Expanding Binomials

$$(1+x)^n = (1+x)(1+x)(1+x)(1+x)\cdots(1+x)$$

when expanding parentheses we choose a term from each set of parentheses and multiply them together.

$$x \times 1 \times x \times 1 \times 1 \times 1 \times \cdots \times x = x^3$$

Question: How many different ways could you end up with x^3 ?

OR How many different ways can you choose three *x*'s from *n* sets of parentheses?

Answer: ${}^{n}C_{3}$

General Expansion of Binomials

^{*n*}C_k is the coefficient of x^k in $(1+x)^k$ ^{*n*}C_k = $\binom{n}{k}$

 $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \ldots + {}^nC_nx^n$

which extends to;

 $(a+b)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-2}b^{2} + \dots + {}^{n}C_{n-1}ab^{n-1} + {}^{n}C_{n}b^{n}$

 $e.g.(2+3x)^{4} = {}^{4}C_{0}2^{4} + {}^{4}C_{1}2^{3}(3x) + {}^{4}C_{2}2^{2}(3x)^{2} + {}^{4}C_{3}2(3x)^{3} + {}^{4}C_{4}(3x)^{4}$ $= 16 + 96x + 216x^{2} + 216x^{3} + 81x^{4}$

Pascal's Triangle Relationships

(1)
$${}^{n}C_{k} = {}^{n-1}C_{k-1} + {}^{n-1}C_{k}$$
 where $1 \le k \le n-1$

$$(1+x)^{n} = (1+x)(1+x)^{n-1}$$

= $(1+x)^{n-1}C_{0} + {}^{n-1}C_{1}x + \dots + {}^{n-1}C_{k-1}x^{k-1} + {}^{n-1}C_{k}x^{k} + \dots + {}^{n-1}C_{n-1}x^{n-1})$
looking at coefficients of x^{k}
$$LHS = {}^{n}C_{k} \qquad RHS = (1)^{n-1}C_{k-1} + (1)^{n-1}C_{k})$$

= ${}^{n-1}C_{k-1} + {}^{n-1}C_{k} \qquad \therefore {}^{n}C_{k} = {}^{n-1}C_{k-1} + {}^{n-1}C_{k}$
(2) ${}^{n}C_{k} = {}^{n}C_{n-k}$ where $1 \le k \le n-1$
"Pascal's triangle is symmetrical"
(3) ${}^{n}C_{0} = {}^{n}C_{n} = 1$
Exercise 5B; 2ace, 5, 6ac, 10ac, 11, 14