

HIGHER SCHOOL CERTIFICATE TRIAL HSC EXAMINATION

Mathematics Extension 2

Examiners	Mr J. Dillon, Mr G. Huxley, Mr G. Rawson and Mrs D. Crancher
General Instructions	 Reading time – 5 minutes Working time – 3 hours Write using black pen NESA approved calculators may be used A reference sheet is provided for your use In Questions 11 – 16, show relevant mathematical reasoning and/or calculations
Total marks: 100	 Section I – 10 marks (pages 2 – 5) Attempt Questions 1 – 10 Allow about 15 minutes for this section Section II – 90 marks (pages 6 – 14) Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Name: _____

Teacher: _____

Section I

10 marks Attempt Questions 1 and 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. The Argand diagram below shows the complex number *z*, represented by a vector, along with the unit circle.

Which diagram best illustrates the vectors representing \sqrt{z} ?

Which line intersects the circle |z-3-2i| = 2 twice? 2.

(A)
$$|z-3-2i| = |z-5|$$
 (B) $|z-i| = |z+1|$

(C) Re
$$(z) = 5$$
 (D) Im $(z) = 0$

The polynomial equation $x^3 + x^2 - x - 4 = 0$ has roots α , β and γ . Which of the 3. following polynomial equations has roots α^2 , β^2 and γ^2 ?

(A)
$$x^3 - 3x^2 + 9x - 16 = 0$$
 (B) $x^3 - 3x^2 - 8x - 16 = 0$

(C)
$$x^3 - x^2 + 9x - 1 = 0$$
 (D) $x^3 - x^2 - 8x - 1 = 0$

- What are the values of real numbers p and q such that 1-i is a root of the 4. equation $z^3 + pz + q = 0$?
 - (A) p = -2 and q = -4(B) p = -2 and q = 4

(C)
$$p = 2$$
 and $q = 4$ (D) $p = 2$ and $q = 4$

The equation $x^3 - y^3 + 3xy + 1 = 0$ defines y implicitly as a function of x. 5. What is the value of $\frac{dy}{dx}$ at the point (1, 2)?

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{2}$

(C)
$$\frac{3}{4}$$
 (D) 1

6. What is the natural domain of the function $f(x) = \frac{1}{2} \left(x \sqrt{x^2 - 1} - \ln \left(x + \sqrt{x^2 - 1} \right) \right)$?

(A)
$$x \le -1 \text{ or } x \ge 1$$
 (B) $-1 \le x \le 1$

(C)
$$x \ge 1$$
 (D) $x \le -1$

7. The point $P(cp, \frac{c}{p})$ lies on the hyperbola $xy = c^2$ What is the equation of the normal to the hyperbola at *P*?

(A)
$$p^{2}x - py + c - cp^{4} = 0$$
 (B) $p^{3}x - py + c - cp^{4} = 0$

(C)
$$x + p^2 y - 2c = 0$$
 (D) $x + p^2 y - 2cp = 0$

8. What are the co-ordinates of the foci of the graph of xy = 12 ?

(A)
$$(2\sqrt{3}, 2\sqrt{3})$$
 and $(-2\sqrt{3}, -2\sqrt{3})$ (B) $(2\sqrt{6}, 2\sqrt{6})$ and $(-2\sqrt{6}, -2\sqrt{6})$
(C) $(2\sqrt{3}, 0)$ and $(-2\sqrt{3}, 0)$ (D) $(2\sqrt{6}, 0)$ and $(-2\sqrt{6}, 0)$

9. The substitution of $x = \sin \theta$ in the integral $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx$ results in which integral? (A) $\int_{0}^{\frac{1}{2}} \frac{\sin^{2} \theta}{\cos \theta} d\theta$ (B) $\int_{0}^{\frac{1}{2}} \sin^{2} \theta d\theta$ (C) $\int_{0}^{\frac{\pi}{6}} \frac{\sin^{2} \theta}{\cos \theta} d\theta$ (D) $\int_{0}^{\frac{\pi}{6}} \sin^{2} \theta d\theta$

> HAHS Mathematics Extension 2 Trial HSC 2017

10. How many ways are there of choosing three different numbers in increasing order from the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 so that no two of the numbers are consecutive?

(A)	20	(B)	48
()		(-)	

(C) 56 (D) 72

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) Answer this question in a new answer booklet

(a) (i) Simplify
$$i^{2017}$$

(ii) Sketch the locus of $\arg(z-1) = \frac{\pi}{4}$
(b) $z = -\sqrt{3} + i$ and $w = 1 + i$
(i) Find $\frac{z}{w}$ in Cartesian form.
(ii) Convert both z and w to modulus – argument form.
(iii) Use your answers to (i) and (ii) to find the exact value of $\cos \frac{7\pi}{12}$.
(c) $(x+iy)^2 = 7-24i$, where x and y are real.
(i) Find the exact values of x and y.
(ii) Hence, solve the equation $2z^2 + 6z + (1+12i) = 0$.
2

(d) Use De Moivre's Theorem to show that $(\cot\theta + i)^n + (\cot\theta - i)^n = \frac{2\cos n\theta}{\sin^n \theta}$. 2

Page 6 of 16

Question 12 (15 marks) Answer this question in a new answer booklet

(a)	The equation $32x^3 - 16x^2 - 2x + 1 = 0$ has roots α , β , and γ .	
	(i) What is the value of γ if $\gamma = \alpha + \beta$?	2
	(ii) Fully factorise $P(x) = 32x^3 - 16x^2 - 2x + 1$	2
(b)	The polynomial $P(z)=z^4-5z^3+az^2+bz-10$ where <i>a</i> and <i>b</i> are real.	
	Given that $2+i$ is a zero of $P(z)$, write $P(z)$ as a product of two real quadratic factors.	2
(c)	$P(x)=x^4+ax^2+bx+28$ has a double root at $x=2$.	
	Find <i>a</i> and <i>b</i> .	2
(d)	When $P(x)$ is divided by $(x-2)$ and $(x+3)$ the respective remainders are -7 and 3.	
	Find the remainder when $P(x)$ is divided by $(x-2)(x+3)$.	2
(e)	Let $z=1+i$ be a root of: $z^2-biz+c=0$, where b and c are real.	
	(i) Find b and c	2
	(ii) Find the other root of the polynomial.	1
(f)	Solve the equation $x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$ given that it has a triple root.	2

Question 13 (15 marks) Answer this question in a new answer booklet

(a) (i) By writing
$$\frac{(x-2)(x-5)}{x-1}$$
 in the form $mx+b+\frac{a}{x-1}$, find the equation of the oblique asymptote of $y = \frac{(x-2)(x-5)}{x-1}$.

(ii) Hence sketch the graph of
$$y = \frac{(x-2)(x-5)}{x-1}$$
, clearly indicating all intercepts and asymptotes.

(b) Let
$$f(x) = 3x^5 - 10x^3 + 16x$$

(i) Show that
$$f'(x) \ge 1$$
 for all x. 2

- (ii) For what values of x is f''(x) decreasing?
- (iii) Sketch the graph of y = f(x), indicating any turning points and points of inflexion.

Question 13 continues on the next page

2

2

2

Question 13 continued

The diagram shows the graph of y = f(x). (c)

Draw separate one-third page sketches of the graphs of the following:

(i)	y = f(x)			1
-----	-----------	--	--	---

 $y = e^{f(x)}$ (ii) 2

(iii)
$$y^2 = f(x)$$
 2

Question 14 (15 marks) Answer this question in a new answer booklet

(a) $A(5\cos\theta, 4\sin\theta)$ is a point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. The normal at A meets the x-axis at P and the y-axis at Q.

(i) Show that the normal to the ellipse at *A* has the equation

$$5x\sin\theta - 4y\cos\theta = 9\sin\theta\cos\theta$$
 2

(ii) *M* is the midpoint of *PQ*. Show that the locus of *M* is an ellipse.

3

(b) The point $P(x_0, y_0)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0.

(1)	Write the equations of the asymptotes to the hyperbola in general form.	1

- (ii) Write an expression for $\tan \theta$, where θ is the acute angle between the asymptotes, in terms of *a* and *b*. **2**
- (iii) Hence, write an expression for $\sin \theta$.

1

Question 14 continues on the next page

Question 14 continued

- (iv) If *C* and *D* are the feet of the perpendiculars drawn from $P(x_0, y_0)$ to the asymptotes show that $CP \times DP = \frac{a^2b^2}{a^2 + b^2}$ 3
- (v) Prove that *OCPD*, where *O* is the origin, is a cyclic quadrilateral. **1**
- (vi) Calculate the area of ΔPCD .

2

Question 15 (15 marks) Answer this question in a new answer booklet

(a) Find
$$\int \frac{x^2}{(1-x^2)^{\frac{3}{2}}} dx$$
 using the substitution $x = \sin \theta$ with $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. 2

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to show that $\int_{0}^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2\sin x} dx = \frac{\pi}{2}$.

(c) (i) Find the real numbers
$$a$$
, b and c such that **3**

$$\frac{7x+4}{(x^2+1)(x+2)} \equiv \frac{ax+b}{x^2+1} + \frac{c}{x+2}$$

(ii) Hence, find
$$\int \frac{7x+4}{(x^2+1)(x+2)} dx$$
 2

(d) (i) Let
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$$
.
Show that $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$ with $n \ge 2$.

(ii) Hence, otherwise, show that the exact value of
$$\int_{0}^{\frac{\pi}{2}} \cos^4 t \, dt = \frac{3\pi}{16}.$$
 2

HAHS Mathematics Extension 2 Trial HSC 2017 Page 12 of 16

Question 16 (15 marks) Answer this question in a new answer booklet

(a) A School Council consists of six year 12 students and five year 11 students, from whom a committee of five members is chosen at random.

What is the probability that the year 12 students have a majority on the committee?

 (b) In the circle below, points A, B and C lie on the circumference of a circle. The altitudes AM and BN of an acute angled triangle ABC meet at H. AM produced cuts the circle at D.

Prove that HM = MD.

(c) The *n*th Fermat number, F_n , is defined by $F_n = 2^{2^n} + 1$ for n = 0, 1, 2, 3....

Prove by mathematical induction, that for all positive integers:

$$F_0 \times F_1 \times F_2 \times \ldots \times F_{n-1} = F_n - 2 \tag{4}$$

Question 16 continues on the next page

HAHS Mathematics Extension 2 Trial HSC 2017 Page 13 of 16

2

3

(d) The area bounded by the curve $y = 2x - x^2$ and the x-axis is rotated through 180° about the line x = 1.

(i) Show that the volume, ΔV , of a representative horizontal slice of **2** width Δy is given by

$$\Delta V = \pi \left(x - 1 \right)^2 \Delta y$$

(ii) Hence, show that the volume of the solid of revolution is given by 2

$$V = \lim_{\Delta y \to 0} \sum_{y=0}^{1} \pi (1-y) \Delta y$$

(iii) Hence, find the volume of the solid of revolution. 2

E3 (ii)

$$z = -\sqrt{3} + 1$$

$$|z| = \sqrt{(-\sqrt{3})^{2} + (1)^{2}}$$

$$= \sqrt{2}$$

$$\sqrt{3} + 1$$

$$|z| = \sqrt{(-\sqrt{3})^{2} + (1)^{2}}$$

$$= \sqrt{2}$$

$$\sqrt{3} + 1$$

$$|y| = \sqrt{(1)^{3} + (1)^{2}}$$

$$= \sqrt{2}$$

$$Arg(y) = \tan^{-1}\left(\frac{1}{1}\right)$$

$$= \frac{\pi}{4}$$

$$drg(z) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right)$$

$$= \frac{\pi}{4}$$

$$drg(z) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right)$$

$$= \frac{\pi}{4}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{4}$$

$$\therefore w = \sqrt{2}cis\frac{\pi}{4}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{6}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{6}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{6}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{6}$$

$$\frac{\pi}{4}$$

$$= \sqrt{2}cis\frac{\pi}{12}$$

$$= \sqrt{2}cis\frac{7\pi}{12}$$

$$= \sqrt{2}cis\frac{7\pi}{12} + i\left(\sqrt{2}\sin\frac{7\pi}{12}\right)$$

$$= \sqrt{2}cis\frac{7\pi}{12} + i\left(\sqrt{2}\sin\frac{7\pi}{12}\right)$$

$$= \sqrt{2}cis\frac{7\pi}{12} = \frac{1-\sqrt{3}}{2}$$

$$\frac{\pi}{2} = \frac{1-\sqrt{3}}{2\sqrt{2}}$$
or $\frac{\sqrt{2}-\sqrt{6}}{4}$

$$\frac{1}{2}$$

$$\frac{\pi}{2}$$

$$\frac{\pi}{2} = \frac{1-\sqrt{3}}{2\sqrt{2}}$$

E3 (c)
(i)
$$(x+iy)^2 - 7 - 24i$$

 $x^2 + 2iy - y^2 = 7 - 24i$
 $x^2 - y^2 = 7 - 24i$
 $x - y^2 = 7 - 24i$
 $x - y - \frac{12}{x} -(2)$
sub (2) into (1):
 $x^2 - \left(\frac{-12}{x}\right)^2 = 7$
 $x^2 - \frac{144}{x^2} = 7$
 $x^4 - 144 = 7x^2$
 $x^4 - 144 = 7x^2$
 $x^4 - 144 = 7x^2$
 $x^4 - 7x^2 - 144 = 0$
 $(x^2 - 16)(x^2 + 9) = 0$
 $\therefore x = \pm 4$ as is real
If $x = 4$, $y = \frac{-12}{4} = -3$
 $x = -4$, $y = 3$
E3 (ii)
 $2z^2 + 6z + (1 + 12i) = 0$
 $A = b^2 - 4ac$
 $= \frac{6^2 - 4x^2(1 + 12i)}{2x^2}$
 $= \frac{-6\pm \pm \sqrt{b^2 - 4ac}}{2x^2}$
 $= \frac{-6\pm \pm \sqrt{b^2 - 4ac}}{2x^2}$
 $= \frac{-6\pm \frac{1}{2}(4 - 24i)}{2x^2}$
 $= \frac{-6\pm \frac{1}{2}(4 - 72i)}{2x^2}$
 $= \frac{-6\pm \frac{1}{2}(4 - 72i)}{2x^2}$
 $= \frac{-6\pm \frac{1}{2}(4 - 72i)}{2x^2}$
 $= \frac{1 - 3i}{2}, \frac{-7 + 3i}{2}$

E3	(d)	2 marks for
	$\left(\cot\theta+i\right)^n+\left(\cot\theta-i\right)^n$	complete
	$= \left(\frac{\cos\theta + i\sin\theta}{\sin\theta}\right)^n + \left(\frac{\cos\theta - i\sin\theta}{\sin\theta}\right)^n$	solution
	$(\sin\theta)$ $(\sin\theta)$	1 mark for
	$=\frac{1}{\sin^{n}\theta}\left\{\left(\cos\theta+i\sin\theta\right)^{n}+\left(\cos\left(-\theta\right)+i\sin\left(-\theta\right)\right)^{n}\right\}$	substantial
	$\lim_{n \to \infty} \theta(x) = 0$	work that
	$= \frac{1}{\sin^{n} \theta} \left(\cos n\theta + i \sin n\theta + \cos \left(-n\theta \right) + i \sin \left(-n\theta \right) \right) \text{ using de Moivre's theorem}$	correct
	$=\frac{1}{\sin^{n}\theta}\left(\cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta\right)$	solution
	$=\frac{2\cos n\theta}{2}$	
	$\sin^n heta$	
	Multiple Choice Answers:	
	1. C	
	2. A	
	3. A	
	4. B	
	5. D	
	6. C	
	7. B	
	8. B	
	9. D	
	10. C	

Year 12	Mathematics Extension 2	Task 4 (Trial) 2017		
Question 12 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question			
E4 uses	efficient techniques for the algebraic manipulation required in dealing w	vith questions involving polynomials		
Part	Solutions	Marking Guidelines		
(a) (i)	Roots are α , β , $\alpha + \beta$. $\Sigma \alpha = 2\alpha + 2\beta = -\left(\frac{-16}{32}\right) = \frac{1}{2}$ $\therefore \alpha + \beta = \delta = \frac{1}{4}$	 (a)(1) 2 Marks ~ Correct solution. 1 Mark ~ Makes significant progress towards the solution (Uses correct sum) 		
(ii)	Test $P\left(\frac{1}{4}\right) = 0$ (4x-1) is a factor.	(a) (ii) 2 Marks ~ Correct factorisation.		
	The other two roots have $\alpha + \beta = \frac{1}{4}$; $\alpha\beta = \frac{1}{8}$ from sum and product of roots of $P(x)$	towards solution		
	$\therefore a\left(x^2 - \frac{1}{4}x - \frac{1}{8}\right) = 0$			
(b)	$8x^{2} - 2x - 1 = 0$ $\therefore P(x) = (4x - 1)(4x + 1)(2x - 1)$			
	Real coefficients. So $2-i$ is also a root. 2+i+2-i=4 $(2+i)(2-i)=5$	 (b) 2 Marks ~ Correct solution. Must be quadratic factors. 1 Mark ~ Makes significant progress towards the colution. 		
	So one quadratic factor is: (z^2-4z+5)	(One correct quadratic factor)		
	If the other 2 roots are α , β :			
	$4 + \alpha + \beta = 5 \rightarrow \alpha + \beta = 1$			
	$5\alpha\beta = -10 \rightarrow \alpha\beta = -2$			
	$: P(z) = (z^{2} - 4z + 5)(z^{2} - z - 2)$			
(c)	$P(2)=0 \rightarrow 4a+2b=-44$ $P'(2)=0 \rightarrow 4a+b=-32$ ∴ $a=-5$ $b=-12$	(c) 2 marks: Correct solution 1 Mark ~ Significant progress towards solution.		
(d)	P(x)=Q(x)(x-2)(x+3)+ax+b	(d) 2 Marks ~ Correct remainder .		
	P(2)=2a+b=-7	1 Marks ~ Makes significant		
	P(-3) = -3a + b = 3 : $a = -2$ $b = -3$	progress towards the solution.		
	Remainder = $-2x-3$			
(e) (1)	$ \begin{array}{l} (1+i)^2 - bi(1+i) + c = 0 \\ (2-b)i + b + c = 0i + 0. \end{array} \qquad \therefore b = 2 \ c = -2 \end{array} $	 (e) (i) 2 Marks ~ Correct solution. 1 Mark ~ Makes significant progress 		
(ii)	Sum of roots = $bi = 2i$	towards solution(substitution completed.)		
	So, other roots = $2i - (1+i) = i - 1$	(e) (ii) 1 mark : correct answer.		
(f)	$P(x) = x^{4} - 5x^{3} - 9x^{2} + 81x - 108$	(f) 2 marks : Correct roots with justification.		
	$P'(x) = 4x^3 - 15x^2 - 18x + 81$	I mark : Significant progress towards correct solution.		
	$P''(x) = 12x^{2} - 30x - 18 = 6(2x+1)(x-3)$			
	Possible triple roots are $x=3, -\frac{1}{2}$			
	$P\left(-\frac{1}{2}\right) \neq 0; P(3) = P'(3) = P''(3) = 0$			
	Product of roots = -108 , so solutions are: $x=3, -4$			

Year 12 Mathematics Extension 2		Trial Exam 2017 HSC		
Question N	o. 13 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question			
E6 - combine variety of fur	E6 - combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions			
Part	Solutions	Marking Guidelines		
(a)	(i) $\frac{(x-2)(x-5)}{x-1} = \frac{x^2 - 7x + 10}{x-1}$	<u>2 marks</u> : correct solution		
	$\frac{x-6}{x-1)x^2-7x+10}$ $\frac{x^2-x}{-6x+10}$	<u>1 mark</u> : substantially correct solution		
	$\frac{-6x+6}{4}$ $\therefore \lim_{x \to \infty} \frac{(x-2)(x-5)}{x-1}$			
	$= \lim_{x \to \infty} x - 6 + \frac{4}{x - 1}$ = x - 6 + 0 ie the oblique asymptote is y = x - 6			
	(ii) y $x=10$ 1 2 5 6 x	2 marks : correct solution (need correct intercepts AND asymptotes.) 1 mark : substantially correct solution (NB: the maximum stationary point on the left hand branch is to the left of the y-axis. Marks were not deducted for showing this incorrectly)		
(b)	(i) $f(x) = 3x^5 - 10x^3 + 16x$ $f'(x) = 15x^4 - 30x^2 + 16$ $= 15(x^2 - 1)^2 + 1$ ≥ 1 , since $15(x^2 - 1)^2 \ge 0$ for all x.	<u>2 marks</u> : correct solution <u>1 mark</u> : substantially correct solution		

Year 12	Mathematics Extension 2	Task 4 (Trial) 2017		
Question 14 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question			
E3 uses	s the relationship between algebraic and geometric representa	ations of conic sections		
Part	Solutions	Marking Guidelines		
(a) (i)	$\frac{d}{dx}\left(\frac{x^2}{25} + \frac{y^2}{16}\right) = \frac{d}{dx}(1) \qquad \rightarrow \frac{dy}{dx} = \frac{-16x}{25y}$	(a)(i) 2 Marks ~ Correct with working.		
	Gradient of normal= $\frac{25y}{16x} = \frac{5\sin\theta}{4\cos\theta}$	1 Marks ~ Makes significant progress towards the solution		
	$y - 4\sin\theta = \frac{5\sin\theta}{4\cos\theta} (x - 5\cos\theta)$			
<i>(</i>)	$4y\cos\theta - 16\sin\theta\cos\theta = 5x\sin\theta - 25\sin\theta\cos\theta$	(a)(ii) 3 marks : Finds <i>P</i> , <i>Q</i> , <i>M</i> and		
(11)	$P = \left(\frac{9\cos\theta}{5}, 0\right); Q = \left(0, \frac{-9\sin\theta}{4}\right); M = \left(\frac{9\cos\theta}{10}, \frac{-9\sin\theta}{8}\right)$ Justify locus of M is an allinea by aliminating $\sin\theta$, $\cos\theta$, and	justifies the locus of <i>M</i>.2 marks: Significant progress.1 mark: Some relevant progress.		
	showing the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Alternately, it was accepted that M			
	is in parametric form $(a\cos\theta, b\sin\theta)$.	(h)(i) 1 mark: Correct answer in		
(b) (i)	bx - ay = 0 $bx + ay = 0$	general form. If equations are correct		
(ii)	(h)	but not in general form, you received		
(ii)	$\tan\frac{\theta}{2} = \frac{b}{a} \qquad \therefore \tan\theta = \frac{2\left(\frac{b}{a}\right)}{1 - \left(\frac{b}{a}\right)^2} = \frac{2ab}{a^2 - b^2}$	 this mark if you used general form in part (iv). (b)(ii) 2 marks: correct solution. 1 Mark ~ Makes significant progress towards solution Note: Many people used angle 		
	$\sin\theta = \frac{2\left(\frac{b}{a}\right)}{1 + \left(\frac{b}{a}\right)^2} = \frac{2ab}{a^2 + b^2}$	easier to use double angle result which becomes a form of the t result because that led to more easily achieving part (iii) (b)(iii) 1 mark: Correct answer.		
(iv)	CP and DP are perpendicular distances from P to the asymptotes.	(b)(iv) 3 marks: Correct solution,		
	$CB \times DB = \begin{vmatrix} bx_0 - ay_0 \end{vmatrix} \times \begin{vmatrix} bx_0 + ay_0 \end{vmatrix}$	question.		
	$CP \times DP = \frac{1}{\sqrt{(-a)^2 + b^2}} \times \frac{1}{\sqrt{a^2 + b^2}}$	2 marks: Significant progress		
	$(h_{x})^{2} (a_{x})^{2} (b_{x}^{2})^{2} (a_{x}^{2})^{2} (a_{x}^{2})^{2} (b_{x}^{2})^{2} (a_{x}^{2})^{2} (b_{x}^{2})^{2} (b_{$	I mark : Some relevant progress made.		
	$=\frac{(bx_0)^2 - (ay_0)^2}{2^2 + 1^2} = \frac{bx_0^2 - ay_0^2}{2^2 + 1^2}$			
	$a + b$ $a^- + b^-$			
	$=\frac{a^2b^2}{a^2+b^2}$			
(v)	$\angle OCP = \angle ODP = 90^{\circ}$ since <i>CP</i> , <i>DP</i> are perpendiculars <i>OCPD</i> is cyclic because these angles are opposite and	(b)(v) 1 mark: Indicating which angles are right angles, as well as giving the reason for being cyclic.		
(vi)	supplementary.			
(*1/	$\Delta PCD = \frac{1}{2}.CP.PD \times \sin(180^{\circ} - \theta)$	 (b)(vi) 2 marks: Correct solution, including showing the use of sin ratio of supplementary angle. 1 mark: Significant progress. 		
	$=\frac{1}{2} \times \frac{a^2 b^2}{a^2 + b^2} \times \frac{2ab}{a^2 + b^2} = \frac{a^3 b^3}{(a^2 + b^2)^2}$			

Year 12	Mathematics Extension 2	Task 4 (Trial HSC) 2017
Question 1	5 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
E8 app	lies further techniques of integration, including partial fraction	ons, integration by parts and
recu	urrence formulae, to problems	
Part	Solutions	Marking Guidelines
(a)	Let $x = \sin \theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	2 Marks ~ Correct solution.
	$dx = \cos\theta d\theta (1 - x^2)^{\frac{3}{2}} = (1 - \sin^2\theta)^{\frac{3}{2}}$	1 Marks ~ Makes significant progress towards the solution
	$=(\cos^2\theta)^{\frac{3}{2}}=\cos^3\theta$	
	$\int \frac{x^2}{(1-x^2)^{\frac{3}{2}}} dx = \int \frac{\sin^2 \theta}{\cos^3 \theta} \cos \theta d\theta$	
	$=\int \tan^2\theta d\theta = \int (\sec^2\theta - 1) d\theta$	
	$= \tan \theta - \theta + c = \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \sin^{-1} x + c$	
(b)	$t = \tan \frac{x}{2}$ $\frac{dt}{dx} = \frac{1}{2}\sec^2 \frac{x}{2} \text{ or } dx = \frac{2}{1+t^2} dt$	4 Marks ~ Correctly
	When $\mathbf{x} = 0$ then $t = 0$ and when $\mathbf{x} = \frac{\pi}{2}$ then $t = 1$ $3 - \cos x - 2\sin x = \frac{3(1+t^2) - (1-t^2) - 4t}{1+t^2}$ $3 + 3t^2 - 1 + t^2 - 4t$	determines the primitive function (in terms of <i>t</i> or another variable).
	$= \frac{1+t^{2}}{1+t^{2}}$ $= \frac{2(2t^{2}-2t+1)}{1+t^{2}}$	2 Marks ~ Correctly expresses the integral in terms of <i>t</i> .
	$= 2\left[\left(t - \frac{1}{2}\right)^2 + \frac{1}{4} \right] \frac{2}{1 + t^2}$ $\int_{0}^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2\sin x} dx = \int_{0}^{1} \frac{1}{2} \left[\frac{1}{\left(t - \frac{1}{2}\right)^2 + \frac{1}{4}} \right] \times \frac{1 + t^2}{2} \times \frac{2}{1 + t^2} dt$	1 Mark ~ Correctly finds dx in terms of dt and determines the new limits.
	$= \int_{0}^{1} \frac{1}{2} \left[\frac{1}{\left(t - \frac{1}{2}\right)^{2} + \frac{1}{4}} \right] dt \qquad \left[\text{Let } u = t - \frac{1}{2}, du = dt \right]$	
	$= \int_{\frac{-1}{2}} \frac{1}{2} \left[\frac{1}{u^2 + \frac{1}{4}} \right] du$	
	$= \frac{1}{2} \left[2 \tan^{-1} u \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $= \tan^{-1} 1 - \tan^{-1} (-1)$	
	$=\frac{\pi}{2}$	

(c) (i)

$$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$$

$$7x+4 = (ax+b)(x+2) + c(x^2+1)$$

$$\text{Let } x=-2 \text{ and } x=0$$

$$-10=5c \quad 4=b(0+2)-2(0^2+1)$$

$$c=-2 \quad b=3$$
Equating the coefficients of $x^2 = 0=a-2 \text{ or } a=2$

$$\therefore a=2, b=3 \text{ and } c=-2$$
(ii)

$$\int \frac{7x+4}{(x^2+1)(x+2)} dx = \int \frac{2x+3}{x^2+1} - \frac{2}{x+2} dx$$

$$= \int \frac{2x}{x^2+1} + \frac{x^3+1}{x^2+1} - \frac{2}{x+2} dx$$

$$= \ln |x^2+1| + 3\tan^{-1}x - 2\ln |x+2| + c$$

$$= \ln |\frac{x^2+1}{|(x+2)^2|} + 3\tan^{-1}x - 2\ln |x+2| + c$$

$$= \ln |\frac{x^2+1}{|(x+2)^2|} + 3\tan^{-1}x + c$$
(d) (i)

$$I_x = \int_0^{\frac{2}{7}} \cos^x x dx$$

$$= \int_0^{\frac{2}{7}} \cos^x x dx$$

$$= \int_0^{\frac{2}{7}} \cos^x x dx$$

$$= (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t \sin^2 t dt$$

$$= (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t (1-\cos^2 t) dt$$

$$= (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t (1-\cos^2 t) dt$$

$$= (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$(\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} \cos^x t dt = (n-1)\int_0^{\frac{5}{7}} \cos^{x-2} t dt$$

$$\int_0^{\frac{5}{7}} t dx$$

$$\int_0^{\frac{5}{7}} t dx$$

$$\int_0^{\frac{5}{7}} dx$$

2 Marks ~ Correct answer.

1 Mark ~ Using the result from (d)(i) to obtain the definite integral.

$$I_{n} = \frac{(n-1)}{n} I_{n-2}$$

$$I_{4} = \frac{(4-1)}{4} I_{2}$$

$$= \frac{3}{4} \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \frac{3}{4} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{3}{8} \left[x + \frac{\sin 2t}{2} \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{3}{8} \left[\left(\frac{\pi}{2} + \frac{\sin \pi}{2} \right) - \left(0 + \frac{\sin 0}{2} \right) \right]$$

$$= \frac{3\pi}{16}$$

(ii)

Year 12 201	7 Mathematics Extension 2	Task 4 Trial
Question No	b. 16 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
E2 chooses app E7 uses the tech E9 communicat	ropriate strategies to construct arguments and proofs in both concrete and abstract settings iniques of slicing and cylindrical shells to determine volumes es abstract ideas and relationships using appropriate notation and logical argument	
Outcome	Solutions	Marking Guidelines
E9	(a)	2 marks for
	Total arrangements = ${}^{11}C_5 = 462$	complete correct
	Majority of year 12 = $\binom{{}^{6}C_{3} \times {}^{5}C_{2}}{+}\binom{{}^{5}C_{1} \times {}^{6}C_{4}}{+} {}^{6}C_{5} = 281$	solution
	$P_{robability} = \frac{281}{2}$	1 marks for finding
	$\frac{1100a0100y}{462}$	Total arrangements
52	(b)	
E2	In ΔAMC and ΔANH	2
	$\angle AMC = \angle ANH = 90^{\circ}$ ($AM \perp BC$ and $BN \perp AC$ since	3 marks for
	AM and BN are altitudes of $AAMC$ and $AANH$	complete correct
	$/MAC = /HAN$ (common angle to ΛAMC and ΛANH)	proof with confect
	$\therefore AAMC \parallel AANH$ (common angle to ΔAMC and ΔANH)	Teasoning
		2 marks for
	$\therefore \angle ACB = \angle AHN$ (corresponding angles in similar	substantial
	triangles, $\Delta AMC \parallel \Delta ANH$,	working with
	are equal)	correct reasoning
	Also,	that could lead to a
	$\angle AHN = \angle BHM$ (vertically opposite angles	correct proof with
	are equal)	only a minor error
	$\angle BDA = \angle ACB$ (angles at the circumference on the same	
	arc AB are equal)	1 mark for some
		substantial
	Now,	working with
	In ΔBMD and ΔBMH	correct reasoning
	$\angle BDA = \angle BHM$ (from above, i.e. $\angle BDA = \angle ACB = \angle AHN = \angle BHM$)	that could lead to a
	$1.c. \ \angle DDA - \angle ACD - \angle AHN - \angle DHM)$	correct proof
	$\angle BMD = \angle AMC = 90^{\circ}$ (vertically opposite angles equal)	
	$\angle BMH + \angle BMD = 180^\circ$ (angle sum of straight angle,	
	$\angle BMH + 90^\circ = 180^\circ$ $\angle AMD$, is 180°)	
	$\angle BMH = 90^{\circ}$	
	$\therefore \angle BMD = \angle BMH = 90^{\circ}$	
	MB is common	
	$\therefore \Delta BMD \equiv \Delta BMH (AAS)$	
	$\therefore HM = MD \text{ (corresponding sides of congruent}$ triangles, $\Delta BMD \equiv \Delta BMH$, are equal)	
	Noto:	
	Note: There are other solutions that were accepted as well	
	There are other solutions that were accepted as well.	

E2 4 marks for (c) When n = 1, complete correct solution $LHS = F_0 = 2^{\binom{2^0}{1}} + 1 = 3$ $RHS = F_1 - 2 = 2^{(2^1)} + 1 - 2 = 3$ 3 marks for substantial \therefore Statement is true when n = 1. working that could lead to a complete Assume the statement is true for n = k, some fixed positive integer. correct solution i.e. $F_0 \times F_1 \times F_2 \times \ldots \times F_{k-1} = F_k - 2$ with only one error When n = k + 1, $LHS = F_0 \times F_1 \times F_2 \times \ldots \times F_{n-1}$ 2 marks for $= F_0 \times F_1 \times F_2 \times \ldots \times F_k$ substantial $= F_0 \times F_1 \times F_2 \times \ldots \times F_{k-1} \times F_k$ working that could $=(F_{\mu}-2)\times F_{\mu}$ lead to a correct by assumption solution after $=(F_{\mu})^2-2F_{\mu}$ correctly proving true for n = 1 with $=(2^{2^{k}}+1)^{2}-2(2^{2^{k}}+1)$ more than one error or an incomplete $=2^{2\times 2^{k}}+2\times 2^{2^{k}}+1-2\times 2^{2^{k}}-2$ solution $=2^{2^{k+1}}+1-2$ 1 mark for $=(2^{2n}+1)-2$ correctly proving true for n = 1 $= F_n - 2$ as required If statement is true for n = k, it has been proved true for n = k + 1. Since true for n = 1, then proved true for n = 2, 3, 4, ...2 marks for complete correct show (d)(i)E7 Let *r* be the radius of a typical slice 1 mark for correct $\therefore r+1=x \rightarrow r=x-1$ radius Now, $\Delta V = \pi r^{2h} = \pi (x-1)^2 \Delta y$ E7 (ii) When x = 1, y = 2 - 1 = 12 marks for complete $\therefore V = \lim_{\Delta y \to 0} \sum^{1} \pi (x-1)^2 \Delta y$ correct show 1 mark for substantial Now $-y = x^2 - 2x$ $\therefore \quad 1 - y = x^2 - 2x + 1$ $\therefore \quad 1 - y = (x - 1)^2$ correct working that could lead to a correct show hence $\therefore V = \lim_{\Delta y \to 0} \sum_{y=0}^{1} \pi (1-y) \Delta y$ E7 (iii) $V = \pi \int_0^1 1 - y \, dy$ 2 marks for complete $=\pi\left[y-\frac{y^2}{2}\right]_0^1$ correct solution 1 mark for substantial $=\frac{\pi}{2} u^{3}$ correct working that could lead to a correct solution