

Hurlstone Agricultural High School **HSC Assessment Task4 – Trial**

Mathematics Extension 1

Examiners	 Ms T Tarannum Mr G Rawson Mr J Dillon Ms P Biczo
General Instructions	 Reading time – 5 minutes Working time – 120 minutes Write using black or blue pen NESA-approved calculators may be used A Reference sheet is provided for your use In Questions 11 to 14, show relevant mathematical reasoning and/or calculations
Total marks: 70	 Section I – 10 marks (pages 2–4) Attempt Questions 1 to 10 Allow about 15 minutes for this section Section II – 60 marks (pages 5–8) Attempt Questions 11 to 14 Allow about 105 minutes for this section

Student Name: _____

Teacher: _____

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

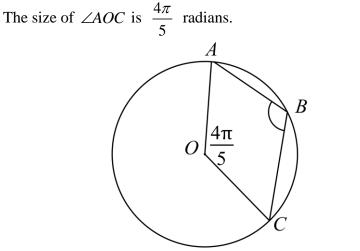
Use the multiple-choice answer sheet for Questions 1 - 10

1.	$\lim_{x \to 0} \frac{1-x}{x}$	$\frac{1}{4} \frac{\cos 2x}{x^2} =$
	(A)	1.4
	(B)	
	(C)	2
	(D)	4
2.	The ar	agle θ satisfies $\sin \theta = \frac{5}{13}$ and $\frac{\pi}{2} < \theta < \pi$.
		s the value of $\sin 2\theta$?
	(A)	$\frac{10}{13}$
	(B)	$-\frac{10}{13}$
	(C)	$\frac{120}{169}$
	(D)	$-\frac{120}{169}$
3.	If $x =$	$e^{y} + 4$ then $\frac{dy}{dx}$ is
	(A)	
	(B)	$\frac{1}{x-4}$
	(C)	x-4
		1

(D)
$$\frac{1}{e^y+4}$$

Hurlstone Agricultural High School

- 4. The polynomial $P(x) = x^3 + 2x + k$ has (x-2) as a factor.
 - What is the value of *k*?
 - (A) –12
 - (B) –10
 - (C) 10
 - (D) 12
- 5. The points *A*, *B* and *C* lie on a circle with centre *O*, as shown in the diagram.



Not to scale

What is the size of $\angle ABC$ in radians?

(A)
$$\frac{3\pi}{10}$$

(B)
$$\frac{\pi}{2}$$

(C)
$$\frac{3\pi}{5}$$

(D)
$$\frac{1}{5}$$

- 6. A curve has parametric equations x = t 3 and $y = t^2 + 2$. What is the Cartesian equation of this curve?
 - (A) $y = x^2 x 1$
 - (B) $y = x^2 + x 1$
 - (C) $y = x^2 6x + 11$
 - (D) $y = x^2 + 6x + 11$

7. Let $|a| \le 1$. What is the general solution of $\sin 2x = a$?

(A)
$$x = n\pi + (-1)^n \frac{\sin^{-1} a}{2}$$
, *n* is an integer

(B)
$$x = \frac{n\pi + (-1)^n \sin^{-1} a}{2}$$
, *n* is an integer

(C)
$$x = 2n\pi \pm \frac{\sin^{-1}a}{2}$$
, *n* is an integer

(D)
$$x = \frac{2n\pi \pm \sin^{-1} a}{2}$$
, *n* is an integer

- 8. At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?
 - (A) 720
 - (B) 1440
 - (C) 3600
 - (D) 5040

9. Which of the following is an expression for $\int \frac{e^{-2x}}{e^{-x}+1} dx$ in terms of *u*?

Use the substitution
$$u = e^{-x} + 1$$
.

(A)
$$\int \frac{1-u}{u} du$$

(B) $\int \frac{u-1}{u} du$

(C)
$$\int \frac{(1-u)^3}{u} du$$

(D)
$$\int \frac{(u-1)^3}{u} du$$

10. The functions y = x and $y = x^3$ meet at the point (1,1).

What is the acute angle between the tangents to these functions at this point? Answer to the nearest degree.

- (A) 10°
- (B) 27°
- (C) 45°
- (D) 63°

End of Section I

Section II

60 marks

Attempt Questions 11 – 14

Allow about 105 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

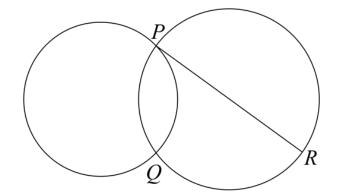
Question 11 (15 marks) Start a new answer booklet. Marks $\frac{4x}{x-3} \le 1$ 3 (a) Solve the inequality: $\left|5x-1\right| < \sqrt{2x(1-x)}$ 3 Solve the inequality: (b) (c) A total of five players is selected at random from four sporting teams. Each of the teams consists of ten players numbered from 1 to 10. (i) What is the probability that of the five selected players, three are numbered '6' 2 and two are numbered '8'?

(ii) What is the probability that the five selected players contain at least four players from the same team?

(d) Evaluate
$$\int_{0}^{1} \frac{2x}{(2x+1)^2} dx$$
 by using the substitution $u = 2x+1$

3

(a) Two circles intersect at *P* and *Q*. The diameter of one circle is *PR*.



Copy, or trace, this diagram into your answer booklet.

(i)	Draw a straight line through P , parallel to QR to meet the other circle at S . Prove that QS is a diameter of the second circle.	2
(ii)	Prove that the circles have equal radii if QS is parallel to PR .	2
P(2a	(t, at^2) is a variable point on the parabola $x^2 = 4ay$, whose focus is S.	
Q(x,	y) divides the interval from P to S in the ratio t^2 :1 [i.e., $PQ:QS = t^2$:1].	
(i)	Find the coordinates of Q in terms of a and t .	2
(ii)	Show that $\frac{y}{x} = t$.	1
(iii)	Prove that, as P moves on the parabola, Q moves on a circle, and state its centre and radius.	3
It is g	iven that $P(x) = (x-a)^3 + (x-b)^3$, where $a \neq b$.	
(i)	Prove that $x = \frac{a+b}{2}$ is a zero of $P(x)$.	2

(ii) Prove that P(x) has no stationary points.

(b)

(c)

Question 13 (15 marks) Start a new answer booklet.

(a)

(i) Express
$$3\sin x + 4\cos x$$
 in the form $A\sin(x+\alpha)$, where $0 \le \alpha \le \frac{\pi}{2}$ and $A > 0$. 2

(ii) Hence, or otherwise, solve
$$3\sin x + 4\cos x = 5$$
 for $0 \le x \le 2\pi$.
Give your answer, or answers, correct to two decimal places. 2

(b)

(ii)

(i) Prove that
$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$
, provided that $\cos 2\theta \neq -1$. 2

North

(c) From a point *A* due south of a tower, the angle of elevation of the top of the tower *T*, is
$$23^{\circ}$$
. From another point *B*, on a bearing of 120° from the tower, the angle of elevation

er p of T is 32° . The distance AB is 200 metres.

Т

Hence find the exact value of $\tan \frac{\pi}{8}$.

Let the height of the tower *OT* be *h*.

Show that $OA = h \tan 67^{\circ}$ and $OB = h \tan 58^{\circ}$ (i)

Hence, find the height of the tower OT. Give your answer to the nearest metre. (ii)

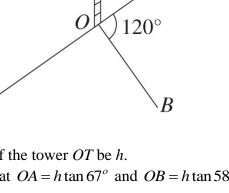
7

(d) Use the principle of mathematical induction to prove that $4^n + 14$ is a multiple of 6 for all integers $n \ge 1$.

3

1

3



(a) Consider the curves $y = \sin x$ and $y = \cos 2x$ for $-\pi \le x \le \pi$.

- (i) Find any points of intersection of the curves in the domain $-\pi \le x \le \pi$.
- (ii) On the same number plane, sketch $y = \sin x$ and $y = \cos 2x$ for $-\pi \le x \le \pi$, showing these points of intersection.
- (iii) Calculate the area of the region bounded by the curves $y = \sin x$ and $y = \cos 2x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{6}$.
- (b) Consider the curve $f(x) = x^2 4x + 5$
 - (i) Find the largest possible domain containing only positive numbers for which f(x) has an inverse function $f^{-1}(x)$.
 - (ii) Find the point(s) of intersection of y = f(x) and $y = f^{-1}(x)$ in the domain determined in part (i)
 - (iii) State the domain of $y = f^{-1}(x)$?
 - (iv) What is the equation of $y = f^{-1}(x)$?
 - (v) Sketch the parabola y = f(x) for the restricted domain and sketch the inverse function $y = f^{-1}(x)$ on the same diagram, clearly showing any points of intersection. Clearly label each graph.

END OF EXAMINATION

3

2

1

2

1

2

Year 12 Mathematics Extension 1 Trial 2017 Question No. 11 Solutions and Marking Guidelines				
Outcomes Addressed in this Question				
PE3solves problems involving permutations and combinations, inequalitiesHE6determines integrals by reduction to a standard form through a givensubstitution				
Part	Solutions	Marking Guidelines		
(a) (b)	$\frac{4x}{x-3} \le 1$ $4x(x-3) \le (x-3)^2$ $4x(x-3) - (x-3)^2 \le 0$ $4x^2 - 12x - x^2 + 6x - 9 \le 0$ $3x^2 - 6x - 9 \le 0$ $x^2 - 2x - 3 \le 0$ $(x-3)(x+1) \le 0$ $4x^2 - 12x - 3x^2 + 6x - 9 \le 0$ $x^2 - 2x - 3 \le 0$ $(x-3)(x+1) \le 0$ $4x^2 - 2x - 3 \le 0$ $(x-3)(x+1) \le 0$ $4x^2 - 2x - 3 \le 0$ $(x-3)(x+1) \le 0$ $4x^2 - 2x - 3 \le 0$ From the graph and the condition $x \ne 3$, $-1 \le x < 3$ $ 5x-1 < \sqrt{2x(1-x)}$	Award 3 marks for the correct answer. Award 2 mark for substantial progress towards the correct solution. Award 1 mark for some progress towards the correct solution.		
	Condition: Restricted domain for $2x(1-x)$	 Award 3 marks for the correct answer. Award 2 mark for substantial progress towards the correct solution. Award 1 mark for some progress towards the correct solution. 		

	$\begin{vmatrix} 5x-1 & < \sqrt{2x(1-x)} \\ \text{Squaring both sides} \\ (5x-1)^2 < 2x(1-x) \\ 25x^2 - 10x + 1 < 2x - 2x^2 \\ 27x^2 - 12x + 1 < 0 \\ (9x-1)(3x-1) < 0 \\ \therefore \frac{1}{9} < x < \frac{1}{3} \\ \therefore \text{ With the domain applied, } \frac{1}{9} < x < \frac{1}{3} \text{ is the solution} \end{aligned}$	
(c)	(i) There are 4 players numbered '6' and 4 players numbered '8' from a total of forty players. Three '6''s can be selected in ${}^{4}C_{3}$ ways. Two '8''s can be selected in ${}^{4}C_{2}$ ways. Five players can be selected in ${}^{40}C_{5}$ ways. \therefore Required probability $= \frac{{}^{4}C_{3} \times {}^{4}C_{2}}{{}^{40}C_{5}}$ $= \frac{4 \times 6}{658008}$ $= \frac{1}{27417}$	Award 2 marks for the correct answer. Award 1 mark for substantial progress towards the solution
	(ii) "At least 4 players" means 4 or 5players: 5 players from one team can be selected in ${}^{10}C_5$ ways. But there are 4 teams, hence 5 players from the same team can be selected in ${}^{4}C_1 \times {}^{10}C_5$ ways. 4 players from one team and one player from the remaining teams (30 players) can be selected in ${}^{4}C_1 \times {}^{10}C_4 \times {}^{30}C_1$ ways. \therefore Required probability $= \frac{{}^{4}C_1 \times {}^{10}C_5}{{}^{40}C_5} + \frac{{}^{4}C_1 \times {}^{10}C_4 \times {}^{30}C_1}{{}^{40}C_5}$ $= \frac{4(252 + 210 \times 30)}{658008}$ $= \frac{28}{703}$	 Award 3 marks for the correct answer. Award 2 mark for substantial progress towards the correct solution. Award 1 mark for some progress towards the correct solution.

$$u = 2x + 1$$

$$\frac{du}{dx} = 2$$

$$\therefore du = 2dx$$

and $x = \frac{u-1}{2}$
When $x = 0, u = 1$
When $x = 1, u = 3$

$$\int_{0}^{1} \frac{2x}{(2x+1)^{2}} dx$$

$$= \int_{0}^{1} x \times \frac{1}{(2x+1)^{2}} 2dx$$

$$= \int_{1}^{3} \frac{u-1}{2u^{2}} du$$

$$= \frac{1}{2} \int_{1}^{3} \frac{u}{u^{2}} - \frac{1}{u^{2}} du$$

$$= \frac{1}{2} \int_{1}^{3} \frac{1}{u} - \frac{1}{u^{2}} du$$

$$= \frac{1}{2} \left[\ln u + u^{-1} \right]_{1}^{3}$$

$$= \frac{1}{2} \left[\left(\ln 3 + \frac{1}{3} \right) - \left(\ln 1 + 1 \right) \right]$$

$$= \frac{1}{2} \left[\ln 3 - \frac{2}{3} \right]$$

(d)

Award 4 marks for the correct answer.

Award 3 mark for the correct solution with minor errors.

Award 2 mark for substantial progress towards the correct solution.

Award 1 mark for some progress towards the correct solution.

Multiple Choice Answers		
1	А	
2	D	
3	В	
4	А	
5	С	
6	D	
7	В	
8	С	
9	А	
10	В	

Year 12 Question 12	Mathematics Extension 1 2 Solutions and Marking Guidelines	Trial HSC (Task 4) 2017
Question 1	Outcome Addressed in this Question	
	ves problems involving permutations and combinations, ine	qualities, polynomials, circle
	metry and parametric representations	
Part	Solutions	Marking Guidelines
(a) (i)	Draw PQ $\angle PQR = 90^{\circ}$ (the angle at the circumeference subtended by a diameter equals 90°) $\angle SPQ = \angle PQR$ (alternate angles are equal, $SP \parallel QR$) $= 90^{\circ}$ $\therefore SQ$ is a diameter (a right angle at the circuference subtends)	Award 2 for correct solution Award 1 for substantial progress towards solution
(ii)	∴ SQ is a diameter (a diameter a diameter) If $QS \parallel SR$ then $PQRS$ is a parallelogram (both pairs of opposite sides are parallel). ∴ $PR = QS$ (opposite sides of a parallelogram are equal) ∴ Both circles have equal diameters and hence, equal radii.	Award 2 for correct solution Award 1 for substantial progress towards solution
(b) (i)	$Q = \left(\frac{1.2at + 0.t^2}{t^2 + 1}, \frac{1.at^2 + a.t^2}{t^2 + 1}\right) = \left(\frac{2at}{t^2 + 1}, \frac{2at^2}{t^2 + 1}\right)$	Award 2 for both coordinates correct Award 1 for only one correct coordinate (or equivalent merit
(ii)	From (i), $x = \frac{2at}{t^2 + 1}$ and $y = \frac{2at^2}{t^2 + 1}$ $\frac{y}{x} = \frac{\frac{2at^2}{t^2 + 1}}{\frac{2at}{t^2 + 1}} = \frac{2at^2}{2at} = t$	Award 1 for correct solution
(iii)	From (i) and (ii), $x = \frac{2at}{t^2 + 1} = \frac{2a\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)^2 + 1}$ $x\left(\left(\frac{y}{x}\right)^2 + 1\right) = 2a\left(\frac{y}{x}\right)$ $\frac{y^2}{x} + x = \frac{2ay}{x}$ $x^2 + y^2 = 2ay$ $x^2 + y^2 - 2ay = 0$ $x^2 + y^2 - 2ay + a^2 = a^2$ $\therefore x^2 + (y - a)^2 = a^2$ Which is a circle, centre = (0, a) and radius = a	 Award 3 for correct solution Award 2 for substantial progress towards solution Award 1 for limited progress towards solution

(c) (i)
$$P(x) = (x-a)^{3} + (x-b)^{3}$$
$$\therefore P\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2}-a\right)^{3} + \left(\frac{a+b}{2}-b\right)^{3}$$
$$= \left(\frac{b-a}{2}\right)^{3} + \left(\frac{a-b}{2}\right)^{3}$$
$$= \left(-1\right)^{3} \left(\frac{a-b}{2}\right)^{3} + \left(\frac{a-b}{2}\right)^{3}$$
$$= 0$$
$$\therefore x = \frac{a+b}{2} \text{ is a zero of the polynomial}$$
(c) (ii)
$$P(x) = (x-a)^{3} + (x-b)^{3}$$
$$P'(x) = 3(x-a)^{2} + 3(x-b)^{2}$$
Stationary points occur where $P'(x) = 0$
$$\therefore 3(x-a)^{2} + 3(x-b)^{2} = 0$$
$$(x-a)^{2} + (x-b)^{2} = 0$$
$$x^{2} - 2ax + a^{2} + x^{2} - 2bx + b^{2} = 0$$
$$2x^{2} - (2a + 2b)x + (a^{2} + b^{2}) = 0$$
$$\Delta = (-(2a + 2b))^{2} - 4.2.(a^{2} + b^{2})$$
$$= 4a^{2} + 8ab + 4b^{2} - 8a^{2} - 8b^{2}$$
$$= -4a^{2} + 8ab - 4b^{2}$$
$$= -4(a-b)^{2}$$

< 0 for all *a* and *b*, $a \neq b$
$$\therefore P'(x) \neq 0$$
 for any real values of *x*
$$\therefore P(x)$$
 has no stationary points.

Award 2 for correct solution

Award 1 for substantial progress towards solution

Award 3 for correct solution

Award 2 for substantial progress towards solution

Award 1 for limited progress towards solution

Mathematics Extension 1 2017	TRIAL	
b. 13Solutions and Marking Guidelines		
Outcomes Addressed in this Question	1	
nulti-step deductive reasoning in a variety of contexts		
	1	
Solutions	Marking Guidelines	
(a) (i) $A \sin(x + \alpha) = A \sin x \cos \alpha + A \cos x \sin \alpha$		
$(1) \operatorname{Hom}(x + \alpha) = \operatorname{Hom} x \cos \alpha + \operatorname{Hoos} x \sin \alpha$ $= 3 \sin x + 4 \cos x$	2 marks – Correct solution	
so, $A\cos\alpha = 3$ and $A\sin\alpha = 4$		
$\frac{A\sin\alpha}{A\cos\alpha} = \frac{4}{3}$	1 mark – Substantially correct	
$\tan \alpha = \frac{4}{3}$ $\alpha = \tan^{-1}\left(\frac{4}{3}\right) \text{ and } A = \sqrt{4^2 + 3^2} = 5$	<i>Note: working in degrees gives values which are outside the</i>	
so, $3\sin x + 4\cos x = 5\sin\left[x + \tan^{-1}\left(\frac{4}{3}\right)\right]$	stated domain	
(ii) $3\sin x + 4\cos x = 5$	2 marks – Correct solution	
$5\sin\left[x+\tan^{-1}\left(\frac{4}{3}\right)\right]=5$		
$\sin\left[x + \tan^{-1}\left(\frac{4}{3}\right)\right] = 1$	1 mark – Substantially correct	
$x + \tan^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2}$		
$x = \frac{\pi}{2} - \tan^{-1}\left(\frac{4}{3}\right)$		
$=\frac{\pi}{2}-0.92720$		
= 0.64 (to 2 dec pl.)		
(i) note $\begin{cases} \cos 2\theta = 1 - 2\sin^2 \theta \\ \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \end{cases} \text{ and } \begin{cases} \cos 2\theta = 2\cos^2 \theta - 1 \\ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \end{cases}$	2 marks – Correct solution	
$LHS = \tan^{2} \theta$ $= \frac{\sin^{2} \theta}{\cos^{2} \theta}$ $= \frac{\frac{1-\cos 2\theta}{2}}{\frac{1+\cos 2\theta}{2}}$ $= \frac{1-\cos 2\theta}{2} = RHS$	1 mark – Substantially correct	
1	Solutions and Marking GuidelinesOutcomes Addressed in this Questionnulti-step deductive reasoning in a variety of contextsinductive reasoning in the construction of proofsSolutions(i) $A \sin (x + \alpha) = A \sin x \cos \alpha + A \cos x \sin \alpha$ $= 3 \sin x + 4 \cos x$ so, $A \cos \alpha = 3$ and $A \sin \alpha = 4$ $\frac{A \sin \alpha}{A \cos \alpha} = \frac{4}{3}$ $\tan \alpha = \frac{4}{3}$ $\alpha = \tan^{-1}\left(\frac{4}{3}\right)$ and $A = \sqrt{4^2 + 3^2} = 5$ so, $3 \sin x + 4 \cos x = 5 \sin \left[x + \tan^{-1}\left(\frac{4}{3}\right)\right]$ (ii) $3 \sin x + 4 \cos x = 5$ 	

(i) Let
$$\theta = \frac{\pi}{8}$$

 $\tan^{-\frac{\pi}{8}} = \frac{1 - \cos 2\left(\frac{\pi}{8}\right)}{1 + \cos 2\left(\frac{\pi}{8}\right)}$
 $= \frac{1 - \cos \frac{\pi}{2}}{1 + \cos 2\left(\frac{\pi}{8}\right)}$
 $= \frac{1 - \cos \frac{\pi}{2}}{1 + \cos \frac{\pi}{8}}$
 $= \frac{1 - \cos \frac{\pi}{8}}{1 + \cos \frac{\pi}{8}}{1 + \cos \frac{\pi}{8}}$
 $= \frac{1 - \cos \frac{\pi}{8}$

		4 1
(d)	Show true for $n = 1$	1 mark – significant progress
	$4^{n} + 14 = 4^{1} + 14$	towards correct solution
	= 1 8	
	$= 6(3)$ \therefore true for $n = 1$	
	<u>Assume true for $n = k$</u>	
	ie, $4^k + 14 = 6M$, where M is an integer	
	Prove true for $n - k + 1$	
	Prove true for $n = k + 1$	3 marks – Correct solution
	$4^{k+1} + 14 = 4^{k} \times 4 + 14$	
	$= (6M - 14) \times 4 + 14$	2 marks – Substantially correct
	$= 6 \times 4M - 4 \times 14 + 14$	solution
	$= 6 \times 4M - 42$	
	= 6 (4M - 7)	1 mark – significant progress
	= 6N, where N is an integer	towards correct solution
	∴ true by the Principle of Maffamadikal Inducement	

H9 H8 $ \begin{cases} (\sin x + 1)(2 \sin x - 1) = 0 \\ \sin x = -1 \text{ and } \sin x = \frac{1}{2} \\ For -\pi \le x \le \pi, x = -\frac{\pi}{2}, \frac{\pi}{6} \text{ and } \pi - \frac{\pi}{6}. \\ \therefore x = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}. \\ (ii) \\ \frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}. \\ (iii) \\ \frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{6}. \\ (iii) \\ \frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{6}. \\ (iii) \\ \frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{6}. \\ \frac{\pi}{2}, \frac{\pi}{6}. \\ \frac{\pi}{2}, \frac{\pi}{6}. \\ \frac{\pi}{2}, \frac{\pi}{6}. \\ \frac{\pi}{2}, \frac{\pi}{6}. \\ \frac{\pi}{6}, \frac{\pi}{6}. \\ \frac{\pi}$	HE4 Uses H5 Appl trigo	Outcomes Addressed in this Question				
H5 Applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems H3 Uses techniques of integration to calculate areas and volumes. H9 Communicates using mathematical language, notation, diagrams and graphs. Outcome Solutions Marking Guidelines H5 (a)(i) $y = \sin x$ and $y = \cos 2x$ meet when $\sin x = \cos 2x$. $\therefore \sin x = 1 - 2\sin^2 x$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin x (\sin x + 1) - (\sin x + 1) = 0$ $\sin x = -1$ and $\sin x = \frac{1}{2}$ For $-\pi \le x \le \pi$, $x = -\frac{\pi}{2}$, $\frac{\pi}{6}$ and $\pi - \frac{\pi}{6}$. $\therefore x = -\frac{\pi}{2}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$. (ii) H9 (iii) $A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} (\cos 2x - \sin x) dx$ $= \left[\frac{1}{2}\sin 2x - (-\cos x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}}$ $= \left[\frac{1}{2}\sin 2x + \cos x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}}$ H8 $= \frac{1}{2}\sin \frac{\pi}{3} + \cos \frac{\pi}{6} - \left(\frac{1}{2}\sin(-\pi) + \cos\left(-\frac{\pi}{2}\right)\right)$	H5 Appl trigo	the relationship between functions, inverse functions and the				
OutcomeSolutionsMarking GuidelinesH5(a)(i) $y = \sin x$ and $y = \cos 2x$ meet when $\sin x = \cos 2x$. $\therefore \sin x = 1 - 2 \sin^2 x$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin^2 x + 2 \sin x - 1 = 0$ $2 \sin x (\sin x + 1) - (\sin x + 1) = 0$ $(\sin x + 1)(2 \sin x - 1) = 0$ $\sin x = -1$ and $\sin x = \frac{1}{2}$ 3 marks : correct solution $2 marks : substantiallycorrect solution1 mark : significantprogress towards correctsolutionH9Image: H9Image: H9Image: H92 marks : correct graph1 mark : significantprogress towards correct\frac{\pi}{2}H9Image: H9Image: H9Image: H92 marks : correct graph1 mark : significantprogress towards correctgraphH9Image: H9Image: H9Image: H9Image: H9H9Image: H9Image: H9Image: H9H8Image: H9Image: H9Image: H9H9Image: H9$		 HE4 Uses the relationship between functions, inverse functions and their derivatives. H5 Applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems H8 Uses techniques of integration to calculate areas and volumes. 				
H9 H9 H8 $ \begin{aligned} & \int \sin x = 1 - 2 \sin^2 x \\ & 2 \sin^2 x + \sin x - 1 = 0 \\ & 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0 \\ & 2 \sin x (\sin x + 1) - (\sin x + 1) = 0 \\ & (\sin x + 1)(2 \sin x - 1) = 0 \\ & \sin x = -1 \text{ and } \sin x = \frac{1}{2} \\ & \text{For } -\pi \le x \le \pi, \ x = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{6$						
$= \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2}$ $= \frac{3\sqrt{3}}{4}$ square units.	H5 H9	(a)(i) $y = \sin x$ and $y = \cos 2x$ meet when $\sin x = \cos 2x$. $\therefore \sin x = 1 - 2\sin^2 x$ $2\sin^2 x + \sin x - 1 = 0$ $2\sin^2 x + 2\sin x - \sin x - 1 = 0$ $2\sin x (\sin x + 1) - (\sin x + 1) = 0$ $(\sin x + 1)(2\sin x - 1) = 0$ $\sin x = -1$ and $\sin x = \frac{1}{2}$ For $-\pi \le x \le \pi$, $x = -\frac{\pi}{2}, \frac{\pi}{6}$ and $\pi - \frac{\pi}{6}$. $\therefore x = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$. (ii) $(iii) A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} (\cos 2x - \sin x) dx$ $= \left[\frac{1}{2}\sin 2x - (-\cos x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}}$ $= \left[\frac{1}{2}\sin \frac{\pi}{3} + \cos \frac{\pi}{6} - \left(\frac{1}{2}\sin(-\pi) + \cos\left(-\frac{\pi}{2}\right)\right)$ $= \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2}$	 3 marks : correct solution 2 marks : substantially correct solution 1 mark : significant progress towards correct solution 2 marks : correct graph 1 mark : significant progress towards correct graph 2 marks : correct solution 1 mark : significant progress towards correct 			

HE4	(b) (i) $y = x^2 - 4x + 5$ has axis of symmetry $x = \frac{-(-4)}{2} = 2$. \therefore largest domain containing positive numbers is $x \ge 2$.	1 mark : correct answer
HE4	(ii) $y = x^2 - 4x + 5$ and the inverse function intersect on the line $y = x$. $y = x^2 - 4x + 5$ and $y = x$ meet when $x = x^2 - 4x + 5$ Solving $x^2 - 5x + 5 = 0$, $x = \frac{5 \pm \sqrt{25 - 4.5}}{2}$ $\therefore x = \frac{5 \pm \sqrt{5}}{2}$. But $x \ge 2$, so $x = \frac{5 + \sqrt{5}}{2}$. $\therefore y = f(x)$ and $\therefore y = f^{-1}(x)$ intersect at	2 marks : correct solution 1 marks : substantial progress towards correct solution
	$\therefore y = f(x) \text{ and } \therefore y = f(x) \text{ Intersect at}$ $\left(\frac{5+\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right).$	
HE4	$\left(\frac{1}{2}, \frac{1}{2}\right)^{\cdot}$ (iii) For the original function, when $x = 2$, $y = 2^2 - 4 \cdot 2 + 5 = 1$ \therefore is range is $y \ge 1$. \therefore domain of the inverse function is $x \ge 1$.	1 mark : correct answer
	(iv) Interchanging x and y in $y = x^2 - 4x + 5$,	
HE4	$x = y^{2} - 4y + 5.$ $x - 1 = y^{2} - 4y + 4$ $x - 1 = (y - 2)^{2}$ $y - 2 = \pm \sqrt{x - 1}$ $y = \pm \sqrt{x - 1} + 2$	2 marks : correct solution 1 mark : substantial progress towards correct solution
	$y = \pm \sqrt{x - 1} + 2$ But, $y \ge 2$ (range of inverse), $\therefore y = \sqrt{x - 1} + 2$.	
HE4	(v) 5 4 3 2 (v) 5 4 3 2 (v) (v) (v) (v) (v) (v) (v) (v)	2 marks : correct graph 1 mark : significant progress towards correct graph
	$y = x^{2} - 4x + 5$	