2017
HIGHER
SCHOOL
CERTIFICATE
Trial HSC
EXAMINATION

Mathematics Extension 2

Examiners Mr J. Dillon, Mr G. Huxley, Mr G. Rawson and Mrs D. Crancher

General	- Reading time -5 minutes
Instructions	- Working time -3 hours

- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided for your use
- In Questions 11 - 16, show relevant mathematical reasoning and/or calculations

[^0]
Section II - 90 marks (pages 6-14)

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Name: \qquad

Teacher: \qquad

Section I

10 marks
Attempt Questions 1 and 10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. The Argand diagram below shows the complex number z, represented by a vector, along with the unit circle.

Which diagram best illustrates the vectors representing \sqrt{z} ?
(A)

(B)

(C)

(D)

2. Which line intersects the circle $|z-3-2 i|=2$ twice?
(A) $\quad|z-3-2 i|=|z-5|$
(B) $\quad|z-i|=|z+1|$
(C) $\operatorname{Re}(z)=5$
(D) $\quad \operatorname{Im}(z)=0$
3. The polynomial equation $x^{3}+x^{2}-x-4=0$ has roots α, β and γ. Which of the following polynomial equations has roots α^{2}, β^{2} and γ^{2} ?
(A) $x^{3}-3 x^{2}+9 x-16=0$
(B) $x^{3}-3 x^{2}-8 x-16=0$
(C) $x^{3}-x^{2}+9 x-1=0$
(D) $x^{3}-x^{2}-8 x-1=0$
4. What are the values of real numbers p and q such that $1-i$ is a root of the equation $z^{3}+p z+q=0$?
(A) $\quad p=-2$ and $q=-4$
(B) $\quad p=-2$ and $q=4$
(C) $\quad p=2$ and $q=4$
(D) $\quad p=2$ and $q=4$
5. The equation $x^{3}-y^{3}+3 x y+1=0$ defines y implicitly as a function of x.

What is the value of $\frac{d y}{d x}$ at the point $(1,2)$?
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
6. What is the natural domain of the function $f(x)=\frac{1}{2}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)$?
(A) $x \leq-1$ or $x \geq 1$
(B) $-1 \leq x \leq 1$
(C) $x \geq 1$
(D) $\quad x \leq-1$
7. The point $P\left(c p, \frac{c}{p}\right)$ lies on the hyperbola $x y=c^{2}$ What is the equation of the normal to the hyperbola at P ?
(A) $p^{2} x-p y+c-c p^{4}=0$
(B) $p^{3} x-p y+c-c p^{4}=0$
(C) $x+p^{2} y-2 c=0$
(D) $x+p^{2} y-2 c p=0$
8. What are the co-ordinates of the foci of the graph of $x y=12$?
(A) $(2 \sqrt{3}, 2 \sqrt{3})$ and $(-2 \sqrt{3},-2 \sqrt{3})$
(B) $(2 \sqrt{6}, 2 \sqrt{6})$ and $(-2 \sqrt{6},-2 \sqrt{6})$
(C) $(2 \sqrt{3}, 0)$ and $(-2 \sqrt{3}, 0)$
(D) $(2 \sqrt{6}, 0)$ and $(-2 \sqrt{6}, 0)$
9. The substitution of $x=\sin \theta$ in the integral $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$ results in which integral?
(A) $\int_{0}^{\frac{1}{2}} \frac{\sin ^{2} \theta}{\cos \theta} d \theta$
(B) $\int_{0}^{\frac{1}{2}} \sin ^{2} \theta d \theta$
(C) $\int_{0}^{\frac{\pi}{6}} \frac{\sin ^{2} \theta}{\cos \theta} d \theta$
(D) $\int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta d \theta$
10. How many ways are there of choosing three different numbers in increasing order from the numbers $1,2,3,4,5,6,7,8,9,10$ so that no two of the numbers are consecutive?
(A) 20
(B) 48
(C) 56
(D) 72

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) Answer this question in a new answer booklet
(a) (i) Simplify $i^{2017} 1$
(ii) Sketch the locus of $\arg (z-1)=\frac{\pi}{4}$
(b) $z=-\sqrt{3}+i$ and $w=1+i$
(i) Find $\frac{z}{w}$ in Cartesian form.
(ii) Convert both z and w to modulus - argument form.
(iii) Use your answers to (i) and (ii) to find the exact value of $\cos \frac{7 \pi}{12}$.
(c) $\quad(x+i y)^{2}=7-24 i$, where x and y are real.
(i) Find the exact values of x and y.
(ii) Hence, solve the equation $2 z^{2}+6 z+(1+12 i)=0$.
(d) Use De Moivre's Theorem to show that $(\cot \theta+\mathrm{i})^{n}+(\cot \theta-i)^{n}=\frac{2 \cos n \theta}{\sin ^{n} \theta}$.

Question 12 (15 marks) Answer this question in a new answer booklet

(a) The equation $32 x^{3}-16 x^{2}-2 x+1=0$ has roots α, β, and γ.
(i) What is the value of γ if $\gamma=\alpha+\beta$?
(ii) Fully factorise $P(x)=32 x^{3}-16 x^{2}-2 x+1$
(b) The polynomial $P(z)=z^{4}-5 z^{3}+a z^{2}+b z-10$ where a and b are real.

Given that $2+i$ is a zero of $P(z)$, write $P(z)$ as a product of two real quadratic factors.

2
(c) $\quad P(x)=x^{4}+a x^{2}+b x+28$ has a double root at $x=2$.

Find a and b.
2
(d) When $P(x)$ is divided by $(x-2)$ and $(x+3)$ the respective remainders are -7 and 3 .

Find the remainder when $P(x)$ is divided by $(x-2)(x+3)$.
(e) Let $z=1+i$ be a root of: $z^{2}-b i z+c=0$, where b and c are real.
(i) Find b and c
(ii) Find the other root of the polynomial.
(f) Solve the equation $x^{4}-5 x^{3}-9 x^{2}+81 x-108=0$ given that it has a triple root.

Question 13 (15 marks) Answer this question in a new answer booklet

(a) (i) By writing $\frac{(x-2)(x-5)}{x-1}$ in the form $m x+b+\frac{a}{x-1}$, find the equation of the oblique asymptote of $y=\frac{(x-2)(x-5)}{x-1}$.

2
(ii) Hence sketch the graph of $y=\frac{(x-2)(x-5)}{x-1}$, clearly indicating all intercepts and asymptotes.
(b) Let $f(x)=3 x^{5}-10 x^{3}+16 x$
(i) Show that $f^{\prime}(x) \geq 1$ for all x.
(ii) For what values of x is $f^{\prime \prime}(x)$ decreasing?
(iii) Sketch the graph of $y=f(x)$, indicating any turning points and points of inflexion.

Question 13 continued ...
(c) The diagram shows the graph of $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
(i) $\quad y=|f(x)|$
(ii) $y=e^{f(x)}$
(iii) $y^{2}=f(x)$
(a) $A(5 \cos \theta, 4 \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.

The normal at A meets the x-axis at P and the y-axis at Q .
(i) Show that the normal to the ellipse at A has the equation

$$
5 x \sin \theta-4 y \cos \theta=9 \sin \theta \cos \theta
$$

(ii) $\quad M$ is the midpoint of $P Q$. Show that the locus of M is an ellipse.
(b) The point $P\left(x_{0}, y_{0}\right)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $a>b>0$.

(i) Write the equations of the asymptotes to the hyperbola in general form.
(ii) Write an expression for $\tan \theta$, where θ is the acute angle between the asymptotes, in terms of a and b.
(iii) Hence, write an expression for $\sin \theta$.
(iv) If C and D are the feet of the perpendiculars drawn from $P\left(x_{0}, y_{0}\right)$ to the asymptotes show that $C P \times D P=\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
(v) Prove that $O C P D$, where O is the origin, is a cyclic quadrilateral. $\mathbf{1}$
(vi) Calculate the area of $\triangle P C D$. 2

Question 15 (15 marks) Answer this question in a new answer booklet

(a) Find $\int \frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x$ using the substitution $x=\sin \theta$ with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
(b) Use the substitution $t=\tan \frac{x}{2}$ to show that $\int_{0}^{\frac{\pi}{2}} \frac{1}{3-\cos x-2 \sin x} d x=\frac{\pi}{2}$.
(c) (i) Find the real numbers a, b and c such that

$$
\frac{7 x+4}{\left(x^{2}+1\right)(x+2)} \equiv \frac{a x+b}{x^{2}+1}+\frac{c}{x+2}
$$

(ii) Hence, find $\int \frac{7 x+4}{\left(x^{2}+1\right)(x+2)} d x$
(d) (i) Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t$.

Show that $I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}$ with $n \geq 2$.
(ii) Hence, otherwise, show that the exact value of $\int_{0}^{\frac{\pi}{2}} \cos ^{4} t d t=\frac{3 \pi}{16}$.
(a) A School Council consists of six year 12 students and five year 11 students, from whom a committee of five members is chosen at random.

What is the probability that the year 12 students have a majority on the committee?
(b) In the circle below, points A, B and C lie on the circumference of a circle. The altitudes $A M$ and $B N$ of an acute angled triangle $A B C$ meet at H. $A M$ produced cuts the circle at D.

Prove that $H M=M D$.

(c) The nth Fermat number, F_{n}, is defined by $F_{n}=2^{2^{n}}+1$ for $n=0,1,2,3 \ldots$.

Prove by mathematical induction, that for all positive integers:

$$
F_{0} \times F_{1} \times F_{2} \times \ldots \times F_{n-1}=F_{n}-2
$$

(d) The area bounded by the curve $y=2 x-x^{2}$ and the x-axis is rotated through 180° about the line $x=1$.

(i) Show that the volume, ΔV, of a representative horizontal slice of width Δy is given by

$$
\Delta V=\pi(x-1)^{2} \Delta y
$$

(ii) Hence, show that the volume of the solid of revolution is given by

$$
V=\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{1} \pi(1-y) \Delta y
$$

(iii) Hence, find the volume of the solid of revolution.

$$
w=1+i
$$

$$
|z|=\sqrt{(-\sqrt{3})^{2}+(1)^{2}}
$$

$$
=\sqrt{3+1}
$$

$$
|w|=\sqrt{(1)^{2}+(1)^{2}}
$$

$$
=2
$$

$$
=\sqrt{2}
$$

$$
\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{1}{-\sqrt{3}}\right)
$$

$$
\operatorname{Arg}(w)=\tan ^{-1}\left(\frac{1}{1}\right)
$$

$$
=\frac{\pi}{4}
$$

$$
\therefore w=\sqrt{2} c i s \frac{\pi}{4}
$$

E3
(iii)

$$
\begin{aligned}
\frac{z}{w} & =\frac{2 \operatorname{cis} \frac{5 \pi}{6}}{\sqrt{2} \operatorname{cis} \frac{\pi}{4}} \\
& =\sqrt{2} \operatorname{cis} \frac{7 \pi}{12} \\
& =\sqrt{2} \cos \frac{7 \pi}{12}+i\left(\sqrt{2} \sin \frac{7 \pi}{12}\right)
\end{aligned}
$$

Equating real parts:
$\sqrt{2} \cos \frac{7 \pi}{12}=\frac{1-\sqrt{3}}{2}$
$\therefore \cos \frac{7 \pi}{12}=\frac{1-\sqrt{3}}{2 \sqrt{2}}$ or $\frac{\sqrt{2}-\sqrt{6}}{4}$
(i)

$$
\begin{align*}
(x+i y)^{2} & =7-24 i \\
x^{2}+2 i x y-y^{2} & =7-24 i \\
x^{2}-y^{2} & =7 \ldots \ldots \ldots \ldots \tag{1}\\
2 x y & =-24 \\
\therefore y & =\frac{-12}{x} \ldots \ldots \tag{2}
\end{align*}
$$

sub (2) into (1):

$$
\begin{aligned}
& x^{2}-\left(\frac{-12}{x}\right)^{2}=7 \\
& x^{2}-\frac{144}{x^{2}}=7 \\
& x^{4}-144=7 x^{2} \\
& x^{4}-7 x^{2}-144=0 \\
&\left(x^{2}-16\right)\left(x^{2}+9\right)=0 \\
& \therefore x= \pm 4 \text { as } x \text { is real } \\
& \text { If } x=4, \quad y=\frac{-12}{4}=-3 \\
& x=-4, y=3
\end{aligned}
$$

Therefore solutions for $(x+i y)^{2}=7-24 i$ are
$x=4, y=-3 \quad$ and $\quad x=-4, y=3$.

E3
(ii)

$$
\begin{aligned}
& 2 z^{2}+6 z+(1+12 i)=0 \\
& \Delta=b^{2}-4 a c \\
&=6^{2}-4 \times 2(1+12 i) \\
&=28-96 i \\
&=4(7-24 i)
\end{aligned}
$$

$$
\therefore z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3 marks for complete correct solution

2 marks for substantial working that could lead to a correct solution with only one error

1 mark for substantial working that could lead to a correct solution

2 marks for complete correct solution

1 mark for substantial work that could lead to a correct solution

$$
=\frac{-6 \pm \sqrt{4(7-24 i)}}{2 \times 2}
$$

$$
=\frac{-6 \pm 2(4-3 i)}{2 \times 2}
$$

$$
=\frac{1-3 i}{2}, \frac{-7+3 i}{2}
$$

$$
\begin{aligned}
& \text { (d) } \\
& (\cot \theta+i)^{n}+(\cot \theta-i)^{n} \\
& =\left(\frac{\cos \theta+i \sin \theta}{\sin \theta}\right)^{n}+\left(\frac{\cos \theta-i \sin \theta}{\sin \theta}\right)^{n} \\
& =\frac{1}{\sin ^{n} \theta}\left\{(\cos \theta+i \sin \theta)^{n}+(\cos (-\theta)+i \sin (-\theta))^{n}\right\} \\
& =\frac{1}{\sin ^{n} \theta}(\cos n \theta+i \sin n \theta+\cos (-n \theta)+i \sin (-n \theta)) \text { using de Moivre's theorem } \\
& =\frac{1}{\sin ^{n} \theta}(\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta) \\
& =\frac{2 \cos n \theta}{\sin ^{n} \theta}
\end{aligned}
$$

2 marks for complete correct solution

1 mark for substantial work that could lead to a correct solution

Multiple Choice Answers:

1. C
2. A
3. A
4. B
5. D
6. C
7. B
8. B
9. D
10. C

(c) in $^{\text {(i) }}$

Outcomes Addressed in this Question

E3 uses the relationship between algebraic and geometric representations of conic sections

Part	Solutions
(a) (i)	$\frac{d}{d x}\left(\frac{x^{2}}{25}+\frac{y^{2}}{16}\right)=\frac{d}{d x}(1) \quad \rightarrow \frac{d y}{d x}=\frac{-16 x}{25 y}$
Gradient of normal $=\frac{25 y}{16 x}=\frac{5 \sin \theta}{4 \cos \theta}$	
	$y-4 \sin \theta=\frac{5 \sin \theta}{4 \cos \theta}(x-5 \cos \theta)$
	$4 y \cos \theta-16 \sin \theta \cos \theta=5 x \sin \theta-25 \sin \theta \cos \theta$
(ii)	$P=\left(\frac{9 \cos \theta}{5}, 0\right) ; Q=\left(0, \frac{-9 \sin \theta}{4}\right) ; M=\left(\frac{9 \cos \theta}{10}, \frac{-9 \sin \theta}{8}\right)$

(a)(i) 2 Marks \sim Correct with working.

1 Marks ~ Makes significant progress towards the solution

Jusify locus of M is an ellipse by eliminating $\sin \theta, \cos \theta$ and showing the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Alternately, it was accepted that M is in parametric form $(a \cos \theta, b \sin \theta)$.
(b) (i)
(ii)
$b x-a y=0 \quad b x+a y=0$
$\tan \frac{\theta}{2}=\frac{b}{a} \quad \therefore \tan \theta=\frac{2\left(\frac{b}{a}\right)}{1-\left(\frac{b}{a}\right)^{2}}=\frac{2 a b}{a^{2}-b^{2}}$
(iii)
$\sin \theta=\frac{2\left(\frac{b}{a}\right)}{1+\left(\frac{b}{a}\right)^{2}}=\frac{2 a b}{a^{2}+b^{2}}$
(iv)
$C P$ and $D P$ are perpendicular distances from P to the asymptotes.

$$
\begin{aligned}
C P \times D P & =\frac{\left|b x_{0}-a y_{0}\right|}{\sqrt{(-a)^{2}+b^{2}}} \times \frac{\left|b x_{0}+a y_{0}\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{\left(b x_{0}\right)^{2}-\left(a y_{0}\right)^{2}}{a^{2}+b^{2}}=\frac{b^{2} x_{0}^{2}-a^{2} y_{0}^{2}}{a^{2}+b^{2}} \\
& =\frac{a^{2} b^{2}}{a^{2}+b^{2}}
\end{aligned}
$$

$\angle O C P=\angle O D P=90^{\circ}$ since $C P, D P$ are perpendiculars
$O C P D$ is cyclic because these angles are opposite and supplementary.
$\Delta P C D=\frac{1}{2} . C P \cdot P D \times \sin \left(180^{\circ}-\theta\right)$

$$
=\frac{1}{2} \times \frac{a^{2} b^{2}}{a^{2}+b^{2}} \times \frac{2 a b}{a^{2}+b^{2}}=\frac{a^{3} b^{3}}{\left(a^{2}+b^{2}\right)^{2}}
$$

(a)(ii) $\mathbf{3}$ marks: Finds P, Q, M and justifies the locus of M.
2 marks: Significant progress.
1 mark: Some relevant progress.
(b)(i) 1 mark: Correct answer in general form. If equations are correct but not in general form, you received this mark if you used general form in part (iv).
(b)(ii) 2 marks: correct solution.

1 Mark ~ Makes significant progress towards solution
Note: Many people used angle between 2 lines formula, but it was easier to use double angle result which becomes a form of the tresult because that led to more easily achieving part (iii)
(b)(iii) 1 mark: Correct answer. (b)(iv) $\mathbf{3}$ marks: Correct solution, realising that this is a "show" question.
2 marks: Significant progress..
1 mark : Some relevant progress made.
(b)(v) $\mathbf{1}$ mark: Indicating which angles are right angles, as well as giving the reason for being cyclic.
(b)(vi) $\mathbf{2}$ marks: Correct solution, including showing the use of sin ratio of supplementary angle.
1 mark: Significant progress.

Outcomes Addressed in this Question
E8 applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems

Part	Solutions	Marking Guidelines
(a)	Let $x=\sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ $\begin{aligned} & d x=\cos \theta d \theta \\ & \begin{aligned} \left(1-x^{2}\right)^{\frac{3}{2}} & =\left(1-\sin ^{2} \theta\right)^{\frac{3}{2}} \\ & =\left(\cos ^{2} \theta\right)^{\frac{3}{2}}=\cos ^{3} \theta \end{aligned} \\ & \begin{aligned} \int \frac{x^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x & =\int \frac{\sin ^{2} \theta}{\cos ^{3} \theta} \cos \theta d \theta \\ & =\int \tan ^{2} \theta d \theta=\int\left(\sec ^{2} \theta-1\right) d \theta \\ & =\tan \theta-\theta+c=\frac{x}{\left(1-x^{2}\right)^{\frac{1}{2}}}-\sin ^{-1} x+c \end{aligned} \end{aligned}$	2 Marks ~ Correct solution. 1 Marks ~ Makes significant progress towards the solution
(b)	$\begin{aligned} & t=\tan \frac{x}{2} \\ & \frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} \text { or } d x=\frac{2}{1+t^{2}} d t \end{aligned}$ When $\boldsymbol{x}=\mathbf{0}$ then $t=0$ and when $\boldsymbol{x}=\frac{\pi}{2}$ then $t=1$ $\begin{aligned} 3-\cos x-2 \sin x & =\frac{3\left(1+t^{2}\right)-\left(1-t^{2}\right)-4 t}{1+t^{2}} \\ & =\frac{3+3 t^{2}-1+t^{2}-4 t}{1+t^{2}} \\ & =\frac{2\left(2 t^{2}-2 t+1\right)}{1+t^{2}} \\ & =2\left[\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4}\right] \frac{2}{1+t^{2}} \\ \int_{0}^{\frac{\pi}{2}} \frac{1}{3-\cos x-2 \sin x} d x & =\int_{0}^{1} \frac{1}{2}\left[\frac{1}{\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4}}\right] \times \frac{1+t^{2}}{2} \times \frac{2}{1+t^{2}} d t \\ & =\int_{0}^{1} \frac{1}{2}\left[\frac{1}{\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4}}\right] d t \quad\left[\text { Let } u=t-\frac{1}{2}, d u=d t\right] \\ & =\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2}\left[\frac{1}{u^{2}+\frac{1}{4}}\right] d u \\ & =\frac{1}{2}\left[2 \tan ^{-1} u\right]_{-1}^{\frac{1}{2}} \\ & =\tan ^{-1} 1-\tan ^{-1}(-1) \\ & =\frac{\pi}{2} \end{aligned}$	4 Marks ~ Correct answer 3 Marks ~ Correctly determines the primitive function (in terms of t or another variable). 2 Marks ~ Correctly expresses the integral in terms of t. 1 Mark ~ Correctly finds $d x$ in terms of $d t$ and determines the new limits.

(c) (i)
$\frac{7 x+4}{\left(x^{2}+1\right)(x+2)}=\frac{a x+b}{x^{2}+1}+\frac{c}{x+2}$
$7 x+4=(a x+b)(x+2)+c\left(x^{2}+1\right)$
Let $\quad x=-2 \quad$ and $\quad x=0$

$$
\begin{array}{rlrl}
-10 & =5 c & & 4 \\
c & =b(0+2)-2\left(0^{2}+1\right) \\
c & & b & =3
\end{array}
$$

Equating the coefficients of $x^{2} \quad 0=a-2$ or $a=2$
$\therefore a=2, b=3$ and $c=-2$
(ii)

$$
\begin{aligned}
\int \frac{7 x+4}{\left(x^{2}+1\right)(x+2)} d x & =\int \frac{2 x+3}{x^{2}+1}-\frac{2}{x+2} d x \\
& =\int \frac{2 x}{x^{2}+1}+\frac{3}{x^{2}+1}-\frac{2}{x+2} d x \\
& =\ln \left|x^{2}+1\right|+3 \tan ^{-1} x-2 \ln |x+2|+c \\
& =\ln \left|\frac{x^{2}+1}{(x+2)^{2}}\right|+3 \tan ^{-1} x+c
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{x} \cos ^{n} x d x \\
& =\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x
\end{aligned}
$$

Integration by parts

$$
\begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}} \cos ^{n-1} t \cos t d t \\
& =\left[\cos ^{n-1} t \sin t\right]_{0}^{\frac{\pi}{2}}+(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t \sin ^{2} t d t \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t \sin ^{2} t d t \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t\left(1-\cos ^{2} t\right) d t \\
& =(n-1) \int_{0}^{\frac{\pi}{2}}\left(\cos ^{n-2} t-\cos ^{n} t\right) d t \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t d t-(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t
\end{aligned}
$$

Using the original integral

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t & =(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t d t-n \int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t+\int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t \\
n \int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t & =(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t d t \\
\int_{0}^{\frac{\pi}{2}} \cos ^{n} t d t & =\frac{(n-1)}{n} \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} t d t \\
I_{n} & =\frac{(n-1)}{n} I_{n-2}
\end{aligned}
$$

3 Marks ~ Correct answer.

2 Marks ~ Calculates two of the variables

1 Mark ~ Makes some progress in finding a, b or c.

2 Marks ~ Correct answer.

1 Mark ~ Correctly finds one of the integrals.

2 Marks ~ Correct answer.

1 Mark ~ Correctly integrates by parts.
(ii)

$$
\begin{aligned}
I_{n} & =\frac{(n-1)}{n} I_{n-2} \\
I_{4} & =\frac{(4-1)}{4} I_{2} \\
& =\frac{3}{4} \int_{0}^{\frac{\pi}{2}} \cos ^{2} t d t \\
& =\frac{3}{4} \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 t) d t \\
& =\frac{3}{8}\left[x+\frac{\sin 2 t}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{3}{8}\left[\left(\frac{\pi}{2}+\frac{\sin \pi}{2}\right)-\left(0+\frac{\sin 0}{2}\right)\right] \\
& =\frac{3 \pi}{16}
\end{aligned}
$$

2 Marks ~ Correct answer.

1 Mark ~ Using the result from (d)(i) to obtain the definite integral.

[^0]: Total marks:
 100
 Section I-10 marks (pages 2-5)

 - Attempt Questions 1 - 10
 - Allow about 15 minutes for this section

