

Caringbah High School

2017

Trial HSC Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- (Black pen is preferred)
- Board-approved calculators may be used
- A Board-approved reference sheet is provided for this paper
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I Pages 2 – 5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 6 – 12

60 marks

• Attempt Questions 11–14

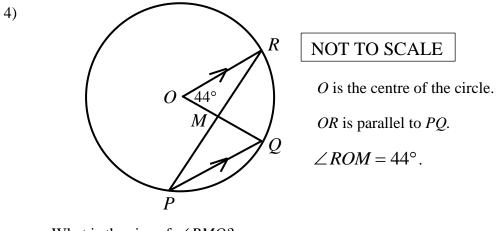
• Allow about 1 hour and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

- 1) What is the remainder when $2x^3 10x^2 + 4$ is divided by x 2?
 - A) -52 B) -20
 - C) $x^3 5x^2 + 2$ D) $-x^3 + 5x^2 2$
- 2) The point *P* divides the interval from A(-2,2) to B(8,-3) internally in the ratio 3:2. What is the *x*-coordinate of *P*?
 - A) 4 B) 2
 - C) 0 D) -1
- 3) Which expression is equivalent to $\tan\left(\frac{\pi}{4} x\right)$?
 - A) $1 \tan x$ B) $1 + \tan x$
 - C) $\frac{\cos x \sin x}{\cos x + \sin x}$ D) $\frac{\cos x + \sin x}{\cos x \sin x}$

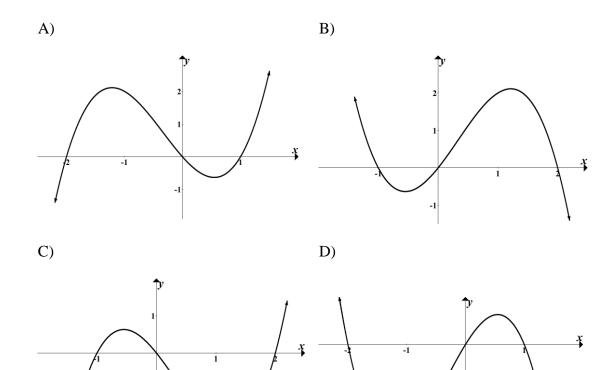


What is the size of $\angle RMQ$?

-1

-2

5) Which of the following could be the graph of $y = 2x - x^2 - x^3$?



6) What are the asymptotes of the curve defined by the

parametric equations $x = \frac{1}{t}, y = \frac{t}{t+1}$?

A)
$$x = -1, y = 0$$
 B) $x = 1, y = -1$

C)
$$x = 0$$
 only D) $x = -1$ only

7) To the nearest degree, what is the acute angle between the lines 2x + y = 5 and x - 3y = 1?

8) What is the value of k such that
$$\int_{0}^{2k} \frac{1}{\sqrt{3-x^2}} dx = \frac{\pi}{3}?$$

A)
$$\frac{\sqrt{3}}{4}$$
 B) $\frac{\sqrt{3}}{2}$

C)
$$\frac{3}{4}$$
 D) $\frac{3}{2}$

9) Consider the function $f(x) = x^3 - 12x$.

What is the largest possible domain containing the origin for which f(x) has an inverse function $f^{-1}(x)$?

A)
$$-2 < x < 2$$
 B) $-2 \le x \le 2$

C)
$$-2\sqrt{3} < x < 2\sqrt{3}$$
 D) $-2\sqrt{3} \le x \le 2\sqrt{3}$

10) The acceleration of a particle is defined in terms of its position by $\ddot{x} = 2x^3 + 4x$. The particle is initially 2 metres to the right of the origin, travelling at 6 m s^{-1} . What is the minimum speed of the particle?

A)
$$36 \text{ ms}^{-1}$$
 B) 20 ms^{-1}
C) 16 ms^{-1} D) 6 ms^{-1}

END OF MULTIPLE CHOICE QUESTIONS

Section II

60 marks Attempt all questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.

a) Find
$$\frac{d}{dx} \left[\log_{e} (\ln x) \right]$$
. 1
b) Show that $\lim_{\theta \to 0} \frac{5\theta}{\tan \frac{\theta}{2}} = 10$. 2
c) If $y = be^{ax}$ find $\frac{d^{2}y}{dx^{2}}$ in terms of y. 2
d) Find $\int \cos^{2} 2x \, dx$. 2
e) Prove $\frac{2\cos\theta}{\csc\theta - 2\sin\theta} = \tan 2\theta$. 2
f) Solve $\frac{x^{2} - 3}{2x} \ge 0$. 3
g) Solve $e^{t} - e^{-t} = 2$, expressing the answer in simplest exact form. 3

Marks

Question 12 (15 marks) Start a NEW booklet.

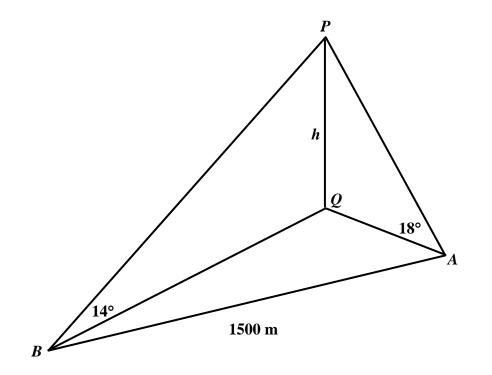
Marks

a) i) Express
$$\sin \theta - \sqrt{3} \cos \theta$$
 in the form $A \sin (\theta - \alpha)$, where $0 \le \alpha \le \frac{\pi}{2}$. 2

ii) Hence, or otherwise, find the minimum value of
$$\sin \theta - \sqrt{3} \cos \theta$$
. **1**

b) Use the substitution
$$u = x^4 - 1$$
 to evaluate $\int_0^1 \frac{x^3}{1 + x^8} dx$. 3

c) The angle of elevation of a tower PQ of height h metres at a point A due east of it is 18°. From another point B, due south of the tower the angle of elevation is 14°. The points A and B are 1500 metres apart on level ground.



i) Show that
$$BQ = h \tan 76^\circ$$
. 1

ii) Find the height *h* of the tower to the nearest metre.

Question 12 continues on page 8

2

Question 12 (continued)

Marks

1

d) i) Show that
$$P(x) = 3\sin^{-1}\left(\frac{x}{2}\right) - 2x$$
 is an odd function. 1

ii) Carefully sketch
$$y = 3\sin^{-1}\left(\frac{x}{2}\right)$$
 and $y = 2x$ on the same number plane. 2

iii) It is known that a close approximation to a root of
$$P(x) = 0$$
 is $x_1 = 1.9$. 2

Use one application of Newton's method to find a better approximation x_2 . Give your answer correct to 3 decimal places.

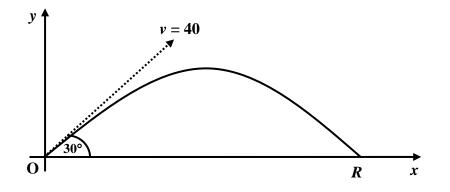
iv) Find the sum of the roots of P(x) = 0.

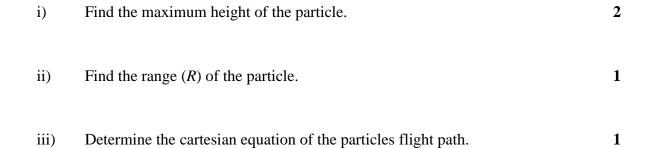
End of Question 12

Question 13 (15 marks) Start a NEW booklet.

- a) Use mathematical induction to prove that $13 \times 6^n + 2$ is divisible by 5 for all integers $n \ge 1$.
- b) A particle is projected with an initial velocity of 40 m s⁻¹ at an angle of 30° to the horizontal. The equations of motion are given by

$$x = 20\sqrt{3}t$$
, $y = 20t - 5t^2$. (Do NOT prove this.)





Question 13 continues on page 10

Marks

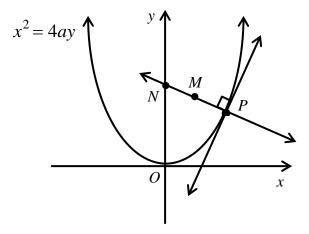
3

Question 13 (continued)

Marks

c) $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$. The normal to the parabola at *P*

cuts the y-axis at N. M is the midpoint of PN.



- i) Show that N has coordinates $(0, ap^2 + 2a)$. 1
- ii) Show that the locus of *M* as *P* moves on the parabola $x^2 = 4ay$ is **3** another parabola and state its focal length.
- d) The velocity $v \text{ m s}^{-1}$ of a particle moving in simple harmonic motion along the *x*-axis is given by $v^2 = 5 + 4x - x^2$.

i)	Between which two points is the particle oscillating?	1
ii)	What is the amplitude of the motion?	1
iii)	Find the acceleration of the particle in terms of x .	1
iv)	Find the period of oscillation.	1

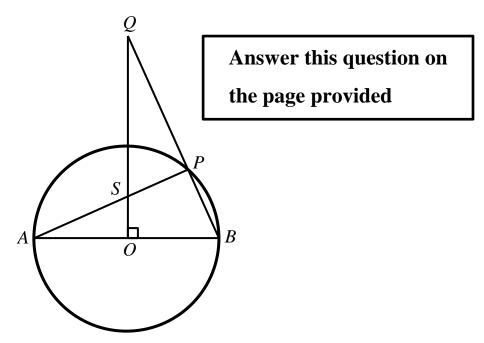
End of Question 13

Question 14 (15 marks) Start a NEW booklet.

2

2

a) The circle centred at *O* has a diameter *AB*. *BPQ* and *ASP* are straight lines.Also, the line *OSQ* is perpendicular to *AOB*.



- i) Show that *AOPQ* is a cyclic quadrilateral.
- ii) Show that $\angle AQO = \angle OBS$.
- b) The roots α , β and γ of the equation $2x^3 + 9x^2 27x 54 = 0$ are consecutive terms of a geometric sequence.

i) Show that
$$\beta^2 = \alpha \gamma$$
. 1

- ii) Find the value of $\alpha \beta \gamma$. 1
- iii) Find the roots α, β and γ . 3

Question 14 continues on page 12

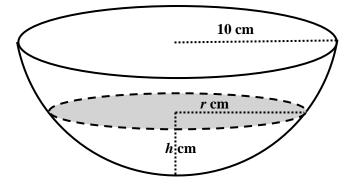
Question 14 (continued)

c) Let a hemispherical bowl of radius 10 cm contain water to a depth of h cm.

The volume of water in the bowl in terms of its depth h cm is given by

$$V = \frac{1}{3}\pi h^2 (30 - h) \,\mathrm{cm}^3$$

Water is poured into the bowl at a rate of $2 \text{ cm}^3 \text{ s}^{-1}$.



i) If the radius of the water surface is r cm, show that $r = \sqrt{20h - h^2}$. 1

When the depth of the water is 4 cm, find in terms of π :

iii) the rate of change of the radius of the water surface. 3

End of paper

CHS YEAR 12 EXTENSION 1 2017	TRIAL HSC SOLUTIONS
Multiple Choice Section:	Question 6.
1.B 2.A 3.C 4.C 5.D 6.A 7.D 8.C 9.B 10.D	$x = \frac{1}{t}, y = \frac{t}{t+1} \longrightarrow t = \frac{1}{x}$
Question 1. The remainder is given by $P(2)$	$\therefore y = \frac{\frac{1}{x}}{\frac{1}{x}+1} = \frac{1}{1+x}$ $\therefore x \neq -1 \text{ and } y \neq 0 \qquad \qquad$
Question 2.	Question 7.
$x = \frac{2 \times -2 + 3 \times 8}{2 + 3} = 4$ <u>A</u> Question 3.	$2x + y = 5 \rightarrow m_1 = -2$ $x - 3y = 1 \rightarrow m_2 = \frac{1}{3}$
$\tan\left(\frac{\pi}{4} - x\right) = \frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4} \cdot \tan x}$	$\therefore \tan \theta = \left \frac{-2 - \frac{1}{3}}{1 + (-2) \times \frac{1}{3}} \right = 7$
$=\frac{1-\tan x}{1+\tan x} = \frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}}$	$\therefore \theta = 82^{\circ} (NOTE: accept \ 81^{\circ}52') D$ Question 8.
$= \frac{\cos x - \sin x}{\cos x + \sin x} C$ Question 4.	$\int_{0}^{2k} \frac{1}{\sqrt{3-x^2}} dx = \frac{\pi}{3}$ $\therefore \left[\sin^{-1}\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{2k} = \frac{\pi}{3}$
$\angle RPQ = 22^{\circ} \{ \angle \text{ at centre is twice } \angle \text{ at circumference} \}$	$\therefore \left[\sin^{-1}\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{2k} = \frac{\pi}{3}$
$\angle ORM = 22^{\circ} \{ \text{alt } \angle \text{'s, OR } // \text{PQ} \}$ $\angle RMQ = 66^{\circ} \{ \text{ext } \angle \text{ of triangle} \} \qquadC$	$\therefore \sin^{-1}\left(\frac{2k}{\sqrt{3}}\right) - \sin^{-1}(0) = \frac{\pi}{3}$
Question 5. Using roots $(x=0,1,-2)$ and negative cubic	$\therefore \sin^{-1}\left(\frac{2k}{\sqrt{3}}\right) - \sin^{-1}(0) = \frac{\pi}{3}$ $\therefore \frac{2k}{\sqrt{3}} = \sin\frac{\pi}{3} \rightarrow \frac{2k}{\sqrt{3}} = \frac{\sqrt{3}}{2}$
D	$\therefore \ k = \frac{3}{4} - \dots - \square \boxed{C}$

Question 9.		
$f(x) = x^3 - 12x \rightarrow f'(x) = 3x^2 - 12$		
f'(x) = 0 for stationary points		
$\therefore 3(x-2)(x+2) = 0 \rightarrow x = \pm 2$		
hence $-2 \le x \le 2$ B		
Question 10.		
$v^2 = 2\int 2x^3 + 4x dx$		
$\therefore v^{2} = x^{4} + 4x^{2} + c$ when $x = 2, v = 6$ $\therefore 36 = 32 + c \rightarrow c = 4$		
$\therefore v^{2} = x^{4} + 4x^{2} + 4 = (x^{2} + 2)^{2}$ hence minimum speed when $x = 2$ $\therefore v^{2} = (4+2)^{2} \rightarrow v = 6 \qquadD$		
Question 11. a) $\frac{d}{dx} \left[\log_e \left(\ln x \right) \right] = \frac{\frac{1}{x}}{\ln x} = \frac{1}{x \ln x}$		
b) $\lim_{\theta \to 0} \frac{5\theta}{\tan\frac{\theta}{2}} = 5\lim_{\theta \to 0} \frac{\frac{\theta}{2}}{\frac{1}{2}\tan\frac{\theta}{2}}$		
$=\frac{5}{\frac{1}{2}} \times 1 = 10$		
c) $y = be^{ax} \rightarrow y' = abe^{ax} \rightarrow y'' = a^2(be^{ax})$		
$\therefore y'' = a^2 y$		
d) $\cos 2x = 2\cos^2 x - 1 \rightarrow \cos^2 2x = \frac{1}{2}(\cos 4x + 1)$ $\therefore I = \frac{1}{2}\int \cos 4x + 1 dx$		

$$= \frac{1}{2} \left(\frac{1}{4} \sin 4x + x \right) + c$$

$$= \frac{1}{8} \sin 4x + \frac{1}{2}x + c$$
e) $LHS = \frac{2\cos\theta}{\frac{1}{\sin\theta} - 2\sin\theta}$

$$= \frac{2\cos\theta}{\frac{1-2\sin^2\theta}{\sin\theta}} = \frac{2\sin\theta\cos\theta}{1-2\sin^2\theta}$$

$$= \frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta = RHS$$
f) CV1 and CV2: $x^2 - 3 = 0 \rightarrow x = \pm\sqrt{3}$
CV3: $x = 0$
On testing $-\sqrt{3} \le x < 0$ and $x \ge \sqrt{3}$, note $x \ne 0$
g) $e^t - \frac{1}{e^t} = 2 \rightarrow (e^t)^2 - 2e^t - 1 = 0$
 $\therefore e^t = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2}$
 $\therefore e^t = 1 + \sqrt{2}$ or $e^t = 1 - \sqrt{2}$
 $\therefore t = \ln(1 + \sqrt{2})$ or $t = \ln(1 - \sqrt{2})$
but since $\ln(1 - \sqrt{2})$ does not exist
then $t = \ln(1 + \sqrt{2})$ only.

Question 12.

a)i) Let
$$\sin\theta - \sqrt{3}\cos\theta = A\sin(\theta - \alpha)$$

= $A\cos\alpha\sin\theta - A\sin\alpha\cos\theta$

Equating coefficients of
$$\cos x$$
 and $\sin x$ gives:
 $A\cos\alpha = 1 - - - -1$ and $A\sin\alpha = \sqrt{3} - - -2$
 $\boxed{1}^2 + \boxed{2}^2 \rightarrow A^2(\cos^2\alpha + \sin^2\alpha) = 4$
 $\therefore A^2 = 4 \rightarrow A = 2$

Using [] with
$$A = 2 \rightarrow \cos \alpha = \frac{1}{2}$$

 $\therefore \alpha = \frac{\pi}{3}$
 $\therefore \sin \theta - \sqrt{3} \cos \theta = 2 \sin \left(\theta - \frac{\pi}{3} \right)$
ii) minimum value = -2 since $-1 \le \sin A \le 1$
b) $\int_{0}^{1} \frac{x^{3}}{1 + x^{8}} dx$ $u = x^{4} - 1 \rightarrow du = 4x^{3} dx$
 $x^{4} = u + 1 \rightarrow x^{8} = (u + 1)^{2}$
when $x = 0, u = -1; x = 1, u = 0$
 $\therefore I = \frac{1}{4} \int_{-1}^{0} \frac{1}{1 + (u + 1)^{2}} du$
 $= \frac{1}{4} [\tan^{-1}(u + 1)]_{-1}^{0}$
 $= \frac{1}{4} (\tan^{-1}1 - \tan^{-1}0) = \frac{\pi}{16}$
c) i)
 $\int_{B} \frac{1}{14^{\circ}} \int_{0}^{\pi} \frac{P}{h} \tan 76^{\circ} = \frac{BQ}{h}$
 $BQ = h \tan 76^{\circ}$
ii) Similarly using ΔPQA : $AQ = h \tan 72^{\circ}$
In ΔBQA : $BQ^{2} + AQ^{2} = 1500^{2}$
 $\therefore h^{2} \tan^{2}76^{\circ} + h^{2} \tan^{2}72^{\circ} = 1500^{2}$
 $\therefore h^{2} (\tan^{2}76^{\circ} + \tan^{2}72^{\circ}) = 1500^{2}$
 $\therefore h^{2} = \frac{1500^{2}}{\tan^{2}76^{\circ} + \tan^{2}72^{\circ}} \rightarrow h = 297m$ (nearest metre)

d) i) Function will be odd if P(x) = -P(-x)

$$-P(-x) = -\left[3\sin^{-1}\left(-\frac{x}{2}\right) - 2(-x)\right]$$
$$= -\left[-3\sin^{-1}\left(\frac{x}{2}\right) + 2(x)\right]$$
$$= 3\sin^{-1}\left(\frac{x}{2}\right) - 2(x) = P(x)$$

ii) $3\pi \frac{y}{2}$ y = 2x $y = 3\sin^{-1}\left(\frac{x}{2}\right)$ -3 $-\frac{3\pi}{2}$

iii)
$$P(x) = 3\sin^{-1}\left(\frac{x}{2}\right) - 2x \rightarrow P(1.9) = -0.04029$$

$$P'(x) = \frac{3}{\sqrt{4 - x^2}} - 2 \rightarrow P'(1.9) = 2.8038$$

$$\therefore \ x_2 = 1.9 - \frac{-0.04029}{2.8038} \approx 1.914(3dp)$$

iv) zero (odd function has roots $-\alpha, 0, \alpha$)

Question 13.

a) $13 \times 6^n + 2$ When n = 1: $13 \times 6^n + 2 = 13 \times 6^1 + 2$ $= 80 = 5 \times 16$ hence true for n = 1Assume true for n = k and let $13 \times 6^k + 2 = 5M$ (*M* an integer)-----** Prove true for n = k + 1 Hence $13 \times 6^{k+1} + 2 = 13 \times 6 \times 6^k + 2$

 $= 6 \times [13 \times 6^{k}] + 2$ = $6 \times [5M - 2] + 2$ using ** = 30M - 10= 5(6M - 2) \therefore true for n = k + 1

Hence by the principle of mathematical induction,

the result is true for all $n \ge 1$.

b) i) $x = 20\sqrt{3}t$, $y = 20t - 5t^2$ Maximum height when $\dot{y} = 0$ $\therefore \quad \dot{y} = 20 - 10t$ $\therefore \quad 20 - 10t = 0 \quad \rightarrow \quad t = 2$ when t = 2, $y = 20 \times 2 - 5 \times 2^2 = 20$ metres

ii) Range when it hits the ground (y = 0)or twice the time to reach maximum height. hence when t = 4.

$$\therefore R = 20\sqrt{3} \times 4 = 80\sqrt{3} \text{ metres}$$

iii) $x = 20\sqrt{3}t \rightarrow t = \frac{x}{20\sqrt{3}}$
$$\therefore y = 20\left(\frac{x}{20\sqrt{3}}\right) - 5\left(\frac{x}{20\sqrt{3}}\right)^2$$

 $\therefore y = \frac{x}{\sqrt{3}} - \frac{x^2}{240}$

 $\therefore y = a \left(\frac{x}{a}\right)^2 + a$

c) i) Using the reference sheet, the equation of the normal at *P* is: $x + py = ap^3 + 2ap$ and at N = 0 $\therefore 0 + py = ap^3 + 2ap \rightarrow y = ap^2 + 2a$ $\therefore N(0, ap^2 + 2a)$ ii) $N(0, ap^2 + 2a)$; $P(2ap, ap^2)$ $\therefore M(ap, ap^2 + a)$ From $M = ap \rightarrow p = \frac{x}{a}$ $\therefore y = \frac{x^2}{a} + a \rightarrow y = \frac{x^2 + a^2}{a}$ $\therefore x^2 = a(y - a) \text{ which is a parabola}$ with focal length $\frac{a}{4}$ d) i) $v^2 = 5 + 4x - x^2$

The particle is at rest when $v^2 = 0$ (*ie* v = 0). $\therefore 5 + 4x - x^2 = 0$ $\therefore (x-5)(x+1) = 0 \rightarrow x = -1$ and x = 5

ii) amplitude = 5 - centre of motion

$$=5 - \frac{-1+5}{2} = 3$$

iii) $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{d}{dx} \left(\frac{1}{2} \left(5 + 4x - x^2 \right) \right)$
 $\therefore \quad \ddot{x} = 2 - x$
iv) $\ddot{x} = -1^2 \left(x - 2 \right) \quad \rightarrow \quad n = 1$
 $\therefore \quad P = \frac{2\pi}{n} = 2\pi$

Question 14.

a) i) $\angle APB = 90^{\circ}$ (angle in a semi-circle) $\therefore \angle APQ = 90^{\circ}$ (angle sum straight line) Also $\angle AOQ = 90^{\circ}$ (angle sum straight line) $\therefore \angle APQ = 90^{\circ} = \angle AOQ$ hence AOPQ is a cyclic quad (\angle 's in same segment) ii) $\angle AQO = \angle APO$ { \angle 's in same segment/cyc quad AOPQ} Also PSOB is a cyclic quad (opp \angle 's supplementary) $\angle APO = \angle OBS$ { \angle 's in same segment/cyc quad PSOB} $\therefore \angle AQO = \angle OBS$

b) i) Since the sequence is geometric:

$$\frac{r}{\beta} = \frac{\beta}{\alpha} \rightarrow \beta^{2} = \alpha \gamma$$
(ii) $h = 4, \frac{dv}{dt} = 2, \frac{dh}{dt} = ?$
 $v = \frac{1}{3}\pi (30h^{2} - h^{3})$
(ii) $\alpha\beta\gamma = -\frac{d}{a} = 27$
(iii) $2\beta\gamma = -\frac{d}{a} = 27$
(iv) $\beta^{3} = 27 \rightarrow \beta = 3$
also $\alpha + \beta + \gamma = -\frac{9}{2} \rightarrow \alpha + \gamma = -\frac{15}{2}$
(iv) $\alpha\beta\gamma = \frac{\alpha\gamma}{2} + \beta\gamma = -\frac{27}{2}$
(iv) $\frac{dv}{dt} = \frac{dv}{dh} \times \frac{dh}{dt}$
(iv) $2 = \frac{\pi}{3}(60h - 3h^{2}) \times \frac{dh}{dt}$
(iv) $r = (20h - h^{2})^{\frac{1}{2}} \times (20 - 2h)$
(iv) $r = (20h - h^{2})^{\frac{1}{2}}$
(iv) $r = (20h - h^{2})^{\frac{1}{2}} \times (20 - 2h)$
(iv) $\frac{dr}{dt} = \frac{1}{2}(20h - h^{2})^{\frac{1}{2}} \times (20 - 2h)$
(iv) $\frac{dr}{dt} = \frac{dh}{dt} \times \frac{dh}{dt}$
(iv) $\frac{dr}{dt} = \frac{10 - h}{\sqrt{20h - h^{2}}} \times \frac{1}{32\pi}$
(iv) $\frac{dr}{dt} = \frac{10 - h}{\sqrt{20h - h^{2}}} \times \frac{1}{32\pi}$
(iv) $\frac{dr}{dt} = \frac{1}{2}(20h - h^{2})^{\frac{1}{2}} \times (20 - 2h)$
(iv) $\frac{dr}{dt} = \frac{dr}{dh} \times \frac{dh}{dt}$
(iv) $\frac{dr}{dt} = \frac{dr}{dh} \times \frac{dh}{dt}$
(iv) $\frac{dr}{dt} = \frac{3}{128\pi} \text{ cm s}^{-1}$
(iv) $\frac{d$