \right)$	\(\frac{\kappa_2}{\kappa_2}\)	·		1. $m^{2} = -mq - q \sqrt{2} m=1$		b) tre 19 de m=1kg	

	& C O
	Now z = R2 In 5
	وي
	(K2-V2)
	Cz= Ki La La Kz
	V=0
	x= 12 x -1 10 (12-12) + C2
	9122-942
	X = (VK2 dV
	dv gk2-gV2
	dx = VL2
√s.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
V= 2K	= 9 12- 9 2
ν>υ	dx V K2
V 5	1
· V = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
5	$V dV = q - qV^2$
ויו	<u></u>
-542 = -4K2	2: 9 1 9 V2
5 (K2-V2) = K2	1 = 9 - R
)	
لاح	7
$4n5 = -4n(11^2 - 11^2) + 1011^2$	(m=1)
10 K - V	+ ma
V2 1 5 = - N2 / (N2 - 12) + 1/2 1/4 2	N=0 ←=0 ∨=0
	Question 16 con't

