

Caringbah High School

Year 122017
 Mathematics Extension 2
 HSC Course
 Assessment Task 4

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- The reference sheet from the Board of Studies is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial or incomplete answers

Total marks - 100

Section I 10 marks

Attempt Questions 1-10
Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

Section II 90 marks

Attempt Questions 11-16
Write your answers in the answer booklets provided. Ensure your name or student number is clearly visible.

Name: \qquad Class: \qquad

Marker's Use Only								
Section I	Section II						Total	
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
/10	/15	/15	/15	/15	/15	/15		/100

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1. For the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{72}=1$ the eccentricity is
(A) $\frac{3}{2 \sqrt{2}}$
(B) 3
(C) $2 \sqrt{2}$
(D) 8
2. If ω is one of the complex roots of $z^{3}-1=0$, then the value of $\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}}$ is
(A) -1
(B) 2
(C) 0
(D) 1
3. The volume of the solid generated when the region bounded by $y=x^{3}, x=0, y=8$ is rotated about the line $x=2$ is given by

(A)

$$
\pi \int_{0}^{8} 4 x-x^{2} d x
$$

(B) $\pi \int_{0}^{8} 4 y^{\frac{1}{3}}-y^{\frac{2}{3}} d y$
(C) $\pi \int_{0}^{2} 4 x-x^{2} d x$
(D) $\pi \int_{0}^{2} 4 y^{\frac{1}{3}}-y^{\frac{2}{3}} d y$
4. The polynomial equation $x^{3}-2 x^{2}+3=0$ has roots α, β and γ.

What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$?
(A) -2
(B) -1
(C) -8
(D) 8
5. If $x=\theta-\sin \theta$ and $y=1-\cos \theta$ which of the following is an expression for $\frac{d y}{d x}$?
(A) $\cot ^{2} \frac{\theta}{2}$
(B) $\cot \frac{\theta}{2}$
(C) $\tan \frac{\theta}{2}$
(D) $\tan ^{2} \frac{\theta}{2}$
6. Let α, β and γ be roots of the equation $x^{3}+3 x^{2}+4=0$. Which of the following polynomial equations have roots α^{2}, β^{2} and γ^{2} ?
(A) $x^{3}-9 x^{2}-24 x-4=0$
(B) $x^{3}-9 x^{2}-12 x-4=0$
(C) $x^{3}-9 x^{2}-24 x-16=0$
(D) $x^{3}-9 x^{2}-12 x-16=0$
7. Which of the following is an expression for $\int x e^{\frac{x}{2}} d x$?
(A) $\frac{1}{2} x e^{\frac{x}{2}}-\frac{1}{4} e^{\frac{x}{2}}+c$
(B) $\frac{1}{2} x e^{\frac{x}{2}}-\frac{1}{2} e^{\frac{x}{2}}+c$
(C) $2 x e^{\frac{x}{2}}-2 e^{\frac{x}{2}}+c$
(D) $2 x e^{\frac{x}{2}}-4 e^{\frac{x}{2}}+c$
8. The diagram shows the graph of the function $y=f(x)$

Which of the following is the graph of $y^{2}=f(x)$
(A)

(B)

(C)

(D)

9. It is given that $3+i$ is a root of $P(z)=z^{3}+a z^{2}+b z+10$, where a and b are real numbers. Which expression factorises $P(z)$ over the set of real numbers?
(A) $(z+1)\left(z^{2}-6 z+10\right)$
(B) $(z-1)\left(z^{2}-6 z-10\right)$
(C) $(z+1)\left(z^{2}+6 z+10\right)$
(D) $(z+1)\left(z^{2}+6 z-10\right)$
10. $\quad z$ and w are two complex numbers. Which of the following statements is always true?
(A) $|z|-|w| \geq|z+w|$
(B) $|z|+|w| \leq|z+w|$
(C) $|z|+|w| \leq|z+w|$
(D) $|z+w|+|z| \geq|w|$

End of Section I

Section II

60 marks
Attempt Questions 11-16
Allow about 2 hours 45 minutes for this section
Answer each question in a SEPARATE writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Use the substitution $u=1+\sin ^{2} x$ to find $\int \frac{\sin 2 x}{\sqrt{1+\sin ^{2} x}} d x$
(b) Evaluate $\int_{\sqrt{2}}^{\sqrt{3}} \frac{2 e^{\frac{2}{x^{2}}}}{x^{3}} d x$
(c) (i) Find real numbers a, b and c such that

$$
\frac{9-x}{\left(1+x^{2}\right)(1+x)}=\frac{a x+b}{1+x^{2}}+\frac{c}{1+x}
$$

(ii) Hence, or otherwise, find 3

$$
\int \frac{9-x}{\left(1+x^{2}\right)(1+x)} d x
$$

(d) Evaluate $\int_{0}^{\frac{\pi}{2}} e^{x} \sin 2 x d x$

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Express $z=-1+\sqrt{3} i$ in mod-arg form. 1
(ii) Hence find $(-1+\sqrt{3} i)^{5}$, giving your answer in the form $a+i b$
(b) (i) Find the square roots of the complex number i.

Express your answers in the form $z=a+i b$, where a and b are real numbers.
(ii) Given that $z=\frac{2(\sqrt{2}-2 \sqrt{i})}{1-i}$ and $\operatorname{Im}(z)<0$, using the solution to (i), express z in the form $a+i b$, where a and b are real numbers.
(c)

Not to scale

In the Argand diagram above, the shaded region is part of a circle centred at A , with radii AD and AC . Find the conditions that should be satisfied by the complex numbers z which are in this region.
(d) If x, y and z are positive and unequal real numbers, prove that
(i) $x+y-2 \sqrt{x y}>0$
(ii) $(x+y)(y+z)(z+x)>8 x y z$

End of Question 12

Question 13 (5 marks) Use a SEPARATE writing booklet.
(a) The diagram show the graph of the function $y=f(x)$ where $f(x)=e^{x}(x-2)$

On separate $\frac{1}{2}$ page diagrams sketch the following graphs showing the coordinates of any turning points and the equations of any asymptotes and the x and y intercepts where possible.
(i) $\quad y=f(|x|)$
(ii) $y=\ln [f(x)]$
(iii) $y=e^{f(x)}$
(iv) $y=f\left(\frac{1}{x}\right)$
(b) Consider the curve defined by the equation $3 x^{2}+y^{2}-2 x y-8 x+2=0$
(i) Show that $\frac{d y}{d x}=\frac{3 x-y-4}{x-y}$
(ii) Find the coordinates of the points on the curve where the tangent to the curve is parallel to the line $y=2 x$

Question 13 continues on page 9
(c)

A mould for a drinking horn is bounded by the curves $y=x^{4}$ and $y=\left(\frac{x}{7}\right)^{4}$ between $y=0$ and $y=16$. Each cross section perpendicular to the y axis is a circle. All measurements are in cm . Find the exact volume of the drinking horn in terms of $\pi \mathrm{cm}^{3}$

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Using the result of de Moivre's theorem that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta, \quad 2$ solve the equation $8 x^{3}-6 x+1=0$
(ii) Hence deduce that $\alpha) \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}=\cos \frac{\pi}{9}$
and β) $\sec \frac{\pi}{9} \sec \frac{2 \pi}{9} \sec \frac{4 \pi}{9}=8$
(b) Consider the equation $P(z)=z^{4}+p z^{3}+q z+r$ when $P(z)=0, p, q$ and r are real numbers. The sum of the roots of this equation is 6 more than the product of the roots. If $1+i$ is a root of the equation,
(i) form 2 equations in terms of p, q that satisfy $P(z)=0$
(ii) Hence find the values of p, q and r. 2
(iii) Find all the roots of the equation
(c) PT is a tangent to a circle centre O . PO produced meets the circle at A and Q. The bisector of $\angle T P A$ meets the chord AT at B. Let $\angle T P B=x^{\circ}$

Use the template provided to prove that $\angle P B T=45^{\circ}$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a)
$L(a \cos \theta, b \sin \theta)$ is a variable point on the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

(i) Show that the equation of the tangent at L is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$
(ii) This tangent meets the auxiliary circle of the ellipse as shown on the minor axis at $A(0, a)$. Show that the line from L that is perpendicular to the x axis passes through a focus of the ellipse.
(b) (i) Show that the equation of the normal to the rectangular hyperbola $x y=4 \quad 2$ at the point $P\left(2 p, \frac{2}{p}\right)$ is $p y-p^{3} x=2\left(1-p^{4}\right)$.
(ii) If this normal meets the hyperbola again at the point $Q\left(2 q, \frac{2}{q}\right)$ show that $p^{3} q=-1$
(b) The Argand diagram shows the points A and B which represent the complex numbers ω and ϕ respectively. Given that $\triangle B O A$ is isosceles and $\angle B O A=\frac{2 \pi}{3}$

Show that
$(\omega+\phi)^{2}=\omega \phi$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) (i) On the same set of axes sketch the graphs of

$$
y=\frac{1}{x+1} \text { and } y=\frac{1}{x+2}
$$

(ii) The region bounded by the curves $y=\frac{1}{x+1}, y=\frac{1}{x+2}$, the ordinates $x=0$ and $x=2$ is rotated about the y axis. Using the method of cylindrical shells, calculate the volume of the solid so generated.
(b)

Let $I_{n}=\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{n}} d x$, where n is a positive integer.
(i) Find the value of I_{1}
(ii) Using integration by parts, show that

$$
I_{n}=\frac{2 n I_{n+1}}{2 n-1}+\frac{1}{2^{n+1}(1-2 n)}
$$

$$
\left(\text { Hint }: \frac{m}{(1+m)^{n+1}}=\frac{1+m-1}{(1+m)^{n+1}}\right)
$$

(iii) Hence evaluate $I_{3}=\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{3}} d x$

Q14 (c) Answer Template

PT is a tangent to a circle centre O . PO produced meets the circle at A and Q . The bisector of $\angle T P A$ meets the chord AT at B. Let $\angle T P B=x^{\circ}$

Prove that $\angle P B T=45^{\circ}$.

Caringbah High School
Examination:...........................
Mult. Chaic: $1 B 2 D \quad 3 B+B \quad 5 B \quad 6 C \quad 7 D 8 C \quad 9 A 10 D$

$$
=\frac{1}{1+\omega+\omega^{2}+\omega^{3}}=\frac{1}{1}=D
$$

3. $\pi \int_{0}^{8-(2-1)^{2} d y=} \begin{array}{r}\int_{0}^{2} 4-4+4 x-x x^{2} d u \\ =\pi \\ \end{array}$
$4 x^{3}-2, \pi+3=0$

$$
\alpha+\beta+\gamma=2 \quad \alpha \beta+\alpha \gamma+\beta \gamma=0 \quad \alpha \beta \gamma=-3
$$

$$
\alpha^{3}=2 \alpha^{2}-3 \text { so } \alpha^{3} \beta^{3}+\gamma^{3}=2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-9
$$

$$
\left.\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2} 2 \alpha+\alpha \gamma+\gamma\right)
$$

$$
\Rightarrow 4
$$

$$
\therefore \alpha^{2}+\beta^{2}+r^{3}=2 \times 4-9=-1
$$

5. $x=\theta-\sin b \quad y=1-\cos 6$

$$
\begin{aligned}
& \frac{d x}{d B}=1-\cos B \quad \frac{d y}{6}=\sin \theta
\end{aligned}
$$

Caringbah High School

Examination:
ila)

$$
\begin{array}{ll}
u=1+\sin ^{2} x & d u=2 \sin x \cos x \\
\int \frac{\sin _{2}}{\sqrt{1+5 x^{2} x} d x} \\
\int \frac{d x}{\sqrt{u}}=2 x^{2}+c
\end{array}
$$

b)

$$
\begin{aligned}
\int \sqrt{2} \frac{\sqrt{3}}{x^{32}} d x & =\int_{\sqrt{2}}^{2}\left(e^{2 x^{2}}\right) x^{-3} d x \\
& =\frac{-e^{-2}}{2} x^{\sqrt{3}}=-\frac{e^{3}+e}{\sqrt{3}}=\frac{e e^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \frac{9-x}{\left(1+x^{2}\right)(1+x+x}=\frac{a x+b}{17+x^{2}}+\frac{c}{7+x} \\
& \left(a-(1+b)(1 \neq x)+c\left(1+x^{2}=9-x\right.\right.
\end{aligned}
$$

$\operatorname{sen} x=-1 \quad c=5 \quad$ db $x=0 \quad b=4 \quad 2 b x=1 \quad a=-5$

$$
\frac{a-x}{\left(1 x x^{1}\right)(x)}=\frac{-5 x+4}{x^{2}+1}+\frac{5}{x^{2}+1}
$$

11).

$$
\begin{aligned}
& \int \frac{9 x}{(7, y)(1+x)} d x \cdot \int \frac{4}{x^{2}+1} d x-\int \frac{\sin x}{x^{2}+1} d x+\int \frac{f}{x+1} \\
& =4 \tan ^{-1} x-\frac{5}{2} \ln \left(x^{2}+1\right)+S \ln (x+1)+C \\
& =4 \tan ^{-1} x-\frac{5}{2}\left(\ln \frac{x^{2}+1}{(g+4))^{2}}\right)+C \\
& \text { or }=4 \tan ^{-1} x+\frac{5}{2} \ln \left(\frac{(x+1)^{2}}{\left(x^{2}+1\right.}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi} e^{x} \sin 2 x d x=-\frac{1}{2} e^{x} \cos 2 x \int_{0}^{2}+\frac{1}{2} \int e^{x} \cos 200 d x \\
& \left.=\frac{e^{2}}{3}+\frac{1}{2}+\frac{1}{4} e^{x} \sin z_{x}\right]_{0}^{4}-\frac{1}{4} \int e^{x} \sin 20 d x \\
& \therefore \quad \frac{5}{4} \int_{0}^{x} e^{x} \sin 2 x d x=\frac{e^{\frac{y}{2}}+1}{2} \\
& \therefore \int_{0}^{2} e^{x} \sin 2=\frac{2}{5}\left(e^{\frac{\pi}{2}}+1\right)
\end{aligned}
$$

Caringbah High School

Examination:
Q(2 a) (1) $\frac{2=-1+\sqrt{3} i}{r=\sqrt{12}+\sqrt{4}=2 .}$

$$
\text { i) }(-1+\sqrt{3})^{3}=32 \operatorname{cis} \frac{111}{3}=32 \operatorname{cis} \frac{41}{3}=32 \times\left(-\frac{1}{2}-\frac{\sqrt{3} l}{2}\right)=-16-16 \sqrt{3} l
$$

b)

$$
\begin{aligned}
& \sqrt{i}=\cos \left(\frac{\pi}{2}+2 k \pi\right) \quad k=61 \text { or }(x+c y)^{2}=c \\
& =\cos \frac{\pi}{4}, \cos \frac{5 \pi}{4} \quad-x^{2}-y^{2}=0 \quad 2 x y=1 \\
& =\frac{1+r}{\sqrt{2}},-\frac{1-l}{\sqrt{2}} \quad x^{2}-\frac{1}{4 y_{2}}=0 \quad y=\frac{1}{2 n} \\
& 4 x^{4}-1=0 \quad, \quad=\frac{1}{\sqrt{2}}, y=\frac{1}{\sqrt{2}} \\
& \left(2 x^{2}-1\right)\left(2 n^{2} x\right)=0 \quad 2= \pm\left(\frac{1 \times i}{\sqrt{2}}\right)
\end{aligned}
$$

in.).

$$
\begin{aligned}
z & =\frac{2(\sqrt{2}-2(\sqrt{i})}{1-i} \\
& =2\left(\sqrt{2}-2\left(\pm \frac{1+i}{\sqrt{2}}\right) /(1-i)\right. \\
& =2(\sqrt{2}(\sqrt{2}+\sqrt{2} i)(1-i) \\
& =\frac{2(1-i)(1+i) \text { or } 2(2 \sqrt{2}+\sqrt{2 i})(1+i)}{(1-i)(1+i)} \\
& =\frac{2(\sqrt{2}-\sqrt{2})}{2(\sqrt{2}+3 \sqrt{2 v})} \\
& =\sqrt{2} \sqrt{2} i
\end{aligned}
$$

Ans $2 m(x)<0$ do a ty solution
$\sqrt{2} \sqrt{2} \sqrt{2}$

Caringbah High School

Examination: \qquad
c.)

$$
\text { C) } \begin{array}{rl}
x+1+\sqrt{3}=-\sqrt{3} x \\
x & x \sqrt{3} x=-(1+\sqrt{3}) \\
x(1+\sqrt{3})=-(1+\sqrt{2}) \\
& x=-1 \\
A(-1, \sqrt{3}) & c(2,3+\sqrt{3})
\end{array}
$$

$$
\therefore|2-(-1+\sqrt{3} i)| \leqslant 3 \sqrt{2}
$$

भar $\operatorname{Re}(z) \geq 0 \quad($ or $x \geqslant 0)$

$$
\begin{aligned}
& x+y-z \sqrt{x y}>0 \\
& x, y>0 \text { and } x \neq y \\
& \text { fo }(\sqrt{x}-\sqrt{y})^{2}>0 \\
& x-2 \sqrt{x y}+y>0 \\
& \therefore x+y-2 \sqrt{x y}>0
\end{aligned}
$$

1) simitarty

$$
\begin{aligned}
& y+z \$ z \sqrt{y z} \\
& z+7(z \sqrt{z x} \\
& \therefore(x+y)(y+z)(z+x) \rightarrow 2 \sqrt{x y-x 2 \sqrt{x z}} \times 2 \sqrt{y z} \\
& \geqslant 8 \sqrt{x^{2} y^{2} y^{2}} \\
& \geqslant 8 x y z
\end{aligned}
$$

b)

$$
\begin{aligned}
& 3 x^{2}+y^{2}-2 x y-8 x+2=0 \\
& 6 x+2 y \frac{d y}{d x}-2 y-2 x \frac{d y}{d x}-8=0 \\
& 6 x-2 y-8+(2 y-3 x) \frac{d y}{d x}=0 \\
& (x-y) \frac{d y}{d x}=3 x-y-4 \\
& \therefore \frac{d y}{d x}=\frac{3 x-y-4}{x-y}
\end{aligned}
$$

c) Deanster $=x_{2}-x_{1}=7 y^{\frac{1}{4}}-y^{\frac{1}{4}}=6 y^{\frac{1}{4}}$ 33 $r^{2} 3 y^{\frac{1}{4}}$

$$
\text { Area }=\pi\left(3 y^{\frac{1}{4}}\right)^{2}=9 \pi y^{2}
$$

Fo $\delta V=9 \pi g^{\frac{1}{2} \delta} g$

$$
\begin{aligned}
\therefore V & =1 \lim _{y \rightarrow 0}^{16} \sum_{y^{0} 0}^{16} 9 y^{\frac{1}{2}} \delta y: V=9 \pi \int_{0}^{16} y^{\frac{1}{2}} d y \\
& \left.=6 \pi y^{\frac{3}{1}}\right]_{0}^{16}=34 \pi \mathrm{~cm}^{3} .
\end{aligned}
$$

Caringbah High School

Examination: \qquad

Q 14 i)

$$
\begin{aligned}
& x=\cos \theta \\
& 8 \cos ^{3} b-6 \cos 6+1=0 \\
& 4 \cos ^{3} 6-3 \cos b=-\frac{1}{2} \\
& \cos 36=-\frac{1}{2} \\
& 36=\frac{\frac{11}{3},}{}, \frac{41}{3}, \frac{811}{3}, \frac{1011}{3}, \frac{141}{3}, \frac{1611}{3} \\
& 6=\frac{2 \pi}{9}, \frac{41}{9}, \frac{8 \pi}{9}, \frac{101}{9}, \frac{141}{9}, \frac{16 \pi}{9}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{0} x=\cos \theta=\cos \frac{21}{9}, \cos \frac{4 \pi}{9}, \cos \frac{811}{9,}, \cos \frac{1019}{9}, \cos \frac{191}{9}, \cos \frac{\sqrt{611}}{9} \\
&=-\cos \frac{\pi}{9},-\cos \frac{21}{9}
\end{aligned}
$$

\therefore Root der $\cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}-\cos \frac{\pi}{9}$
11) $\alpha+\beta+\gamma=0 \therefore \cos \frac{2 \pi}{9}+\cos \frac{4}{9}-\cos \frac{\pi}{9}=0$

$$
\therefore \cos \frac{211}{9}+\cos \frac{1 \pi}{9}=\cos \frac{1}{9}
$$

n) $\alpha \beta \gamma=-\frac{1}{8} \quad \cos \frac{2 \pi}{9} \times \cos \frac{\pi}{9} x-\cos \frac{\pi}{9}=-\frac{1}{8}$

$$
\therefore \sec \frac{\pi}{9} \times \sec \frac{\pi}{9} \times \operatorname{sen} \frac{1}{9} \geq 8
$$

$$
\begin{aligned}
& \begin{array}{lll}
\hline \text { Start here for } \\
\text { Question Number: } & 11 & \alpha+\beta \text { 合 } \gamma+8=-\beta
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \left(\sqrt{20} 10 \frac{\pi}{4}\right)^{4} \\
& (1+i)^{4}=-4 \quad(1-i)^{4}=\left(\sqrt{2} c_{15} \frac{-1}{4}\right)^{4} \\
& (1+i)^{3}=\left(\sqrt{2} \operatorname{cis} \frac{\pi}{4}\right)^{3}=-4 \\
& =-2+2 i \quad(1-0)^{3}=\left(\sqrt{2} a 5-\frac{\pi}{4}\right)^{j} \\
& =-2-2 i \\
& \text { young } z=1+c \\
& -4+p(-2+21)+q(1+1)-p-6=0 \\
& -10-3 p+q+2 u p+1 q=0 \\
& \text { (sing } z=1-i \\
& -4+p(-2-20)+q(1-2)-p-6=0 \\
& -10-3 p+q-2 \tau p-1 q=0 \text {-(2) } \\
& \text { (1) }+2 \\
& -20-6 p+2 q=0 \\
& \therefore-3 p+q=10 \text {. } \\
& \text { (1) }-(2) \\
& 4 u p+2 t q=0 \\
& \therefore 2 p+q=0
\end{align*}
$$

ii)

$$
\begin{aligned}
& -3 p+q=10 \\
& 2 p+q=0 \\
& -5 p=10 \\
& p=-2 \\
& q=4 \\
& r=+2-6=-4
\end{aligned}
$$

iii) Equation to

$$
\begin{gathered}
z^{4}-2 z^{3}+4 z-4=0 \\
(z-(1+0))(z-(1-i))=z^{2}-2 z+2 \text { ss fact } \\
\frac{z^{2}-2}{\left.z^{2}-2 z+2\right) \frac{z^{4}-2 z^{3}+4 z-4}{z^{4}-2 z^{3}+2 z^{2}}}-2 z^{2}+4 z-4
\end{gathered}
$$

\therefore Root are $(1+c)(1-2) \sqrt{2},-\sqrt{2}$
C)

$$
\begin{aligned}
& \angle A T C=90{ }^{\circ}(\triangle \text { innmi-arde) } \\
& 1 \angle P A C=\angle A C=y \text { (angein alt oegmon) }
\end{aligned}
$$

In $\triangle A P T$

$$
\begin{aligned}
2 x+2 y+90 & =180 \\
2 x+2 y & =90 \\
\therefore x+y & =45
\end{aligned}
$$

$\therefore \tan A 13 P$

$$
\begin{array}{r}
90+\lambda+4+F B P=180 \\
\angle T B P=180-135 \\
=46^{\circ}
\end{array}
$$

Q)S
(a)) $L(a \cos \theta, b \sin \theta)$

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a>b) \\
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{-b^{2} \cdot x}{a^{2} y} \\
=\frac{-b^{2} \operatorname{atcos} b}{a^{2} \sin b} \\
=\frac{-b}{a} \frac{\cos b}{\sin \theta} \quad 1
\end{gathered}
$$

$$
y-b \sin t=\frac{-b \cos b}{a \sin b}(x-a \cos b)
$$

$$
\begin{aligned}
a y \sin b-a b \sin ^{2} b & =-b x a_{0} b+a b \cos ^{2} b \\
b x \cos b+a y \sin b & =a b\left(\sin ^{2} b+c^{2} b\right) \pm \\
& =a b
\end{aligned}
$$

ii)

($0_{5} \pm 9$ satuofess $b x c_{s} b+a y \sin p e a b$

$$
\pm a^{2} \sin B=a b
$$

$$
\frac{1}{\sin b=\frac{b}{a}} 1
$$

$$
\therefore 2
$$

$$
\left(a \cos b, \pm \frac{b^{2}}{a}\right) \perp
$$

since $\sin B= \pm \frac{b}{a}$

$$
\therefore \cos b=\frac{\sqrt{a^{2} b^{2}}}{a}
$$

So $32=a \cos b$

$$
=\frac{ \pm a \sqrt{a^{2} b^{2}}}{a}=\sqrt[\pm]{a^{2}-b^{2}} 1
$$

for etciper $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{aligned}
\therefore d^{2}-b^{2} & =a^{2} e^{2} \\
\therefore x & = \pm \sqrt{a^{2} e^{2}} \\
& = \pm a c
\end{aligned}
$$

whiches tho Loi
(0)S
(i) $x y=4$ $P\left(2 p, \frac{2}{p}\right)$

$$
\begin{aligned}
& y=\frac{4}{x} \\
& y=-\frac{4}{\pi^{2}}=-\frac{1}{p^{2}}
\end{aligned}
$$

Nermel:

$$
\begin{gathered}
y-\frac{2}{p}=p^{2}(x-2 p) \\
p y-2=p^{3 x-2 p^{4}} \\
p y-p^{3} x=2\left(1-p^{4}\right) \quad 1
\end{gathered}
$$

$$
\text { ii) }\left(2 q, \frac{2}{q}\right)
$$

$$
\begin{aligned}
& 2 p-2 p^{3} q=2\left(1-p^{4}\right) \\
& q q k \\
& 2 p-p p^{3} q^{2}=2 q\left(1-p^{4}\right) \\
& p-p^{3} q^{2}=q-q p^{4} \\
& p-q=p^{3} q^{2}-q p^{4} \\
& -(q-p)=p^{3} q(q-p) \\
& \therefore p^{3} q=1
\end{aligned}
$$

$O A C B$ is a rhember: $\triangle O$ braecto ($B O A$
set Arg $\omega=$?

$$
\begin{aligned}
& \therefore \operatorname{Arg}(\omega+\phi)=\left(\frac{\pi}{3}+\theta\right) \\
& \operatorname{Arg}(-\omega+\phi)^{2}=\left(2 \frac{\pi}{3}+2 \theta\right) \\
& |\omega * \phi|=r
\end{aligned}
$$

$$
\begin{aligned}
& \therefore(\omega+\phi)^{2}-r^{2} \operatorname{cis}\left(\frac{2 \pi}{3}+26\right) \\
& \omega \phi=r \cos B \times r \cos \left(b+\frac{2 \pi}{3}\right) \\
& =r^{2} \cos \left(6+67 \frac{\pi}{5}\right) \\
& =r^{2} \cos \left(2+\frac{2 \pi}{3}\right) \\
& =(\omega+\phi)^{2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi(2 \ln 4-\ln 3-(2 \ln 2-\ln 1)) \\
& =2 \pi\left(\ln \frac{16}{3}-\ln 4\right) \\
& =2 \pi \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
I_{n} & =\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{n}} d x \\
I_{1} & =\int_{0}^{2} \frac{1}{1+41^{2}} d x \\
& =\frac{1}{4} \int_{0}^{\frac{1}{4}} \frac{1}{\left(\frac{1}{2}\right)^{2}+x^{2}} d x \\
& \left.=\frac{1}{2} \tan ^{-1} 2 x\right]_{0}^{2} \\
& \left.=\frac{1}{2}+\tan (1)-\tan ^{-1} 0\right) \\
& =\frac{2 \pi}{4} \\
& =\frac{\pi}{8} \\
& =\frac{1}{8}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left.\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{n}} d x=x \cdot\left(1+4 x^{1}\right)^{-n}\right]_{0}^{\frac{1}{2}}--n \int_{0}^{\frac{1}{2}} 8 x^{2} /\left(1+4 x^{-2}\right)^{n+1} d x \\
& =\frac{1}{2 \times 2^{n}}+2 n \int_{0}^{\frac{1}{2}} \frac{4 x^{0}}{\left(1+4 x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2^{n+1}}+2 n \int_{0}^{1} \frac{1+4 x^{2}}{\left(1+4 x^{2}\right)^{n+x}}-\frac{1}{\left(1+4 x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2^{n+1}}+2 n \int_{-}^{1} \frac{1}{\left(1+4 n^{2}\right)^{n}}-\frac{1}{1(1,2)+1} d x
\end{aligned}
$$

$$
\begin{aligned}
& I_{n}=\frac{1}{2^{n+1}}+2 n\left(I_{n}-I_{n+1}\right) \\
& I_{n}=\frac{1}{2^{n+1}}+2 n I_{n}=2 n I_{n+1} \\
& \text { (20nt) }(1-2 n) I_{n}=\frac{1}{2^{n+1}}-2 n I_{n+1} \\
& \therefore I_{n}=\frac{1}{2^{n+1}(1-2 n)}-\frac{2 n I_{n+1}}{1-2 n} \\
& =\frac{1}{2^{n+1}(1-z n)}+\frac{z_{n}-I_{n+1}}{z_{n-1}} \\
& \therefore \text { in) } I_{1}=\frac{1}{2^{2} \times(1-2)}+\frac{2 I_{2}}{1}=\frac{\pi}{8} \\
& 2 I_{2}=\frac{\pi}{8}+\frac{1}{4} \\
& I_{2}=\frac{\pi+2}{16} \\
& I_{2}=\frac{1}{2^{3}(1-4)}+\frac{4 I_{3}}{3}=\frac{11+2}{16} \\
& \frac{4 I_{3}}{3}=\frac{\pi+2}{16}+\frac{1}{24} \\
& \therefore I_{3}=\frac{3}{4}\left(\frac{\pi+2}{16}+\frac{1}{24}\right) \\
& =\frac{3}{4}\left(\frac{3 \pi+6+2}{48}\right) \\
& =\frac{9 \pi+24}{4 \times 48}=\frac{3 \pi+8}{84}
\end{aligned}
$$

