

Name: _____

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2017

HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC Mathematics Extension 2

Time allowed: 3 hours

(plus 5 minutes reading time)

Syllabus	Assessment Area Description and Marking Guidelines	Questions
Outcomes		
E1	Chooses and applies appropriate mathematical techniques in order to	1-10
	solve a broad range of problems effectively	
E3	Uses the relationship between algebraic and geometric representations	11
	of complex numbers	
E6	Combines the ideas of algebra and calculus to determine the important	12
	features of the graphs of a wide variety of functions	
E4	Uses efficient techniques for the algebraic manipulation required in	13
	dealing with questions such as those involving conic sections and	
	polynomials	
E7, E8	Applies further techniques of integration, such as slicing and cylindrical	14,15
	shells, integration by parts and recurrence formulae, to problems	
E2-E8	Synthesises mathematical processes to solve harder problems and	16
	communicates solutions in an appropriate form	

Total Marks 100

Section I 10 marks

Multiple Choice, attempt all questions. Allow about 15 minutes for this section.

Section II 90 Marks

Attempt Questions 11-16. Allow about 2 hours 45 minutes for this section.

General Instructions:

- <u>Questions 11-16</u> are to be started in a new booklet.
- The marks allocated for each question are indicated.
- <u>In Questions 11 16</u>, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used.

Section I	Total 10	Marks
Q1-Q10	/10	
Section II	Total 90	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
Q15	/15	
Q16	/15	
	Percent	

Section I (10 marks)

Attempt questions 1–10. Allow about 15 minutes for this section. Use the multiple-choice answer sheet for Questions 1–10.

Question 1.

Which graph best describes $y = |\tan^{-1}(x)|$?

Question 2.

If $z = \sqrt{3} + i$ then $z - \frac{1}{z}$ is equal to

(A)
$$\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$$

(B) $\sqrt{3}$

(C)
$$\frac{3\sqrt{3}}{4} + \frac{5i}{4}$$

Question 3.

What are the coordinates of the foci if the equation of an ellipse is given by $4x^2 + 9y^2 = 36$

- (A) $S(\pm\sqrt{5},0)$
- (B) $S(\pm\sqrt{13},0)$
- (C) $S\left(0,\pm\sqrt{5}\right)$
- (D) $S(0,\pm\sqrt{13})$

Question 4.

Find the remainder when $P(x) = x^4 - 3x^3 + 2x^2 + 1$ is divided by x - i.

- (A) -2 + 3i
- (B) 3
- (C) –3*i*
- (D) 3*i*

Question 5.

What integral could be used to calculate $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\sin x}$?

(A)
$$\int_0^1 \frac{1}{(1+t)^2} dt$$

(B)
$$\int_0^1 \frac{1+t^2}{(1+t)^2} dt$$

(C)
$$\frac{1}{2}\int_{0}^{1}\frac{1}{(1+t)^{2}}dt$$

(D)
$$2\int_0^1 \frac{1}{(1+t)^2} dt$$

Question 6.

An object, of mass *m*, falling under gravity experiences resistance proportional to its velocity. Which expression best describes the terminal velocity of the object. Let the resistance force be given by R = mkv.

- (A) $\frac{g}{k}$
- (B) $\frac{mg}{k}$
- (C) g-k
- (D) g+k

Question 7.

Find $\int \sec^2 \theta \tan^2 \theta \ d\theta$.

- (A) $\sec^2 \theta + \frac{1}{2}\tan^2 \theta + C$
- (B) $\frac{1}{3}\tan^3\theta + C$
- (C) $\tan^4 \theta \frac{1}{5} \tan^5 \theta + C$

(D)
$$\tan^4 \theta - \ln \left| \cos^4 \theta \right| + C$$

Question 8.

The polynomial $P(x) = x^3 - 5x^2 - 8x + 48$ has an integer double root at $x = \alpha$. Find the value of α .

- (A) $\alpha = 0$
- (B) $\alpha = 3$
- (C) $\alpha = -3$
- (D) $\alpha = 4$

Question 9.

The diagram shows a wedge cut from a cylinder of radius *r*. The angle from between the top and bottom of the wedge,

 θ , is $\frac{\pi}{6}$ radians. Triangular cross sections are taken perpendicular to the *x* axis.

Which expression best describes the volume of the wedge?

(A)
$$V = \int_{-r}^{r} \frac{1}{2\sqrt{3}} \left(r^2 - x^2\right) dx$$

(B)
$$V = \int_{-r}^{r} \frac{1}{\sqrt{3}} \left(r^2 - x^2 \right) dx$$

(C)
$$V = \int_{-r}^{r} (r^2 - x^2) dx$$

(D)
$$V = \int_{-r}^{r} \frac{\sqrt{3}}{2} (r^2 - x^2) dx$$

Question 10.

In the Argand diagram, ABCD is a square and the vertices A and B correspond to the complex numbers w and z.

What complex number corresponds to the vector BD?

- (A) (z-w)(1+i)
- (B) (w-z)(1-i)
- (C) (w-z)(1+i)

(D) (w+z)(1-i)

Section II (90 marks)

Attempt Questions 11–16. Allow about 2 hours and 45 minutes for this section. Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11–16, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use a *separate* writing booklet

(a) (i) Write
$$z = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$$
 in modulus argument form.
(ii) Show that z is a solution of the equation
 $z^6 + 4z^4 + 8\sqrt{3}i = 0$
(b) Find two numbers whose sum is 6 and whose product is 13
(c) Describe in geometric terms the curve described by $2|z| = z + \overline{z} + 4$
3

(d) ω is a non-real cube root of unity.

(i) Find the value of
$$\frac{1}{\omega^2} + \frac{1}{\omega}$$
 1

(ii) Show that
$$\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2} + \frac{1+2\omega+3\omega^2}{3+\omega+2\omega^2} = -1$$
 2

(e) Sketch on an Argand diagram the locus of *z* where the following conditions hold.

$$0 \le \arg(z+1-i) \le \frac{3\pi}{4}$$
 and $|z+1-i| \le 2$

3

Question 12 (15 marks) Use a *separate* writing booklet

(a) The graph of y = f(x) is displayed below. The lines y = 1, x = 0 and y = 0 are asymptotes.

Sketch each of the graphs below and, without using calculus, clearly label any maxima or minima, intercepts and the equations of any asymptotes.

(i)
$$y = \left| f(x) \right|$$
 2

(ii)
$$y = e^{f(x)}$$
 2

(iii)
$$y^2 = f(x)$$
 2

(iv)
$$y = \frac{1}{f(x)}$$
 2

(b) State the domain and range of $f(x) = \ln(\cos^{-1} x)$ 2

- (c) Find the equation of the tangent to the curve $x^3 + y^3 8y + 7 = 0$ at the point P(1,2)
- (d) Find all real roots of the polynomial

$$P(x) = x^4 - x^3 - 4x^2 - 2x - 12$$

given one of the roots is $i\sqrt{2}$.

2

3

Question 13 (15 marks) Use a *separate* writing booklet

(a) A hyperbola is defined by the equation $16x^2 - 9y^2 = 144$.

(i)	Find the coordinates of the foci and the equations of each directrix and asymptote.	3
(ii)	Find the gradient of the tangent to the hyperbola at point $P(3 \sec \theta, 4 \tan \theta)$.	2
(iii)	Show that the tangent to the hyperbola at <i>P</i> has the equation $4x = 3y\sin\theta + 12\cos\theta$.	2
(iv)	Given $0 < \theta < \frac{\pi}{2}$, show that Q, the point of intersection of the tangent to the hyperbola	
	at <i>P</i> and the nearer directrix, has coordinates $Q\left(\frac{9}{5}, \frac{12-20\cos\theta}{5\sin\theta}\right)$.	2
(v)	Show that lines joining SP and SQ are perpendicular.	3
(vi)	Hence show the area of the triangle formed by <i>PSQ</i> is $\frac{2(5-3\cos\theta)^2}{5\sin\theta\cos\theta}$.	3

Question 14 (15 marks) Use a *separate* writing booklet

(a) The chord *PQ* on the rectangular hyperbola $xy = c^2$ is constructed such that the horizontal distance between points *P* and *Q* has a constant length 2*c*, where points *P* and *Q* lie in the first quadrant.

Find the locus of the midpoint of PQ in terms of x, y and c.

(b) The region bounded by the parabola $y^2 = 4x$ and the line x = 2 is rotated about the line x = 6. 4 Using the method of cylindrical shells, find the volume of the solid formed.

(c) Using the substitution
$$u^2 = 4 - x^2$$
 evaluate $\int_0^2 x^3 \sqrt{4 - x^2} dx$ 4

(d) Use the method of integration by parts to evaluate
$$\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \, dx$$

3

4

(a)

The base of a solid is the region in the first quadrant bounded by the graphs of y = x and $y = x^2$. Each cross section perpendicular to the *y* - axis is a square as shown in the diagram.

Find the volume of the solid formed.

(b) (i) Find numbers *a*, *b* and *c* such that

$$\frac{x^2}{4x^2 - 9} \equiv a + \frac{b}{2x - 3} + \frac{c}{2x + 3}$$

(ii) Hence evaluate
$$\int_0^1 \frac{x^2}{4x^2 - 9} dx$$

(c) An object falls from rest, under gravity, for a time of $\frac{1}{2k}$ seconds before hitting water and experiencing an upward resistance of mkv, where *m* is the mass of the object, *v* the object's velocity and *k* is a positive constant.

Let g be the acceleration due to gravity and take the downwards motion to be in the positive direction.

- (i) Show that when the object hits the water its velocity will be $\frac{g}{2k}$ and 2 the distance travelled is $\frac{g}{8k^2}$
- (ii) Show that the total distance travelled when the object's velocity is $\frac{3g}{4k}$ is given by 4

$$x = \frac{g}{k^2} \ln 2 - \frac{g}{8k^2}$$

4

3

2

(a) The polynomial $x^4 - 5x^3 - 2x^2 + 3x + 1 = 0$ has roots α, β, γ and δ .

Find an equation with roots
$$\alpha^2 - 1$$
, $\beta^2 - 1$, $\gamma^2 - 1$ and $\delta^2 - 1$.

(b) Let
$$I_n = \int \frac{dx}{(1+x^2)^n}$$
 where *n* is a non-negative integer.

(i) Show that
$$I_{n+1} = \frac{1}{2n} \frac{x}{(1+x^2)^n} + \frac{2n-1}{2n} I_n$$
. 3

(ii) Hence find
$$I_3$$
. 2

(c) Two stones are thrown simultaneously from the same point in the same direction and with the same angle of projection, α , but with different velocities *U*, *V* metres per second *U* <*V*.

The slower stone hits the ground at a point *P* on the same level as the point of projection. At that instant the faster stone just clears a wall of height *h* metres above the level of projection and its (downward) path makes an angle β with the horizontal.

(i)	Express the distance from P to the foot of the wall in terms of h and α only.	3
(ii)	Show that $V(\tan \alpha + \tan \beta) = 2U \tan \alpha$.	3
(iii)	Deduce that if, $\beta = \frac{1}{2}\alpha$, then $U < \frac{3}{4}V$.	2

End of examination.

Section I (10 marks)

Attempt questions 1–10. Allow about 15 minutes for this section. Use the multiple-choice answer sheet for Questions 1–10.

Multiple Choice Answer Sheet

Circle the correct answer in pen

1	А	В	С	D
2	А	В	С	D
3	А	В	С	D
4	А	В	С	D
5	А	В	С	D
6	А	В	С	D
7	А	В	С	D
8	А	В	С	D
9	А	В	С	D
10	Α	В	С	D

Question 1.

Which graph best describes $y = |\tan^{-1}(x)|$?

Question 2.

If $z = \sqrt{3} + i$ then $z - \frac{1}{z}$ is equal to

(A)
$$\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$$

(B) $\sqrt{3}$

(C)
$$\frac{3\sqrt{3}}{4} + \frac{5i}{4}$$

(D) 1

Question 3.

What are the coordinates of the foci if the equation of an ellipse is given by $4x^2 + 9y^2 = 36$

Question 4.

Find the remainder when $P(x) = x^4 - 3x^3 + 2x^2 + 1$ is divided by x - i.

Question 5.

What integral could be used to calculate $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\sin x}$?

(A)
$$\int_0^1 \frac{1}{(1+t)^2} dt$$

(B)
$$\int_{0}^{1} \frac{1+t^{2}}{(1+t)^{2}} dt$$

(C)
$$\frac{1}{2}\int_{0}^{1}\frac{1}{(1+t)^{2}}dt$$

(D)
$$2\int_{0}^{1} \frac{1}{(1+t)^{2}} dt$$

Question 6.

An object, of mass *m*, falling under gravity experiences resistance proportional to its velocity. Which expression best describes the terminal velocity of the object.

(D) g+k

Question 7.

Find $\int \sec^2 \theta \tan^2 \theta \ d\theta$.

(A) $\sec^2 \theta + \frac{1}{2} \tan^2 \theta + C$ (B) $\frac{1}{3} \tan^3 \theta + C$ (C) $\tan^4 \theta - \frac{1}{5} \tan^5 \theta + C$

(D)
$$\tan^4 \theta - \ln \left| \cos^4 \theta \right| + C$$

Question 8.

The polynomial $P(x) = x^3 - 5x^2 - 8x + 48$ has an integer double root at $x = \alpha$. Find the value of α .

(A) $\alpha = 0$ (B) $\alpha = 3$ (C) $\alpha = -3$ (D) $\alpha = 4$

Question 9.

The diagram shows a wedge cut from a cylinder of radius r. The angle from between the top and bottom of the wedge,

 θ , is $\frac{\pi}{6}$ radians. Triangular cross sections are taken perpendicular to the *x* axis.

Which expression best describes the volume of the wedge?

(A)
$$V = \int_{-r}^{r} \frac{1}{2\sqrt{3}} (r^2 - x^2) dx$$

(B)
$$V = \int_{-r}^{r} \frac{1}{\sqrt{3}} \left(r^2 - x^2 \right) dx$$

(C)
$$V = \int_{-r}^{r} (r^2 - x^2) dx$$

(D)
$$V = \int_{-r}^{r} \frac{\sqrt{3}}{2} (r^2 - x^2) dx$$

Question 10.

In the Argand diagram, ABCD is a square and the vertices A and B correspond to the complex numbers w and z.

What complex number corresponds to the vector *BD*?

Section II (90 marks)

Use a separate writing booklet **Question 11** (15 marks)

(a) (i) Write
$$z = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$$
 in modulus argument form.

Solution

$$|z| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{6}}{2}\right)^2} \quad \arg z = \tan^{-1} \left(\frac{\sqrt{6}}{2}\right)^2$$
$$= \sqrt{\frac{1}{4} + \frac{3}{2}} \qquad = \tan^{-1} \left(\sqrt{3}\right)$$
$$= \sqrt{2} \qquad = \frac{\pi}{3}$$

$$=\frac{\pi}{3}$$

$$\therefore \qquad z = \sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

(ii)

Show that z is a solution of the equation

Solution

$$z^{6} + 4z^{4} + 8\sqrt{3}i = \left[\sqrt{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right]^{6} + 4\left[\sqrt{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right]^{4} + 8\sqrt{3}i$$
$$= \left[8\left(\cos 2\pi + i\sin 2\pi\right)\right] + 4\left[4\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)\right] + 8\sqrt{3}i$$
$$= \left[8\right] + 4\left[4\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right] + 8\sqrt{3}i$$
$$= 8 + \left[-8 - 8\sqrt{3}i\right] + 8\sqrt{3}i$$
$$= 0$$

Therefore z is a solution as P(z) = 0 by the remainder theorem.

Find two numbers whose sum is 6 and whose product is 13 (b)

Solution

This problem is akin to solving $z^2 - 6z + 13 = 0$

$$z = \frac{6 \pm \sqrt{36 - 4 \times 1 \times 13}}{2}$$
$$= \frac{6 \pm \sqrt{-16}}{2}$$
$$= 3 \pm 2i$$

_____ Suggested marking scheme

2 Correct response

1 Not writing in mod/arg form or One incorrect modulus or argument Marker's comments

Generally well done.

Students that tried to evaluate mod z without showing working invariably got it wrong.

$z^{6} + 4z^{4} + 8\sqrt{3}i = 0$

Suggested marking scheme 2 Correct response 1 With one error or Incomplete setting out Marker's comments

Students should be mindful to make a concluding statement.

Suggested marking scheme

2 Correct response 1 Recognizing equation to solve Marker's comments

Mostly well done.

Students who got the wrong answer should have checked the product or sum of their numbers.

ı I

Let z = x + iy $2|z| = z + \overline{z} + 4$ $2\sqrt{x^2 + y^2} = x + iy + x - iy + 4$ $\sqrt{x^2 + y^2} = x + 2$ $x^2 + y^2 = x^2 + 4x + 4$ $y^2 = 4(x + 1)$

Therefore the locus is a parabola with the vertex (-1,0), directrix x = -2 and focus S(0,0).

(d) ω is a non-real cube root of unity.

(i) Find the value of
$$\frac{1}{\omega^2} + \frac{1}{\omega}$$

Solution

 ω is a non-real cube root of unity implies

$$\omega^{3} = 1$$

$$\omega^{3} - 1 = 0$$

$$(\omega - 1)(\omega^{2} + \omega + 1) = 0$$

$$\omega \neq 1, \quad and$$

$$\omega^{2} + \omega + 1 = 0$$

$$\frac{1}{\omega^{2}} + \frac{1}{\omega} = \frac{\omega + \omega^{2}}{\omega^{3}}$$

$$= \frac{-1}{1}$$

= -1

Suggested mark	ing scheme
	0
3 Correct	response
2 Finding	the equation of the locus but not
describ	ing the locus
1 Partial	solution
Marker's comm	ents
Students should i.e. $y^2 = 4(x +$	leave the equation in locus form 1) .
Describe means referencing the l Students should while helpful do	to explain the equation in words ey features of the parabola. avoid using " <i>sideways</i> ". Graphs not attract marks.
There were man	y careless error with this question.

i _____

Suggested marking scheme

1 Correct response *Marker's comments*

Generally well done.

(ii) Show that
$$\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2} + \frac{1+2\omega+3\omega^2}{3+\omega+2\omega^2} = -1$$

Solution

Trying to rewrite the LHS in terms of part (i)

$$\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2} + \frac{1+2\omega+3\omega^2}{3+\omega+2\omega^2} = \frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2} \times \frac{\omega^2}{\omega^2} + \frac{1+2\omega+3\omega^2}{3+\omega+2\omega^2} \times \frac{\omega}{\omega}$$
$$= \frac{\omega^2+2\omega^3+3\omega^4}{\left(2+3\omega+\omega^2\right)\omega^2} + \frac{\omega+2\omega^2+3\omega^3}{\left(3+\omega+2\omega^2\right)}$$
$$= \frac{\omega^2+2+3\omega}{\left(2+3\omega+\omega^2\right)\omega^2} + \frac{\omega+2\omega^2+3}{\left(3+\omega+2\omega^2\right)\omega}$$
$$= \frac{1}{\omega^2} + \frac{1}{\omega}$$
$$= -1$$

Suggested marking scheme

2 Correct response1 partial solutionMarker's comments

This was the most difficult part of the question and many students did **not** make the connection between part (i). There were some very lengthy answers that made poor use of the time.

(e) Sketch on an Argand diagram the locus of z where the following conditions hold.

$$0 \le \arg(z+1-i) \le \frac{3\pi}{4}$$
 and $|z+1-i| \le 2$

Solution

Sugge	ested marking scheme
3	Correct response
2	One error e.g. including the full circle or u nclear radius or closed circle etc
1	Two errors.
Marke	er's comments
Very	poorly answered. Many students
•	confused <i>AND</i> with <i>OR</i> and included the full circle.
•	left out an open circle around $\left(-1,1 ight)$ on
	the Argand diagram where the argument does not exist.
•	did not clearly show the radius of the circle.

Question 12 (15 marks) Use a *separate* writing booklet

(a) The graph of y = f(x) is displayed below. The lines y = 1, x = 0 and y = 0 are asymptotes.

Sketch each of the graphs below and, without using calculus, clearly label any maxima or minima, intercepts and the equations of any asymptotes.

(i) $y = \left| f(x) \right|$

Sugg	ested marking scheme
2	Correct response including
	intercepts, max/min, shape i.e.
	how it approaches asymptotes.
1	partial solution with correct
	intercepts, max/min points or
	shape including how it
	approaches asymptotes.
Mark	er's comments
Mos	tly well done.
Som	e students incorrectly found
y = .	f(x) instead.

(ii)
$$y = e^{f(x)}$$

Solution

Solution

Suggested marking scheme

Correct response including intercepts, max/min, shape i.e. how it approaches asymptotes.
 partial solution with correct intercepts, max/min points or

shape including how it approaches asymptotes.

Marker's comments

Some students did not mark asymptotes.

Suggested marking scheme

 Correct response including intercepts, max/min, shape i.e. how it approaches asymptotes.
 partial solution with correct intercepts, max/min points or shape including how it approaches asymptotes.

Marker's comments

x = -1 and x = 2 are critical points and students needed to indicate an undefined gradient and in the case of x = 2, a cusp.

Suggested marking scheme

- Correct response including intercepts, max/min, shape i.e. how it approaches asymptotes.
 partial solution with correct intercepts, max/min points or shape including how it approaches asymptotes.
 - Marker's comments

Mostly well done.

Many students did not mark x = 0 with an open circle.

(b) State the domain and range of
$$f(x) = \ln(\cos^{-1} x)$$

Solution

(c) Find the equation of the tangent to the curve $x^3 + y^3 - 8y + 7 = 0$ at the point P(1,2)

Solution

Find the equation of the gradient

$$3x^{2} + 3y^{2} \times \frac{dy}{dx} - 8 \times \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} (3y^{2} - 8) = -3x^{2}$$
$$\frac{dy}{dx} = \frac{-3x^{2}}{3y^{2} - 8}$$
At $P(1,2)$
$$\frac{dy}{dx} = \frac{-3}{4}$$

Therefore the equation of the tangent is

$$y - 2 = -\frac{3}{4}(x - 1)$$

3x + 4y - 11 = 0

Suggested marking scheme		
2	Correct response	
1	partial solution	
Mark	xer's comments	
Gene	erally well done.	

(d) Find all real roots of the polynomial

 $P(x) = x^4 - x^3 - 4x^2 - 2x - 12$

given one of the roots is $i\sqrt{2}$. Solution

Given $i\sqrt{2}$ is a root then by complex conjugate theorem $-i\sqrt{2}$ is a root.

$$\Rightarrow (x - i\sqrt{2})(x + i\sqrt{2}) \text{ are factors of } P(x)$$
$$= (x^{2} + 2)$$

By polynomial division $P(x) = (x^2 + 2)(x^2 - x - 6)$

Therefore the real roots of P(x) are x = -2,3

Question 13 (15 marks)

(a) A hyperbola is defined by the equation $16x^2 - 9y^2 = 144$.

= 144.

(i) Find the coordinates of the foci and the equations of each directrix and asymptote.

Solution

Finding the values of *a* and *b*.

$$16x^{2} - 9y^{2} = 144$$
$$\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1$$
$$\implies a = 3, b = 4$$

Finding the eccentricity

Foci: $S(\pm ae, 0)$ $S\left(\pm 3 \times \frac{5}{3}, 0\right)$ $S(\pm 5, 0)$

Directrix: $x = \pm \frac{a}{e}$ $= \pm \frac{3}{\frac{5}{3}}$ $= \pm \frac{9}{5}$ Asymptotes: $y = \pm \frac{b}{a}x$ $= \pm \frac{4}{3}x$

Suggested marking scheme Correct response One error finding the values of a and b Marker's comments Well done.

¦ ._____

Find the gradient of the tangent to the hyperbola at point $P(3 \sec \theta, 4 \tan \theta)$. (ii)

Solution	Suggested marking scheme	
At P $\frac{dy}{dx} = \frac{4 \sec^2 x}{3 \sec x \tan x}$ $= \frac{4}{3} \csc x \text{ or}$ $= \frac{4 \sec x}{3 \tan x} \text{ or } \frac{4}{3 \sin x}$	 2 Correct response 1 partial solution Marker's comments Well done. 	

Show that the tangent to the hyperbola at P has the equation $4x = 3y\sin\theta + 12\cos\theta$. (iii)

Solution

$y - 4 \tan \theta = \frac{4 \sec \theta}{2 \cos \theta} (x - 3 \sec \theta)$	Suggested marking scheme
$3 \tan \theta$ $3 y \tan \theta - 12 \tan^2 \theta = 4x \sec \theta - 12 \sec^2 \theta$ $4x \sec \theta - 3y \tan \theta = 12 (\sec^2 \theta - \tan^2 \theta)$	 2 Correct response 1 partial solution Marker's comments
$\frac{4x}{\cos\theta} - \frac{3y\sin\theta}{\cos\theta} = 12\left(\tan^2\theta + 1 - \tan^2\theta\right)$ $4x - 3y\sin\theta = 12\cos\theta$	Well done.
$4x = 3y\sin\theta + 12\cos\theta \#$	

Given $0 < \theta < \frac{\pi}{2}$, show that Q, the point of intersection of the tangent to the hyperbola (iv)

at *P* and the nearer directrix, has coordinates $Q\left(\frac{9}{5}, \frac{12-20\cos\theta}{5\sin\theta}\right)$.

2

Solution

Solving $x = \frac{9}{5}$ with $4x = 3y\sin\theta + 12\cos\theta$ $4\left(\frac{9}{5}\right) = 3y\sin\theta + 12\cos\theta$ $\frac{36}{5} - 12\cos\theta = 3y\sin\theta$ $y = \frac{12}{5\sin\theta} - \frac{4\cos\theta}{\sin\theta}$ $=\frac{12-20\cos\theta}{5\sin\theta} \#$

Suggested marking scheme 2 Correct response 1 partial solution Marker's comments Well done. 1

(v) Show that lines joining *SP* and *SQ* are perpendicular.

Solution

$$S(5,0) P(3\sec\theta, 4\tan\theta) Q\left(\frac{9}{5}, \frac{12 - 20\cos\theta}{5\sin\theta}\right)$$
$$m_{SP} = \frac{4\tan\theta - 0}{3\sec\theta - 5} \qquad m_{SQ} = \frac{\frac{12 - 20\cos\theta}{5\sin\theta} - 0}{\frac{9}{5} - 5}$$
$$= \frac{\frac{4\sin\theta}{\cos\theta}}{\frac{3}{\cos\theta} - \frac{5\cos\theta}{\cos\theta}} \qquad = \frac{12 - 20\cos\theta}{-16\sin\theta}$$
$$= \frac{4\sin\theta}{3 - 5\cos\theta}$$

Sugge	ested marking scheme
3 2	Correct response One error or Did not simplify m_{sp} or m_{so}
1 Mark	Finding the m_{SP} or m_{SQ} er's comments
Many missi	y did not simplify m_{SP} or m_{SQ} (i.e. were ng steps).

$$m_{SP} \times m_{SQ} = \frac{4\sin\theta}{3 - 5\cos\theta} \times \frac{12 - 20\cos\theta}{-16\sin\theta}$$
$$= \frac{1}{3 - 5\cos\theta} \times \frac{4(3 - 5\cos\theta)}{-4}$$
$$= -1$$

Therefore SP and SQ are perpendicular

(vi) Hence show the area of the triangle formed by
$$PSQ$$
 is $\frac{2(5-3\cos\theta)^2}{5\sin\theta\cos\theta}$.

Solution

Since SP and SQ are perpendicular are can be found by $\frac{1}{2}bh$

$$SQ^{2} = \left(\frac{9}{5} - 5\right)^{2} + \left(\frac{12 - 20\cos\theta}{5\sin\theta} - 0\right)^{2}$$
$$= \frac{256}{25} + \left(\frac{4(3 - 5\cos\theta)}{5\sin\theta}\right)^{2}$$
$$= \frac{256}{25} + \frac{16(9 - 30\cos\theta + 25\cos^{2}\theta)}{25\sin^{2}\theta}$$
$$= \frac{256\sin^{2}\theta + 144 - 480\cos\theta + 400\cos^{2}\theta}{25\sin^{2}\theta}$$
$$= \frac{256 - 256\cos^{2}\theta + 144 - 480\cos\theta + 400\cos^{2}\theta}{25\sin^{2}\theta}$$
$$= \frac{400 - 480\cos\theta + 144\cos^{2}\theta}{25\sin^{2}\theta}$$
$$= \frac{400 - 480\cos\theta + 144\cos^{2}\theta}{25\sin^{2}\theta}$$
$$= \frac{(20 - 12\cos\theta)^{2}}{25\sin^{2}\theta}$$

$$SP^{2} = (3 \sec \theta - 5)^{2} + (4 \tan \theta - 0)^{2}$$

= 9 \sec^{2} \theta - 30 \sec \theta + 25 + 16 \tan^{2} \theta
= 9 \sec^{2} \theta - 30 \sec \theta + 25 + 16 \sec^{2} \theta - 16
= 25 \sec^{2} \theta - 30 \sec \theta + 9
= (5 \sec \theta - 3)^{2}

$$A = \frac{1}{2} \times SP \times SQ$$

= $\frac{1}{2} \times (5 \sec \theta - 3) \times \frac{(20 - 12 \cos \theta)}{5 \sin \theta}$
= $\frac{1}{2} \times \left(\frac{5 - 3 \cos \theta}{\cos \theta}\right) \times \frac{4(5 - 3 \cos \theta)}{5 \sin \theta}$
= $\frac{2(5 - 3 \cos \theta)^2}{5 \sin \theta \cos \theta}$

Suggested marking scheme Correct response One error or Did not simplify SP or SQ finding SP² Marker's comments Generally well done. Some did not simplify SP or SQ (i.e. were missing steps).

Question 14 (15 marks)

(a) The chord *PQ* on the rectangular hyperbola $xy = c^2$ is constructed such that the horizontal distance between points *P* and *Q* has a constant length 2*c*, where points *P* and *Q* lie in the first quadrant.

Find the locus of the midpoint of PQ.

Solution

Note: cq = cp + 2c

$$q = p + 2$$

Finding the midpoint

$$x = \frac{cp + cq}{2}$$

$$= \frac{cp + (cp + 2c)}{2}$$

$$= \frac{2cp + 2c}{2}$$

$$= cp + c \qquad \Rightarrow p = \frac{x - c}{c}$$

$$y = \frac{\frac{c}{p} + \frac{c}{q}}{2}$$

$$= \frac{cq + cp}{2pq}$$

$$= \frac{cp + 2c + cp}{2p(p+2)}$$

$$= \frac{cp + c}{p(p+2)}$$

Finding the locus in terms of x, y and c.

$$y = \frac{cp+c}{p(p+2)}$$
$$= \frac{c\left(\frac{x-c}{c}\right)+c}{\left(\frac{x-c}{c}\right)\left(\left(\frac{x-c}{c}\right)+2\right)}$$
$$= \frac{x}{\left(\frac{x-c}{c}\right)\left(\frac{x-c+2c}{c}\right)}$$
$$y = \frac{c^2x}{x^2-c^2}$$

Suggested marking scheme

3 Correct response

2

1

- Cartesian equation with error
- For finding *p* in terms of *x* or eliminating *q* or Finding p + q and progressing with working to substitute into an equation for p + q

Marker's comments

Many students experienced trouble with this question.

Common errors include:

- not using the identity cq = cp + 2c
- not trying to eliminate *p* or *q*

i ._____ (b) The region bounded by the parabola $y^2 = 4x$ and the line x = 2 is rotated about the line x = 6.

Using the method of cylindrical shells, find the volume of the solid formed. *Solution*

$$\delta V = 2\pi (6-x) 4\sqrt{x} \ \delta x$$

$$V = 8\pi \lim_{\delta x \to 0} \sum_{0}^{2} (6-x) \sqrt{x} \ \delta x$$

$$V = 8\pi \int_{0}^{2} 6x^{\frac{1}{2}} - x^{\frac{3}{2}} \ dx$$

$$= 8\pi \left[4x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} \right]_{0}^{2}$$

$$= 8\pi \left[\left(4(2)^{\frac{3}{2}} - \frac{2}{5}(2)^{\frac{5}{2}} \right) - (0) \right]$$

$$= 8\pi \left[4 \times 2\sqrt{2} - \frac{2}{5} \times 4\sqrt{2} \right]$$

$$= \frac{256\sqrt{2}}{5}\pi \qquad units^{3}$$

3	One error
2	Finding δV
1	Partial solution
Marker	's comments
Mostly well done.	
Many s	illy errors including
 Incorrect radius Incorrect limits Arithmetic mistakes, particularly involving ± Omission of π or √2 in answer Students need to take greater care with their solution!	

Ŀ

(c) Using the substitution
$$u^2 = 4 - x^2$$
 evaluate $\int_0^2 x^3 \sqrt{4 - x^2} dx$

Solution

$$u^2 = 4 - x^2$$

 $x = 0, u = 2$
 $x = 2, u = 0$

$$2u\frac{du}{dx} = -2x$$
$$\frac{du}{dx} = -\frac{x}{u}$$
$$dx = -\frac{udu}{x}$$

$$\int_{0}^{2} x^{3} \sqrt{4 - x^{2}} \, dx = \int_{2}^{0} x^{3} \sqrt{u^{2}} \times \frac{u du}{-x}$$

$$= \int_{0}^{2} x^{2} u^{2} \, du$$

$$= \int_{0}^{2} (4 - u^{2}) u^{2} \, du$$

$$= \int_{0}^{2} 4u^{2} - u^{4} \, du$$

$$= \left[\frac{4u^{3}}{3} - \frac{u^{5}}{5} \right]_{0}^{2}$$

$$= \left[\left(\frac{4(2)^{3}}{3} - \frac{(2)^{5}}{5} \right) - (0) \right]$$

$$= \frac{64}{15}$$

Suggested marking scheme 4 Correct response 3 One error 2 Finding correct first line of integral Partial solution i.e. limits 1 Marker's comments Many silly errors including Incorrect limits • Incorrect substitution with both the dx and x^2 Arithmetic mistakes, particularly involving \pm Poor handwriting e.g. $4 - u^2 \rightarrow 4 - u$ $4 - u^2 \rightarrow 4 - 16$ Students need to take greater care with their solution!

(d) Use the method of integration by parts to evaluate $\int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx$

Solution

$$\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \quad dx = \left[e^{x} \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^{x} \left(-\sin x \right) \quad dx$$
$$= \left[(0) - 1 \right] + \int_{0}^{\frac{\pi}{2}} e^{x} \sin x \quad dx$$
$$= -1 + \left[e^{x} \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^{x} \cos x \quad dx$$
$$2\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \quad dx = -1 + \left[e^{\frac{\pi}{2}} - 0 \right]$$
$$\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \quad dx = \frac{e^{\frac{\pi}{2}} - 1}{2}$$

Suggested marking scheme

- 4 Correct response
- **3** One error
- 2 Integrating by parts once

1 Partial solution

Marker's comments

Mostly well done.

Many silly errors including

- Evaluating e^0 , note $e^0 \neq e$
- Evaluating $\left[e^x \cos x\right]_0^{\frac{\pi}{2}}$

Note:
$$\left[e^x \cos x\right]_0^{\frac{\pi}{2}} \neq 0 \text{ and } \neq 1$$

 $\left[e^x \cos x\right]_0^{\frac{\pi}{2}} = -1$

The base of a solid is the region in the first quadrant bounded by the graphs of y = x and $y = x^2$. Each cross section perpendicular to the y - axis is a square as shown in the diagram.

Find the volume of the solid formed.

Solution

$$\delta V = \left(\sqrt{y} - y\right)^2 \delta y$$
$$V = \lim_{\delta y \to 0} \sum_{0}^{1} \left(\sqrt{y} - y\right)^2 \delta y$$
$$= \int_{0}^{1} y - 2y^{\frac{3}{2}} + y^2 \, dy$$
$$= \left[\frac{y^2}{2} - \frac{4y^{\frac{5}{2}}}{5} + \frac{y^3}{3}\right]_{0}^{1}$$
$$= \frac{1}{30} \ units^3$$

Suggested marking scheme

4	Correct	response
	concer	response

- **3** One error
- **2** Finding an integral
- **1** Finding δV
- Marker's comments

Mostly well done.

Some students did not show calculations of an individual slice. A mark was deducted for these students.

Some students incorrectly read the question and calculated the slice parallel to the *y* axis. Students lost a mark if they did not calculate it perpendicular to the *y* axis.

(b) (i) Find numbers a, b and c such that
$$\frac{x^2}{4x^2-9} \equiv a + \frac{b}{2x-3} + \frac{c}{2x+3}$$

Solution

$$\frac{x^2}{4x^2 - 9} \equiv a + \frac{b}{2x - 3} + \frac{c}{2x + 3}$$
$$x^2 \equiv a(4x^2 - 9) + b(2x + 3) + c(2x - 3)$$
$$x^2 \equiv 4ax^2 + x(2b + 2c) - 9a + 3b - 3c$$

Comparing coefficients

$$x^{2}: \qquad 4a = 1$$
$$a = \frac{1}{4}$$

$$x: \qquad 2b + 2c = 0 \\ b = -c$$

Constant:

$$0 = -9a + 3c - 3c$$
$$= -9\left(\frac{1}{4}\right) + 3(-c) - 3c$$
$$6c = -\frac{9}{4}$$
$$c = -\frac{9}{24}$$
$$= -\frac{3}{8}$$

Hence evaluate $\int_0^1 \frac{x^2}{4x^2 - 9} dx$

Solution

(ii)

$$\int_{0}^{1} \frac{x^{2}}{4x^{2} - 9} dx = \int_{0}^{1} \frac{1}{4} + \frac{3}{8(2x - 3)} - \frac{3}{8(2x + 3)} dx$$

$$= \int_{0}^{1} \frac{1}{4} + \frac{3}{16} \times \frac{2}{(2x - 3)} - \frac{3}{16} \times \frac{2}{(2x + 3)} dx$$

$$= \left[\frac{1}{4}x + \frac{3}{16}\ln|2x - 3| - \frac{3}{16}\ln|2x + 3|\right]_{0}^{1}$$

$$= \left(\frac{1}{4} + \frac{3}{16}\ln|2 - 3| - \frac{3}{16}\ln|2x + 3|\right) - \left(0 + \frac{3}{16}\ln|-3| - \frac{3}{16}\ln|+3|\right)$$

$$= \frac{1}{4} + \frac{3}{16}\ln\left|\frac{-1}{5}\right|$$

$$= \frac{1}{4} + \frac{3}{16}\ln\left(\frac{1}{5}\right)$$

$$\approx -0.05$$

Suggested marking scheme	
3	Correct response
2	One error
1	Finding one value or partial solution
Mark	er's comments
Most Some	ly well done. e careless errors.

Suggested marking scheme

- 2 Correct response
- **1** Partial solution
- Marker's comments

Therefore $a = \frac{1}{4}, b = \frac{3}{8}, c = -\frac{3}{8}$

Mostly well done.

Some students did not take the absolute value when integrating and incorrectly concluded that there is no solution. (c) An object falls from rest, under gravity, for a time of $\frac{1}{2k}$ seconds before hitting water and experiencing an upward resistance of mkv, where *m* is the mass of the object, *v* the object's velocity and *k* is a positive constant.

Let g be the acceleration due to gravity and take the downwards motion to be in the positive direction.

(i) Show that when the object hits the water its velocity will be $\frac{g}{2k}$ and

the distance travelled is $\frac{g}{8k^2}$

Solution

$$\ddot{x} = g$$

$$\frac{d\dot{x}}{dt} = g$$

$$\dot{x} = gt + C_1, \quad \text{when } \dot{x} = 0, t = 0 \Longrightarrow C_1 = 0$$

$$\dot{x} = gt$$

$$x = \frac{1}{2}gt^2 + C_2, \quad \text{when } x = 0, t = 0 \Longrightarrow C_2 = 0$$

$$x = \frac{1}{2}gt^2$$

 Suggested marking scheme

 2
 Correct response

 1
 Partial solution

 Marker's comments

Some students did not realise the object falls from rest under gravity only (until it hits the water), consequently they incorrectly integrated from $\ddot{x} = g - kv$.

After $t = \frac{1}{2k}$

$$\dot{x} = g\left(\frac{1}{2k}\right)$$
$$= \frac{g}{2k}$$

$$x = \frac{1}{2}g\left(\frac{1}{2k}\right)^2$$
$$= \frac{g}{8k^2}$$

(ii) Show that the total distance travelled when the object's velocity is $\frac{3g}{4k}$ is given by $x = \frac{g}{k^2} \ln 2 - \frac{g}{8k^2}$

Solution

F = mg - mkv= m(g - kv) $\Rightarrow a = g - kv$ a = g - kv $v\frac{dv}{dx} = g - kv$ $\frac{dv}{dx} = \frac{g - kv}{v}$ $\frac{dx}{dv} = \frac{v}{g - kv}$ $-k\frac{dx}{dv} = \frac{-kv}{g-kv}$ $-k\frac{dx}{dv} = \frac{g - kv - g}{g - kv}$ $-k\frac{dx}{dy} = 1 + \frac{-g}{g - ky}$ $-\frac{k}{g}\frac{dx}{dv} = \frac{1}{g} + \frac{-1}{g-kv}$ $-\frac{k^2}{g}\frac{dx}{dy} = \frac{k}{g} + \frac{-k}{g-ky}$ $-\frac{k^2}{\sigma}x = \frac{k}{\sigma}v + \ln\left|g - kv\right| + C$ When $x = \frac{g}{8k^2}$, $v = \frac{g}{2k}$ $-\frac{k^2}{\sigma}\left(\frac{g}{8k^2}\right) = \frac{k}{\rho}\left(\frac{g}{2k}\right) + \ln\left|g - k\left(\frac{g}{2k}\right)\right| + C$ $C = -\frac{1}{8} - \frac{1}{2} - \ln \left| \frac{g}{2} \right|$ $=-\frac{5}{8}-\ln \left|\frac{g}{2}\right|$ $-\frac{k^2}{g}x = \frac{k}{g}v + \ln|g - kv| - \frac{5}{8} - \ln|\frac{g}{2}|$ Now when $v = \frac{3g}{4k}$ $-\frac{k^2}{g}x = \frac{k}{g}\left(\frac{3g}{4k}\right) + \ln\left|g - k\left(\frac{3g}{4k}\right)\right| - \frac{5}{8} - \ln\left|\frac{g}{2}\right|$ $-\frac{k^2}{g}x = \frac{3}{4} - \frac{5}{8} + \ln\left|\frac{g}{4}\right| - \ln\left|\frac{g}{2}\right|$ $-\frac{k^2}{g}x = \frac{1}{8} + \ln\left|\frac{1}{2}\right|$ $x = -\frac{g}{8k^2} - \frac{g}{k^2} \ln \left| \frac{1}{2} \right|$ $=\frac{g}{k^2}\ln 2 - \frac{g}{8k^2}$

Suggested marking scheme 4 Correct response 3 One error 2 Finding an expression for x 1 Partial solution Marker's comments Many students had the correct acceleration equation. Some replaced a with $\frac{dv}{dt}$ and were successful; other did not know how to proceed beyond this point. Many used incorrect initial conditions i.e. x=0, v=0 instead of $x=\frac{g}{8k^2}$ and $v=\frac{g}{2k}$, failing to realise the motion equation they were calculating was from the point of contact with the water.

Taking x = 0 to be the moment the object hits the water.

$$\int_{\frac{g}{2k}}^{v} \frac{v}{g - kv} dv = \int_{0}^{x} dx$$

$$-\frac{1}{k} \int_{\frac{g}{2k}}^{v} \frac{g - kv}{g - kv} - \frac{g}{g - kv} dv = x$$

$$-\frac{1}{k} \int_{\frac{g}{2k}}^{v} \left(1 - \frac{g}{g - kv}\right) dv = x$$

$$-\frac{1}{k} \left[v + \frac{g}{k} \ln |g - kv|\right]_{\frac{g}{2k}}^{v} = x$$

$$-\frac{1}{k} \left[v + \frac{g}{k} \ln |g - kv| - \frac{g}{2k} - \frac{g}{k} \ln \left|\frac{g}{2}\right|\right] = x$$
At $v = \frac{3g}{4k}$

$$x = -\frac{1}{k} \left[\frac{3g}{4k} + \frac{g}{k} \ln \left|\frac{g}{4}\right| - \frac{g}{k} \ln \left|\frac{g}{2}\right|\right]$$

$$= -\frac{1}{k} \left[\frac{g}{4k} + \frac{g}{k} \ln \left|\frac{g}{4}\right| - \frac{g}{k} \ln \left|\frac{g}{2}\right|\right]$$

$$= -\frac{1}{k} \left[\frac{g}{4k} + \frac{g}{k} \ln \left|\frac{g}{4}\right|\right]$$

$$= -\frac{1}{k} \left[\frac{g}{4k} + \frac{g}{k} \ln \left|\frac{g}{4}\right|\right]$$

$$= -\frac{g}{4k^{2}} - \frac{g}{k^{2}} \left[\ln 1 - \ln 2\right]$$

$$= -\frac{g}{4k^{2}} + \ln 2 \times \frac{g}{k^{2}}$$

So the total distance is $-\frac{g}{4k^2} + \ln 2 \times \frac{g}{k^2} + \frac{g}{8k^2} = -\frac{g}{8k^2} + \frac{g}{k^2} \ln 2$

Question 16 (15 marks) Use a *separate* writing booklet

(a) The polynomial $x^4 - 5x^3 - 2x^2 + 3x + 1 = 0$ has roots α, β, γ and δ .

Find an equation with roots $\alpha^2 - 1$, $\beta^2 - 1$, $\gamma^2 - 1$ and $\delta^2 - 1$.

Solution

$$x = \alpha^{2} - 1$$
$$\alpha^{2} = x + 1$$
$$\alpha = \sqrt{x + 1}$$

Suggested marking scheme2Correct response1Partial solutionMarker's comments

Mostly well done.

Some students did not know the method to find equations with roots involving $\alpha, \beta, \gamma \& \delta$.

$$(\sqrt{x+1})^4 - 5(\sqrt{x+1})^3 - 2(\sqrt{x+1})^2 + 3\sqrt{x+1} + 1 = 0$$

$$(x+1)^2 - 5(x+1)\sqrt{x+1} - 2(x+1) + 3\sqrt{x+1} + 1 = 0$$

$$(x+1)^2 - 2(x+1) + 1 = 5(x+1)\sqrt{x+1} - 3\sqrt{x+1}$$

$$x^2 + 2x + 1 - 2x - 2 + 1 = \sqrt{x+1}(5x+5-3)$$

$$x^2 = \sqrt{x+1}(5x+2)$$

$$x^4 = (x+1)(25x^2 + 20x + 4)$$

$$x^4 = 25x^3 + 20x^2 + 4x + 25x^2 + 20x + 4$$

$$x^4 - 25x^3 - 45x^2 - 24x - 4 = 0$$

(b) Let $I_n = \int \frac{dx}{(1+x^2)^n}$ where *n* is a non-negative integer.

(i) Show that
$$I_{n+1} = \frac{1}{2n} \frac{x}{(1+x^2)^n} + \frac{2n-1}{2n} I_n$$
.

Solution

PTO

$$I_{n} = \int \frac{dx}{(1+x^{2})^{n}} dx$$

$$= \int 1.(1+x^{2})^{-n} dx$$

$$= x.\frac{1}{(1+x^{2})^{n}} - \int x(-n)(1+x^{2})^{-n-1}(2x) dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n \int \frac{x^{2}}{(1+x^{2})^{n+1}} dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n \int \frac{1+x^{2}-1}{(1+x^{2})^{n+1}} - 2n \int \frac{1}{(1+x^{2})^{n+1}} dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n \int \frac{1}{(1+x^{2})^{n}} - 2n \int \frac{1}{(1+x^{2})^{n+1}} dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n \int \frac{1}{(1+x^{2})^{n}} - 2n \int \frac{1}{(1+x^{2})^{n+1}} dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n \int \frac{1}{(1+x^{2})^{n}} - 2n \int \frac{1}{(1+x^{2})^{n+1}} dx$$

$$= \frac{x}{(1+x^{2})^{n}} + 2n I_{n} - 2n I_{n+1}$$

$$2n I_{n+1} = \frac{x}{(1+x^{2})^{n}} + (2n-1) I_{n}$$

$$I_{n+1} = \frac{1}{2n} \frac{x}{(1+x^{2})^{n}} + \frac{(2n-1)}{2n} I_{n}$$

(ii) Hence find
$$I_3$$
.

Solution

$$I_{2+1} = \frac{1}{2(2)} \frac{x}{(1+x^2)^2} + \frac{(2(2)-1)}{2(2)} I_2$$

= $\frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{4} I_2$
= $\frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{4} \left[\frac{1}{2} \frac{x}{(1+x^2)} + \frac{1}{2} I_1 \right]$
= $\frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{8} \frac{x}{(1+x^2)} + \frac{3}{8} I_1$
= $\frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{8} \frac{x}{(1+x^2)} + \frac{3}{8} \int \frac{dx}{1+x^2}$
= $\frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{8} \frac{x}{(1+x^2)} + \frac{3}{8} \tan^{-1} x + C$

Suggested marking scheme

3	Correct response
2	One error
1	Finding partial solution
Mark	er's comments

Some students chose the wrong initial *u* and *v* when integrating by parts.

Some students did not know the correct procedure for integrating by parts and incorrectly added the integral.

2 Correct response

1 Partial solution *Marker's comments*

Mostly well done.

Some student chose the incorrect value for *n*.

(c) Two stones are thrown simultaneously from the same point in the same direction and with the same

The slower stone hits the ground at a point P on the same level as the point of projection. At that instant the faster stone just clears a wall of height h metres above the level of projection and its (downward) path makes an angle β with the horizontal.

(i) Express the distance from *P* to the foot of the wall in terms of *h* and α only.

Solution

The equations of motion

Stone A

Stone B

$\ddot{x} = 0$	$\ddot{y} = -g$
$\dot{x} = V \cos \alpha$	$\dot{y} = -gt + V\sin\alpha$
$x = Vt \cos \alpha$	$y = -\frac{1}{2}gt^2 + Vt\sin\alpha$

Finding angle APB

In triangle APB

 $\tan \alpha = \frac{h}{PA}$ $PA = h \cot \alpha$

Suggested marking scheme

- **3** Correct response
- 2 One error
- **1** Finding equations of motion

Marker's comments

Students should draw a diagram.

Many students did not attempt this question.

Some students assumed $\tan \alpha = \frac{h}{PA}$ which is not sufficient.

Solution

Stone *A* hits the ground at *P*.

$$0 = Ut \sin \alpha - \frac{1}{2}gt^{2}$$
$$t\left(U \sin \alpha - \frac{g}{2}t\right) = 0$$
$$t = \frac{2U \sin \alpha}{g} \quad \text{since } t = 0 \text{ is the origin}$$

When $t = \frac{2U\sin\alpha}{g}$, $\dot{y} = -g\left(\frac{2U\sin\alpha}{g}\right) + V\sin\alpha$ = $V\sin\alpha - 2U\sin\alpha$ = $\sin\alpha(V - 2U)$

Consider the velocity vector of stone *B* when it clears the wall.

Since β is angled downwards

$$\tan \beta = \frac{-\left[\sin \alpha (V - 2U)\right]}{V \cos \alpha}$$
$$= \frac{2U - V}{V} \tan \alpha$$
$$V \left(\tan \alpha + \tan \beta\right) = V \left(\tan \alpha + \frac{2U - V}{V} \tan \alpha\right)$$
$$= V \tan \alpha + (2U - V) \tan \alpha$$
$$= V \tan \alpha + 2U \tan \alpha - V \tan \alpha$$
$$= 2u \tan \alpha \qquad \#$$

Suggested marking scheme		
3	Correct response	
2	One error	
1	Finding equations of motion	
Marker	's comments	
Most st challen	tudents found this question ging.	

(iii) Deduce that if,
$$\beta = \frac{1}{2}\alpha$$
, then $U < \frac{3}{4}V$.

Solution

$$V(\tan \alpha + \tan \beta) = 2U \tan \alpha$$
$$V(\tan 2\beta + \tan \beta) = 2U \tan 2\beta \quad \text{since} \quad \beta = \frac{1}{2}\alpha$$
$$\frac{V}{U} = \frac{2\tan 2\beta}{\tan \beta + \tan 2\beta}$$
$$= \frac{2\left(\frac{\tan \beta + \tan \beta}{1 - \tan^2 \beta}\right)}{\tan \beta + \frac{\tan \beta + \tan \beta}{1 - \tan^2 \beta}}$$
$$= \frac{\frac{4\tan \beta}{1 - \tan^2 \beta}}{\frac{(1 - \tan^2 \beta)\tan \beta + 2\tan \beta}{1 - \tan^2 \beta}}$$

$$=\frac{4}{3-\tan^2\beta}$$

Now since $\tan^2 \beta > 0$

$$\frac{V}{U} > \frac{4}{3}$$
$$U < \frac{3V}{4} \qquad \#$$

Suggested marking scheme	
2 1 Mark	Correct response Partial solution are's comments
Man ques	y students did not attempt this tion.
Students should be aware they could attempt this question without completing parts (i) and (ii).	

Alternate method

$$V(\tan \alpha + \tan \beta) = 2U \tan \alpha$$

$$V\left(\tan \alpha + \tan \frac{\alpha}{2}\right) = 2U \tan \alpha \quad \text{since } \beta = \frac{1}{2}\alpha$$

$$\frac{V}{U} = \frac{2\tan \alpha}{\tan \alpha + \tan \frac{\alpha}{2}}$$

$$= \frac{2\left(\frac{2t}{1-t^2}\right)}{\frac{2t}{1-t^2} + t}$$

$$= \frac{\frac{4t}{1-t^2}}{\frac{2t+t(1-t^2)}{1-t^2}}$$

$$= \frac{4}{2+1-t^2}$$

$$= \frac{4}{3-t^2}$$

Now since $\tan^2 \frac{\alpha}{2} > 0$

$$\frac{V}{U} > \frac{4}{3}$$
$$U < \frac{3V}{4} \qquad \#$$