PENRITH SELECTIVE HIGH SCHDOL

2017
 HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions:

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A Reference Sheet is provided
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the writing booklets provided
- All diagrams are not drawn to scale

Total marks-100

SECTION I Pages 3-7

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

SECTION II
 Pages 8-15

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following inequalities is represented by the Argand diagram?

(A) $|z-2| \leq 2$
(B) $|z+2| \leq 2$
(C) $|z-2 i| \leq 2$
(D) $\quad|z+2 i| \leq 2$

2 Let $u=7 \cos \frac{\pi}{4}+7 i \sin \frac{\pi}{4}$ and $v=a \cos b+a i \sin b$, where a and b are real constants.
If $u v=42 \cos \frac{\pi}{20}+42 i \sin \frac{\pi}{20}$, then
(A) $\quad a=35$ and $b=\frac{\pi}{5}$
(B) $\quad a=6$ and $b=\frac{\pi}{5}$
(C) $\quad a=35$ and $b=-\frac{\pi}{5}$
(D) $\quad a=6$ and $b=-\frac{\pi}{5}$

3 In the Argand diagram below the points R and S represent the complex numbers w and z, respectively where $\angle S O R=90^{\circ}$. The distance $O R$ is $2 a$ units, and distance $O S$ is a units. Which of the following is correct?

(A) $w=2 i z$
(B) $w=i \bar{w}$
(C) $w=\frac{-i z}{2}$
(D) $w=\frac{-z}{2 i}$

4 Which of the following graphs is the locus of the point P representing the complex number z moving in an Argand diagram such that $|z-2 i|=2+\operatorname{Im} z$?
(A) a circle
(B) a parabola
(C) a hyperbola
(D) a straight line

5 The foci of the hyperbola $x y=8$ are
(A) $(\pm 4, \pm 4)$
(B) $(\pm 2 \sqrt{2}, \pm 2 \sqrt{2})$
(C) $(\pm 8 \sqrt{2}, \pm 8 \sqrt{2})$
(D) $(\pm 4 \sqrt{2}, \pm 4 \sqrt{2})$

6 The volume of the solid obtained by revolving the region bounded by $y=e^{-\frac{1}{2} x^{2}}, y=e^{-2}$ and the lines $x=0, x=2$ about the $y-$ axis can be evaluated by which of the following integrals

(A) $\quad V=2 \pi \int_{e^{-2}}^{1} x\left(e^{-\frac{1}{2} x^{2}}-e^{-2}\right) d x$
(B) $\quad V=2 \pi \int_{e^{-2}}^{1} x\left(e^{-\frac{1}{2} x^{2}}\right) d x$
(C) $\quad V=2 \pi \int_{0}^{2} x\left(e^{-\frac{1}{2} x^{2}}-e^{-2}\right) d x$
(D) $\quad V=2 \pi \int_{0}^{2} x\left(e^{-\frac{1}{2} x^{2}}\right) d x$

7 Consider a polynomial $P(x)$ of degree 3 .
You are given 2 numbers a and b such that

- $a<b$
- $\quad P(a)>P(b)>0$
- $P^{\prime}(a)=P^{\prime}(b)=0$

The polynomial has
(A) 3 real zeros
(B) 1 real zero γ such that $\gamma<a$
(C) 1 real zero γ such that $a<\gamma<b$
(D) 1 real zero γ such that $\gamma>b$

8 If $\int_{1}^{4} f(x) d x=6$, what is the value of $\int_{1}^{4} f(5-x) d x$?
(A) 6
(B) 3
(C) -1
(D) -6

9 Given that $x^{2}+y^{2}+x y=12$, which of the following is true?
(A) $\frac{d y}{d x}=\frac{2 x+y}{2 y+x}$
(B) $\frac{d y}{d x}=-\frac{2 x+y}{2 y+x}$
(C) $\frac{d y}{d x}=\frac{2 x-y}{2 y+x}$
(D) $\frac{d y}{d x}=\frac{-2 x+y}{2 y+x}$

10 Which of the following is the sketch of $y=\log _{2} x+\frac{1}{x}$?
(A)

(C)

(B)

(D)

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a new booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.
Question 11 (15 marks) Use a SEPARATE writing booklet.
a) Let $z=3+2 i$ and $w=-1+i$. Express the following in the form $x+i y$, where x and y are real numbers:
i) $\frac{z}{i w}$
ii) $\quad \operatorname{Im}(\bar{z} w)$
b) Let $z=-1+i$.
i) Express z in modulus-argument form.
ii) Express z^{4} in modulus-argument form.
iii) Hence, evaluate z^{20}
c) In the diagram below $O P Q R$ is a rhombus. R represents $1+i \sqrt{3}$. Find the complex number represented by Q

d) Evaluate $\int_{0}^{1} \frac{2}{\sqrt{1+3 x}} d x$
e) By using integration by parts, find $\int x^{2} \ln 2 x d x$

Question 12 (15 marks) Use a SEPARATE writing booklet.
a) The polynomial $z^{3}-7 z^{2}+25 z-39$ has one zero equal to $2+3 i$. Write down its three linear factors.
b) The equation $x^{4}-p x^{3}+q x^{2}-p q x+1=0$ has roots $\alpha, \beta, \gamma, \delta$. Show that $(\alpha+\beta+\gamma)(\alpha+\beta+\delta)(\alpha+\gamma+\delta)(\beta+\gamma+\delta)=1$
c) α, β, γ are the roots of $x^{3}+q x+r=0$. Find in terms of q, r the equation with roots $\frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}, \frac{1}{\gamma^{2}}$
d) Let ω be a non-real cube root of unity
i) Show that $1+\omega+\omega^{2}=0$
ii) Hence simpify $(1+\omega)^{2}$

1
iii) Show that $(1+\omega)^{3}=-1$
iv) Use part iii) to simplify $(1+\omega)^{3 n}$ and hence show that

$$
{ }^{3 n} C_{0}-\frac{1}{2}\left({ }^{3 n} C_{1}+{ }^{3 n} C_{2}\right)+{ }^{3 n} C_{3}-\frac{1}{2}\left({ }^{3 n} C_{4}+{ }^{3 n} C_{5}\right)+{ }^{3 n} C_{6}-\ldots{ }^{3 n} C_{3 n}=(-1)^{n}
$$

Question 13 (15 marks) Use a SEPARATE writing booklet.
a) i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ using the substitution $u=a-x$
ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x$
b) i) Find real constants A, B and C such that

$$
\frac{4 x-2}{\left(x^{2}-1\right)(x-2)} \equiv \frac{A x+B}{\left(x^{2}-1\right)}+\frac{C}{(x-2)}
$$

ii) Hence evaluate $\int_{3}^{6} \frac{4 x-2}{\left(x^{2}-1\right)(x-2)} d x$
c) The diagram shows the graph of $y=f(x)$

Draw separate $\frac{1}{3}$ page sketches of the following.
i) $|y|=f(x)$
ii) $y=x \cdot f(x)$
iii) $y=\sqrt{f(x)}$

Question 14 (15 marks) Use a SEPARATE writing sheet.
a) The equation $|z+4|+|z-4|=10$ corresponds to an ellipse in the Argand diagram.

Sketch the ellipse, and state the lengths of the major and minor axes
b) Let $I_{n}=\int_{0}^{\pi} x^{n} \sin x d x$, where $n=0,1,2, \ldots$
i) Show that $I_{n}=\pi^{n}-n(n-1) I_{n-2}$ for $n=2,3,4, \ldots$
ii) Hence, evaluate $\int_{0}^{\pi} x^{4} \sin x d x$
c) $A B C$ is an isosceles triangle with $A C=B C$ and $A B=b . A B C D E$ is a wedge shape with height $D E=h$ and length $C D=l$. Triangle $A B C$ and line $D E$ are perpendicular to the plane of $A B E$ as shown in the diagram.

Consider a slice of the wedge height h and depth δy as in the diagram. The slice is parallel to the plane $A B C$ at $P Q R$.
i) Show that the area of the triangle $P Q R$ can be expressed as $\frac{h}{2}\left(b-\frac{b y}{l}\right)$.
ii) Hence calculate the volume of the wedge
d) Find $\int \frac{d x}{1+\sin x}$

Question 15 (15 marks) Use a SEPARATE writing booklet.
a) Draw a large neat sketch of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ labelling clearly the, the foci, the directices
b) Find all the possible values of k if $\frac{x^{2}}{12-k}+\frac{y^{2}}{k+4}=1$ represents an ellipse
c) $P(a \sec \theta, b \tan \theta)$ is any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Given that the equation of the normal at P is given by $a x \tan \theta+b y \sec \theta=\left(a^{2}+b^{2}\right) \sec \theta \tan \theta$.(DO NOT PROVE THIS) A line through P parallel to the y axis meets an asymptote at Q and the x axis at N. The normal at P meets the x axis at R.
i) Find the coordinates of Q, N, R.
ii) Show that $Q R$ is perpendicular to the asymptote
iii) Show that $O R=e^{2} O N$ where e is the eccentricity.
d) In a state swimming championships, 12 swimmers (including the Jones twins) are chosen to represent their club and are divided into three teams of four swimmers to form 3 relay teams.
i) In how may ways can the 3 teams be formed?
ii) Find the number of ways this can be done if the Jones twins (Angela and Bethany) are not to swim in the same relay team.

Question 16 (15 marks) Use a SEPARATE writing booklet.
a) In the diagram $X Y$ is a tangent to the circle and $X Y=X A$.

i) Show that $\triangle X C Y||\mid \triangle X B Y$
ii) Hence explain why $\frac{X Y}{B X}=\frac{C X}{X Y}$
iii) Show that $\triangle A X C|\mid \triangle A X B$ 3
iv) Prove that $D E \| A X$ 2
b) Given $a_{1}, a_{2}, a_{3} \ldots . a_{n}$ and $b_{1}, b_{2}, b_{3} \ldots . b_{n}$ are positive real numbers. Where $A_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$ and $B_{n}=b_{1}+b_{2}+b_{3}+\ldots+b_{n}$, are such that $a_{1}, a_{2}, a_{3} \ldots a_{n}>0$, $b_{1}, b_{2}, b_{3} \ldots . b_{n}>0$ and $A_{r} \leq B_{r}$, for $r=1,2,3, \ldots, n$.
(i) Prove, by mathematical induction for $n=1,2,3, \ldots$, that:

$$
\begin{aligned}
& \frac{1}{\sqrt{b_{n}}} B_{n}+\left(\frac{1}{\sqrt{b_{n-1}}}-\frac{1}{\sqrt{b_{n}}}\right) B_{n-1}+\left(\frac{1}{\sqrt{b_{n-2}}}-\frac{1}{\sqrt{b_{n-1}}}\right) B_{n-2}+\ldots+\left(\frac{1}{\sqrt{b_{1}}}-\frac{1}{\sqrt{b_{2}}}\right) B_{1} \\
& =\sqrt{b_{1}}+\sqrt{b_{2}}+\sqrt{b_{3}}+\ldots+\sqrt{b_{n}}
\end{aligned}
$$

(ii) Hence given

$$
\begin{aligned}
& \frac{a_{1}}{\sqrt{b_{1}}}+\frac{a_{2}}{\sqrt{b_{2}}}+\frac{a_{3}}{\sqrt{b_{3}}}+\ldots+\frac{a_{n}}{\sqrt{b_{n}}}= \\
& \frac{1}{\sqrt{b_{n}}} A_{n}+\left(\frac{1}{\sqrt{b_{n-1}}}-\frac{1}{\sqrt{b_{n}}}\right) A_{n-1}+\left(\frac{1}{\sqrt{b_{n-2}}}-\frac{1}{\sqrt{b_{n-1}}}\right) A_{n-2}+\ldots+\left(\frac{1}{\sqrt{b_{1}}}-\frac{1}{\sqrt{b_{2}}}\right) A_{1} \\
& \text { Show that } \sum_{r=1}^{n} \frac{a_{r}}{\sqrt{b_{r}}} \leq \sum_{r=1}^{n} \sqrt{b_{r}}
\end{aligned}
$$

c) $\triangle A B C$ has sides a, b, c. If $a^{2}+b^{2}+c^{2}=a b+b c+c a$, show that $\triangle A B C$ is equilateral.

End of Exam

Multiple chove.
Q1 C
2 D
3 A
$4 \quad|x+c y-2 i|=2+y$
$|x+(y-2) i|=2+y$
$x^{2}+(y-2)^{2}=(2+y)^{2}$
$x^{2}+y^{2}-4 y+4=4+4 y+y^{2}$
$x^{2}=8 y-4$

$$
x^{2}=4(2 y-1)
$$

$\therefore B$ (parabola).

5

$$
\begin{aligned}
c & =2 \sqrt{2} \\
\text { foci } & (\pm 2 \sqrt{2} \times \sqrt{2}, \pm 2 \sqrt{2} \times \sqrt{2}) \\
= & (\pm 4, \pm 4) \\
= & A .
\end{aligned}
$$

6. C
7. B
8. A.

$$
\begin{aligned}
& \text { 8. } A \cdot \\
& \text { 9. } \quad 2 x+2 y \frac{d y}{d x}+y+x \frac{d y}{d x}=0 \\
& (2 y+x) \frac{d y}{d x}=-(2 x+y) \\
& \text { B } \quad \frac{d y}{d x}=-\frac{(2 x+y)}{2 y+x}
\end{aligned}
$$

Exam $\varepsilon x+2$ Mains \quad MATHEMATICS \quad :Question. I/.. Quggested Solutions b) z $=-1+i \quad \arg (z)$ i) $\|z\|$ $=\sqrt{(-1)^{2}+1^{2}} \quad \tan ^{-1}\left(\frac{1}{-1}\right)$ $\|z\|$ $=\sqrt{2}$ z $=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$

ii)

$$
\begin{aligned}
Z^{4} & =\left[\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]^{4} \\
& =(\sqrt{2})^{4}\left(\cos \frac{3 \pi}{4} \times x+\sin \frac{3 \pi}{4} \times x\right) \\
& =4(\cos 3 \pi+i \sin 3 \pi) \\
& =4(\cos \pi+i \sin \pi)
\end{aligned}
$$

iii) $z^{20}=\left(z^{4}\right)^{5}$

$$
=[4(\cos \pi+\operatorname{csin} \pi)]^{5}
$$

$$
=4^{5}(\cos 5 \pi+i \sin 5 \pi)
$$

$$
=1024(\cos \pi+\sin \pi)
$$

$$
=1024 \times(-1)
$$

$$
=-1024
$$

Some stracems obtanied the wroing $\arg (z)$.
some studens dizlnt go on anol evaluete z^{∞}.

| Exam Exr 2 Mats MATHEMATICS : Question.f.2. | Marker's Comments |
| :--- | :--- | :--- |

Q12. a) $P(z)=z^{3}-7 z^{2}-25 z-39$

$$
P(2+3 i)=0
$$

Since $2+3 i$ is a root, then $2-3 i$ is also a wot for $P(Z)$ (all real coefficients)

Let the rook of $P(z)$ be α, β, γ

$$
\begin{gathered}
\alpha+\beta+\gamma=7 \\
2+3 i+2-3 i+\gamma=7 \\
\gamma=3 \\
\therefore P(z)=(z-(2+3 i))(z-(2-3 i))(z-3)
\end{gathered}
$$

b)

$$
\text { b) } \begin{array}{ll}
& x^{4}-p x^{3}+q x^{2}-p q x+1=0 \\
& \alpha+\beta+\gamma+\delta=p \\
\& & \alpha+\beta+\gamma=p-\delta \\
< & \alpha+\beta+\delta=p-\gamma \\
\& & \alpha+\gamma+\delta=p-\beta \\
* & \beta+\gamma+\delta=p-\alpha
\end{array}
$$

most student could idenatig rots interns of P, however there were singggles wive expansion after.

$$
\begin{aligned}
& (p-\alpha)(p-\beta)(p-\gamma)(p-\delta) \\
= & p^{4}-\left(\sum \alpha\right) p^{3}+\left(\sum \alpha \beta\right) p^{2}-\left(\bar{\sum} \times \beta \gamma\right) p+(<\beta \gamma \delta) \\
= & p^{4}-p \times p^{3}+q \times p^{2}-p q \times p+1 \\
= & p^{4}-p^{4}+p^{2} q-p^{2} q+1 \\
= & 1
\end{aligned}
$$

Exam Ex ic Main \quad MATHEMATICS : Question...,
Quggested Solutions
d) if If ω is a root of $z^{3}=1$
$\omega^{3}=1$
$\omega^{3}-1=0$
$(\omega-1)\left(\omega^{2}+\omega+1\right)=0$
$\sin \theta \quad \omega$ is a non-real root, $\omega \neq 1$.

$$
\begin{aligned}
& \therefore \omega^{2}+\omega+1=0 \\
& \text { ii) } \\
& \text { iii) }(1+\omega)^{3} \\
& =\left(-w^{2}\right)^{2} \\
& =\left(-w^{2}\right)^{3} \\
& =\omega^{*} \\
& =-w^{6} \\
& =\omega \times \omega^{3} \\
& =-\left(\omega^{3}\right)^{2} \\
& =-1^{2} \\
& =-1 \\
& \text { ii) }(1+w)^{2} \\
& i v)(1+w)^{3 n} \\
& =\left[(1+w)^{3}\right]^{n} \\
& =(-1)^{n} \text { from pant iii). } \\
& (1+\omega)^{3 n}={ }^{3 n} C_{0}+{ }^{3 m} C_{1} \omega+{ }^{3 n} C_{2} \omega^{2}+{ }^{3 n} C_{3} \omega^{3}+\ldots+{ }^{3 n} C_{3 n} \omega^{3 n} \\
& (-1)^{n}={ }^{3 n} C_{0}+{ }^{3 n} C_{1} \omega+{ }^{3 n} C_{2} \omega^{2}+{ }^{3 n} C_{3}+\ldots+{ }^{3 n} C_{3 n} \text { with the rent } \\
& \omega=\cos \frac{2 \pi}{3}+i \sin ^{2} \frac{\pi}{3}=\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
& \omega^{2}=\cos \frac{x \pi}{3}+i \sin \frac{4 \pi}{3}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
& (-1)^{n}={ }^{3 n} C_{3}+{ }^{3 n} C_{1}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)+{ }^{3 n} C_{2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)+{ }^{3 n} C_{3} \\
& +\ldots+{ }^{3 n} C_{3 n}
\end{aligned}
$$

Some Aiders docent explain'
why $\omega-1 \neq 0$.

Exam Ene 2 Mooths. MATHEMATICS :Question..!.2.

Qi3.a)

$$
\begin{aligned}
& \text { i) } \int_{0}^{a} f(x) d x \\
& \operatorname{lut} u=a-x \\
& =\int_{0}^{0} f\left(u_{u}\right) \times(-d u) \\
& d u=-d x \\
& =\int_{0}^{a} f(i) d u \\
& x=0 \\
& u=a \\
& =\int_{0}^{a} f(x) d x
\end{aligned}
$$

(i)

$$
\begin{aligned}
& I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x \\
& I=\int_{0}^{\frac{\pi}{2}} \frac{\cos \left(\frac{\pi}{2}-x\right)-\sin \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \\
&=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\cos x \sin x} d x \\
& 2 I=0 \\
& I=0
\end{aligned}
$$

b. (i) $\int_{0}^{\pi} x^{n} \sin x d x$.

$$
\begin{array}{ll}
u=x^{n} & v^{\prime}=\sin x \\
u^{\prime}=n x^{n-1} & v=-\cos x
\end{array}
$$

$$
I_{n}=-x^{n} \cos x+n \int_{0}^{\pi} x^{n-1} \cos x d x
$$

$$
u=x^{n-1} \quad v^{\prime}=\cos x
$$

$$
u^{\prime}=(n-1) x^{n-2} \quad v=\sin x
$$

$$
I_{n}=\left[-x^{n} \cos x\right]_{0}^{\pi}+n\left[x^{n-1} \sin x\right]_{0}^{\pi}-n \int_{0}^{\pi}(n-1) x^{n-2} \sin x d x
$$

$$
I_{n}=\left(-\pi^{n} \cos \pi-0\right)+n\left(\pi^{n-1} \sin \pi-0\right)-n(n-1) I_{n-2}
$$

$$
I_{n}=-\pi^{n} \times(-1)-n(n-1) I_{n-2}
$$

$$
\therefore I_{n}=\pi^{n}-n(n-1) I_{n-2}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} x^{4} \sin x d x \\
& I_{4}=\pi^{4}-4 \times 3 \times I_{2} \\
& I_{2}=\pi^{2}-2 \times 1 \times I_{0} \\
& =\pi^{2}-2 \times 1 \times 2 \\
& =\pi^{2}-4
\end{aligned}
$$

well done. some students gave a semi axis measimement
well done.
vel dora

(ii) asymptote $y= \pm \frac{b}{a} x$

$$
\begin{aligned}
M & = \pm \frac{b}{a} \\
M_{Q R} & =\frac{b \sec \theta-0}{a \sec \theta-\frac{\left(a^{2}+b^{2}\right) \sec \theta}{a}} \\
& =\frac{a b \sec \theta}{a^{2} \sec \theta-a^{2} \sec \theta-b^{2} \sec \theta} \\
& =-\frac{a}{b} \\
M_{Q R} & =\frac{-b \sec \theta}{a \sec \theta-\frac{\left(a^{2}+b^{2}\right) \sec \theta}{c}} \\
& =\frac{a}{b} \quad \frac{a}{b} \times \frac{b}{a}=-1 \\
-\frac{a}{b} \times \frac{b}{a} & =-1 \quad 1 \quad
\end{aligned}
$$

$$
\therefore Q R 1 \text { asymptote }
$$

(iii)

$$
\begin{aligned}
& O R=\frac{\left(a^{2}+b^{2}\right) \sec \theta}{a} \\
& \sigma N=a \sec \theta \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& \frac{b^{2}}{a^{2}}+1=e^{2} \\
& \frac{b^{2}+a^{2}}{a^{2}}=e^{2} \\
& e^{2} O N=\frac{b^{2}+a^{2}}{a^{2}} \times a \sec \theta \\
&=1 b^{2}+a^{2}-\sec \theta \\
&=O R
\end{aligned}
$$

d) (i) $\frac{{ }^{12} C_{4} \cdot{ }^{8} C_{4} \cdot C_{4}}{3!}$
(ii) ${ }^{10} C_{3} \cdot{ }^{7} C_{3} \cdot{ }^{4} C_{4}$

$$
=4200
$$

Question 15
a)

$$
\frac{x^{2}}{25}+\frac{y^{2}}{46}=1
$$

fort ($\pm a e, 0)$ Directories $x= \pm \frac{a}{e}$.

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& 16=25\left(1-e^{2}\right) \\
& \frac{16}{25}=\left(1-e^{2}\right) \\
& e^{2}=\frac{9}{25} \\
& e=\frac{3}{5}
\end{aligned}
$$

Foci $(\pm 3,0)$ Directrocs $x= \pm \frac{25}{3}$

b)

$$
\begin{aligned}
& 12-k>0 \\
& k<12 \\
& -4<k<12
\end{aligned}
$$

(i) In $\triangle X C Y$ and $\triangle X B Y$

$$
\angle B X Y=\angle C X Y \text { (common) }
$$

$\angle C Y X=\angle X B Y$ (altemote segment theorem)
$\because \Delta x c y \mid 11 \Delta x B y$ (equiangular)
(ii) $\frac{X Y}{C X}=\frac{E Y}{C Y}=\frac{B X}{X Y} \quad$ (corospondinj sides of similar triangles are in proportion'

$$
\therefore \frac{x y}{e x}=\frac{c x}{x y}
$$

(iii) In $\triangle A \times C$ and $\triangle A \times B$

$$
\begin{aligned}
& X C . X B=X Y^{2}(\text { tangent ard second } t) \\
& X C \cdot X B=A X^{2} \quad(X Y=A X \text { given })
\end{aligned}
$$

$$
\frac{A X}{X B}=\frac{X C}{A X} \quad \text { included angle equal }
$$

$\therefore \triangle A X C I \mid I \triangle A X B$ in corresponding sides $\therefore \triangle A X C|\mid \triangle A X B$ (on corresponding sides)
well dore
well done

Some stiduts used different
methods but
most were successful.

