

PENRITH SELECTIVE HIGH SCHOOL

2017 HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A Reference Sheet is provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the writing booklets provided
- All diagrams are not drawn to scale

Total marks-100

SECTION I Pages 3–7

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

90 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section

Student Number:__

This paper MUST NOT be removed from the examination room

Assessor: Mr Ferguson

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Which of the following inequalities is represented by the Argand diagram?

- $(\mathbf{A}) \qquad \left|z-2\right| \le 2$
- $(B) \qquad |z+2| \le 2$
- (C) $|z-2i| \le 2$
- (D) $|z+2i| \le 2$

2 Let $u = 7\cos\frac{\pi}{4} + 7i\sin\frac{\pi}{4}$ and $v = a\cos b + ai\sin b$, where *a* and *b* are real constants. If $uv = 42\cos\frac{\pi}{20} + 42i\sin\frac{\pi}{20}$, then (A) a = 35 and $b = \frac{\pi}{5}$ (B) a = 6 and $b = \frac{\pi}{5}$ (C) a = 35 and $b = -\frac{\pi}{5}$ (D) a = 6 and $b = -\frac{\pi}{5}$ 3 In the Argand diagram below the points R and S represent the complex numbers w and z, respectively where $\angle SOR = 90^{\circ}$. The distance OR is 2a units, and distance OS is a units. Which of the following is correct?

- (A) w = 2iz
- (B) $w = i\overline{w}$
- (C) $w = \frac{-iz}{2}$

(D)
$$w = \frac{-z}{2i}$$

- 4 Which of the following graphs is the locus of the point P representing the complex number z moving in an Argand diagram such that |z-2i| = 2 + Im z?
 - (A) a circle
 - (B) a parabola
 - (C) a hyperbola
 - (D) a straight line
- 5 The foci of the hyperbola xy = 8 are

(A)
$$(\pm 4, \pm 4)$$
 (B) $(\pm 2\sqrt{2}, \pm 2\sqrt{2})$ (C) $(\pm 8\sqrt{2}, \pm 8\sqrt{2})$ (D) $(\pm 4\sqrt{2}, \pm 4\sqrt{2})$

6 The volume of the solid obtained by revolving the region bounded by $y = e^{-\frac{1}{2}x^2}$, $y = e^{-2}$ and the lines x = 0, x = 2 about the y – axis can be evaluated by which of the following integrals

- (A) $V = 2\pi \int_{e^{-2}}^{1} x \left(e^{-\frac{1}{2}x^2} e^{-2} \right) dx$
- (B) $V = 2\pi \int_{e^{-2}}^{1} x \left(e^{-\frac{1}{2}x^2} \right) dx$

(C)
$$V = 2\pi \int_0^2 x \left(e^{-\frac{1}{2}x^2} - e^{-2} \right) dx$$

- (D) $V = 2\pi \int_0^2 x \left(e^{-\frac{1}{2}x^2} \right) dx$
- 7 Consider a polynomial P(x) of degree 3. You are given 2 numbers *a* and *b* such that
 - *a* < *b*
 - P(a) > P(b) > 0
 - P'(a) = P'(b) = 0

The polynomial has

- (A) 3 real zeros
- (B) 1 real zero γ such that $\gamma < a$
- (C) 1 real zero γ such that $a < \gamma < b$
- (D) 1 real zero γ such that $\gamma > b$

8 If $\int_{1}^{4} f(x) dx = 6$, what is the value of $\int_{1}^{4} f(5-x) dx$?

- (A) 6
- (B) 3
- (C) –1
- (D) -6

9 Given that $x^2 + y^2 + xy = 12$, which of the following is true?

(A) $\frac{dy}{dx} = \frac{2x+y}{2y+x}$ (B) $\frac{dy}{dx} = -\frac{2x+y}{2y+x}$

(C)
$$\frac{dy}{dx} = \frac{2x - y}{2y + x}$$

(D) $\frac{dy}{dx} = \frac{-2x+y}{2y+x}$

10 Which of the following is the sketch of $y = \log_2 x + \frac{1}{x}$?

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a new booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations. **Question 11** (15 marks) Use a SEPARATE writing booklet.

a) Let z = 3+2i and w = -1+i. Express the following in the form x+iy, where x and y are real numbers:

i)
$$\frac{z}{iw}$$
 2

- ii) $\operatorname{Im}(\overline{z}w)$ 2
- b) Let z = -1 + i.

i)	Express z in modulus-argument form.	2
ii)	Express z^4 in modulus-argument form.	1
iii)	Hence, evaluate z^{20}	1

c) In the diagram below *OPQR* is a rhombus. *R* represents $1+i\sqrt{3}$. Find the complex number represented by *Q* 2

d) Evaluate
$$\int_0^1 \frac{2}{\sqrt{1+3x}} dx$$

e) By using integration by parts, find $\int x^2 \ln 2x \, dx$

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The polynomial $z^3 - 7z^2 + 25z - 39$ has one zero equal to 2+3i. Write down its three linear factors.

b) The equation
$$x^4 - px^3 + qx^2 - pqx + 1 = 0$$
 has roots $\alpha, \beta, \gamma, \delta$. Show that
 $(\alpha + \beta + \gamma) (\alpha + \beta + \delta) (\alpha + \gamma + \delta) (\beta + \gamma + \delta) = 1$

2

4

3

c) α, β, γ are the roots of $x^3 + qx + r = 0$. Find in terms of q, r the equation with roots $\frac{1}{\alpha^2}, \frac{1}{\beta^2}, \frac{1}{\gamma^2}$

d) Let ω be a non-real cube root of unity

i) Show that
$$1 + \omega + \omega^2 = 0$$

ii) Hence simplify
$$(1+\omega)^2$$
 1

iii) Show that
$$(1+\omega)^3 = -1$$
 1

iv) Use part iii) to simplify
$$(1+\omega)^{3n}$$
 and hence show that
 ${}^{3n}C_0 - \frac{1}{2} ({}^{3n}C_1 + {}^{3n}C_2) + {}^{3n}C_3 - \frac{1}{2} ({}^{3n}C_4 + {}^{3n}C_5) + {}^{3n}C_6 - ... {}^{3n}C_{3n} = (-1)^n$
3

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) i) Prove that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
 using the substitution $u = a - x$ 2

ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin x \cos x} dx$$
 2

b) i) Find real constants A, B and C such that

$$\frac{4x-2}{(x^2-1)(x-2)} \equiv \frac{Ax+B}{(x^2-1)} + \frac{C}{(x-2)}$$
3

ii) Hence evaluate
$$\int_{-3}^{-3} \frac{4x-2}{(x^2-1)(x-2)} dx$$
 2

c) The diagram shows the graph of y = f(x)

Draw separate $\frac{1}{3}$ page sketches of the following.

i)	$\left y\right = f(x)$	2
ii)	y = x.f(x)	2
iii)	$y = \sqrt{f(x)}$	2

Question 14 (15 marks) Use a SEPARATE writing sheet.

a) The equation |z+4|+|z-4| = 10 corresponds to an ellipse in the Argand diagram.

Sketch the ellipse, and state the lengths of the major and minor axes

b) Let
$$I_n = \int_0^{\pi} x^n \sin x \, dx$$
, where $n = 0, 1, 2, ...$
i) Show that $I_n = \pi^n - n(n-1)I_{n-2}$ for $n = 2, 3, 4, ...$
ii) Hence, evaluate $\int_0^{\pi} x^4 \sin x \, dx$
2

2

3

c) *ABC* is an isosceles triangle with AC=BC and AB=b. *ABCDE* is a wedge shape with height DE=h and length CD=l. Triangle *ABC* and line *DE* are perpendicular to the plane of *ABE* as shown in the diagram.

Consider a slice of the wedge height *h* and depth δy as in the diagram. The slice is parallel to the plane *ABC* at *PQR*.

- i) Show that the area of the triangle *PQR* can be expressed as $\frac{h}{2}\left(b-\frac{by}{l}\right)$. 2
- ii) Hence calculate the volume of the wedge

d) Find
$$\int \frac{dx}{1+\sin x}$$
 3

Question 15 (15 marks) Use a SEPARATE writing booklet.

a) Draw a large neat sketch of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ labelling clearly the, the foci, the directices

b) Find all the possible values of k if
$$\frac{x^2}{12-k} + \frac{y^2}{k+4} = 1$$
 represents an ellipse

3

2

2

- c) $P(a \sec \theta, b \tan \theta)$ is any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. Given that the equation of the normal at *P* is given by $ax \tan \theta + by \sec \theta = (a^2 + b^2) \sec \theta \tan \theta$. (DO NOT PROVE THIS) A line through *P* parallel to the *y* axis meets an asymptote at *Q* and the *x* axis at *N*. The normal at *P* meets the *x* axis at *R*.
 - i) Find the coordinates of Q, N, R. 3
 - ii) Show that QR is perpendicular to the asymptote 2
 - iii) Show that $OR = e^2 ON$ where *e* is the eccentricity.
- d) In a state swimming championships, 12 swimmers (including the Jones twins) are chosen to represent their club and are divided into three teams of four swimmers to form 3 relay teams.

i)	In how may ways can the 3 teams be formed?	2
ii)	Find the number of ways this can be done if the Jones twins (Angela and Bethany)	
	are not to swim in the same relay team.	1

Question 16 (15 marks) Use a SEPARATE writing booklet.

a) In the diagram XY is a tangent to the circle and XY = XA.

i) Show that $\Delta XCY \parallel \Delta XBY$

2

ii) Hence explain why
$$\frac{XY}{BX} = \frac{CX}{XY}$$
 1

- iii) Show that $\triangle AXC \parallel \mid \triangle AXB$ 3
- iv) Prove that $DE \parallel AX$

b) Given $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ are positive real numbers. Where $A_n = a_1 + a_2 + a_3 + \dots + a_n$ and $B_n = b_1 + b_2 + b_3 + \dots + b_n$, are such that $a_1, a_2, a_3, \dots, a_n > 0$, $b_1, b_2, b_3, \dots, b_n > 0$ and $A_r \le B_r$, for $r = 1, 2, 3, \dots, n$.

(i) Prove, by mathematical induction for
$$n = 1, 2, 3, ...$$
, that:

$$\frac{1}{\sqrt{b_n}} B_n + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_n}}\right) B_{n-1} + \left(\frac{1}{\sqrt{b_{n-2}}} - \frac{1}{\sqrt{b_{n-1}}}\right) B_{n-2} + ... + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1$$

$$= \sqrt{b_1} + \sqrt{b_2} + \sqrt{b_3} + ... + \sqrt{b_n}$$
3

(ii) Hence given

$$\frac{a_{1}}{\sqrt{b_{1}}} + \frac{a_{2}}{\sqrt{b_{2}}} + \frac{a_{3}}{\sqrt{b_{3}}} + \dots + \frac{a_{n}}{\sqrt{b_{n}}} = \frac{1}{\sqrt{b_{n}}} A_{n} + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_{n}}}\right) A_{n-1} + \left(\frac{1}{\sqrt{b_{n-2}}} - \frac{1}{\sqrt{b_{n-1}}}\right) A_{n-2} + \dots + \left(\frac{1}{\sqrt{b_{1}}} - \frac{1}{\sqrt{b_{2}}}\right) A_{1}$$
Show that $\sum_{r=1}^{n} \frac{a_{r}}{\sqrt{b_{r}}} \leq \sum_{r=1}^{n} \sqrt{b_{r}}$

1

c) $\triangle ABC$ has sides a, b, c. If $a^2 + b^2 + c^2 = ab + bc + ca$, show that $\triangle ABC$ is equilateral. 3

End of Exam

Multiple choice. 2 D 3 A 4 |x+iy-2i|=2+y $p_{2}+(y-2)i|=2+y$ $p_{2}+(y-2)i|=2+y^{2}$ $x^{2}+(y-2)^{2}=(2+y)^{2}$ $x^{2}+y^{2}-4y+4=.(4+4+y+y)^{2}$ $x^{2}=8y-44$ $x^{2}=8y-44$ $x^{2}=4(2y-1)$ a B (parabola).

5 $C = 2J\Sigma$ foci $(\pm 2J\Sigma \times J\Sigma, \pm 2J\Sigma \times J\Sigma)$ $=(\pm 4, \pm 4)$ = A. 6. C7. B8. A. 9. $2x + 2y \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$ $(2y + x) \frac{dy}{dx} = -(2xy)$ B $\frac{dy}{dx} = -\frac{(2xy)}{2y + x}$ 10 A.

Exam Exer 2 Marthe MATHEMATICS	: Question.l.l.
Suggested Solutions	Marker's Comments
Q Q = 3 + 2i $W = 4 +$	(Most Andents
j) Z	have answered
iw	port a) correctly
= 3 + 2i	
i(-1+i)	
$= \frac{372i}{-i-1} \times \frac{-1+i}{-1-i}$	
$= \frac{-3+3i-2i-2}{(-1)^2-i^2}$	
$= \frac{-5+i}{1+1}$	
$= -\frac{5}{2} + \frac{1}{2}i$	
ii) Im(ZW)	
$= Im [(3-2i) \times (-1+i)]$	
= Im(-3+3i+2i+2)	
= Im(-1+Si)	
= [
د.	

Exam
$$\overline{c_{2k}t} = 2 - 1 + i$$

Suggested Solutions
 $(1) | \overline{z}| = -1 + i$
 $(1) | \overline{z}| = [\overline{(-1)^{k}} + 1^{2}]$ $\operatorname{arg}(\overline{z}) = \tan^{-1}(-\frac{1}{1})$
 $| \overline{z}| = \sqrt{2}$ $= \frac{3\pi}{24}$
 $\overline{z} = \sqrt{z}(\cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4})$
 $(1) \overline{z}^{4} = \left[\sqrt{z}(\cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4})\right]^{4}$
 $= (\sqrt{z})^{4}(\cos \frac{3\pi}{4} + i\sin \frac{\pi}{4})^{4}$
 $= (\sqrt{z})^{4}(\cos \frac{3\pi}{4} + i\sin \frac{\pi}{4})^{4}$
 $= 4(\cos \pi + i\sin \pi)$
 $(1) \overline{z}^{20} = (\overline{z}^{4})^{5}$
 $= 4(\cos \pi + i\sin \pi)$
 $(1) \overline{z}^{20} = (\overline{z}^{4})^{5}$
 $= (\sqrt{z} \sqrt{\pi} + i\sin \pi)$
 $= 1024(\cos \pi + i\sin \pi)$

Exam Ener 2 Mathi MA	THEMATICS : Question	1lf	Danis de Ceres este
Sugg	ested Solutions		Marker's Comments
$\begin{array}{c} \alpha \\ \alpha $			students who undersitized
$ OR = \sqrt{1^2 + 3^2}$	OP = (OR)	(sides of	vector representation
= 2		a rhanbus	Ancershilly
$\vec{OQ} = \vec{OR} + \vec{OP}$			
$= 1 + i\sqrt{3} + 2$			
= 3+ i 13			
$\therefore \mathcal{O}(3 + i\sqrt{3})$			
$d_{1} \int_{0}^{1} \frac{2}{\sqrt{1+3x}} dx$	du = 1+32 $du = 3chc$	C	
$= \frac{2}{3} \int_{1}^{4} \frac{du}{\sqrt{u}}$	$\begin{array}{c} x = 1 \\ x = 0 \end{array}$	R=4 N=1	
$=\frac{2}{3}\left[\frac{u^{1/2}}{1/2}\right]_{1}^{4}$			
$=\frac{4}{3}(\sqrt{4}-\sqrt{1})$			
$=\frac{4}{3}$			
$f = \frac{\chi^3}{1 + \chi^3}$	$u = \ln 2\pi$ $u' = \frac{1}{x}$	$v' = x^{2}$ $v = \frac{x^{3}}{3}$	
3 m 22 - J x '	3 CN2		
$= \frac{x}{3} \ln 2x - \frac{1}{3} \left[\frac{x^3}{3} \right]$]+(
$=\frac{x^3}{3}\ln 2\pi - \frac{x^3}{9} +$	C		

Exam Exer 2 Martin MATHEMATICS : Question 1.2	
Suggested Solutions	Marker's Comments
$Q(12, a) P(z) = z^3 - 7z^2 - 25z - 39$	
P(2+3i) = 0	
Since 2+3i is a root, then 2-3i is also	
a not for P(Z) (all real coefficients)	
Let the roots of P(2) be a. B. J	
$d+\beta+\gamma=7$	
2 + 3i + 2 - 3i + b = 7	
$\gamma = 3$	
P(z) = (z - (z + 3i))(z - (z - 3i))(z - 3)	
b) $x^4 - px^3 + qx^2 - pqx + 1 = 0$	
$\alpha' + \beta + \delta' = \rho$	most students
$\varkappa / \beta + \delta = \rho - \delta$	could denafy
< 2+13+5 = p-7	P, however
$\alpha \prec + \delta + \delta = \rho - \beta$	there were muggles with
* B+8+5= P-0	espensium after
$(p-2)(p-\beta)(p-3)(p-3)$	
$= p^{4} - (\Sigma \alpha)p^{3} + (\Sigma \alpha \beta)p^{2} - (\Sigma - \beta \delta)p + (-\beta \delta)$	
$= p^4 - p^{x}p^{3} + q^{x}p^{2} - pq^{x}p + 1$	
$= p^4 - p^4 + p^2 q - p^2 q + 1$	
=	

Exam Ent 2 Matter MATHEMATICS : Question. 1.2	
Suggested Solutions	Marker's Comments
$\begin{array}{c} Q \Pi \\ C \end{array} x^{3} + Q x + \Gamma = 0 \end{array}$	studions porgor
lut $x = \frac{1}{d^2}$	to remove
$\alpha^2 = \frac{1}{\chi}$	sivos.
$\alpha = \pm \frac{1}{\sqrt{2}}$	
$(\pm i\pi)^{3} + q(\pm i\pi) + r = 0$	
$\pm \frac{1}{x\sqrt{x}} \pm \frac{9}{\sqrt{x}} \pm (-3)$	
士 (1,+9)=	
$\frac{1}{x}\left(\frac{1}{x}+q\right)^2=\left(-r\right)^2$	
$\frac{1}{x}\left(\frac{1+Q_{x}}{x}\right)^{2}=\int_{0}^{1}$	
$\frac{(1+q_{3x})^{2}}{x^{3}} = c^{2}$	
$1 + 2q_{1} + q^{2}x^{2} = \Gamma^{2}x^{3}$	
$(1^2 x^3 - q^2 x^2 - 2qx - 1 = 0)$	

Exam Eq. r. 2 Mathelikatics : Question 1.2
Suggested Solutions

$$\left(-i\right)^{n} = \frac{3n}{6} + \left(-\frac{1}{2}\right) \left(\frac{3n}{1}, +\frac{3n}{5}, \right) + \frac{\sqrt{3}}{2} i \left(\frac{3n}{1}, -\frac{3n}{5}, \right)$$

$$= \frac{3n}{6} + \frac{3n}{1} + \frac{3n}{6} + \frac{3n}{$$

Exam Exer 2	Maths.	MATHEMATICS	: Question	
		Suggested Solutions		Marker's Comments
$\begin{array}{l} \left(\begin{array}{c} 13. \ a \end{array} \right) \\ i \end{array} \\ = \int_{a}^{o} f \\ = \int_{a}^{a} f \\ = \int_{0}^{a} \end{array}$	(m) dx (m) x (- du) f(m) dy	du = - $du = -$ $x = 0$ $x = 0$	$- \mathcal{X}$	
$=\int_{v}^{a}$	f 61) clsc			
(i)] =	$\int_{0}^{\frac{1}{2}} \frac{\cos x}{1+x}$	- sinit rinicion d	2	
I =	$\int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}}{1}$	$\left(\frac{\pi}{2}-x\right) - \sqrt{n}$	$\frac{\left(\frac{T_{1}}{2}-\kappa\right)}{\cos\left(\frac{T_{1}}{2}-\kappa\right)}e^{\Lambda \pi}$	
=	$\int_{0}^{\frac{1}{2}} \frac{d^{1}}{l}$	+ Cesx (16)k	dr	
2	I = 0 .			
	1 = 0			

Exam Exer 2	MATHEMATICS	: Question	
	Suggested Solutions		Marker's Comments
b) i) 4x-	2 Ax+B	C	
()(² -1)(x-2) x ² -1	×(- 2	
$(A \times +B)($	$x-2$) $+ ((a^2-1) =$	4x-2	
W = 2 3	c = 6		
	(=2		
lur x=0 -2	2B - C = -2		
	-2B = 0 B = 0		
		:	
	$(++B) \times (-1) + 0 = 2$		
	$4 \leq 7$		
$\frac{4x-2}{(x^2-1)(x-2)}$	$=\frac{-2x}{x^2-1}+\frac{-2x}{x}$	2	
$(i) \int_{3}^{6} \frac{4\pi}{(c^2-1)^2}$	$\frac{2-2}{-1)(x-2)} dx$		
$= \int_{3}^{6} \left(\frac{-2x}{x^2} \right)^{4}$	$\frac{2}{1+\chi-2}$) on		
$= \left[-ln \right] x$	$2 - 1 + 2 \ln x - 2]$	3	
= [-ln35	$-(-ln\delta) + 2ln$	4 - 2lm I	
= -ln35	$+ \ln \beta + \ln 16$		
$= ln \left(\frac{16}{3}\right)$	$\left(\frac{x\partial}{\partial f}\right)$		
$= lm \left(\frac{12a}{35} \right)$	<u>P</u>)		

Marker's Comments M, M, = - 1 concept needed to be used at some stage. some students made algebraic errors.
M,M,=- 1 concept needed to be used at some stage. some students made algebraic errors.
-
well done.
ii) some student used correct alternative nethod from part (i). Working war

Fyam	MATHEMATICS Ouestion	~
LAGIII	Suggested Solutions	Marker's Comments
Question (S a) $x^2 + y^2$ $is + b^2$ foci (+c) $b^2 = a^2$ lb = 2s lb = 2s	$= \frac{1}{ae_{1}c_{1}}$ $ae_{1}c_{2}$ $(1-e^{2})$ $(1-e^{2})$ $(1-e^{2})$ $(1-e^{2})$ $(1-e^{2})$ $\sum_{s=1}^{n} \frac{1}{s}$ $\frac{1}{s}$	well done
b) 12-t> k<12 -4.<	and k+4>0. +>-4 K<12	students used more complicated approaches and forgot a ² =(12-k and ended up with complicated algebraic expressions

Even Mathematics : Question LS
Suggested Solutions Marker's Commonts

$$C(i)$$

$$A_{hfact} = \frac{1}{4} \times fQ \cdot A, \qquad p \xrightarrow{k} Q = \int A, \qquad = \frac{1}{2} \times h, \qquad = \frac{1}{2} \times$$

Exam MATHEMATICS : Question
$$\frac{1}{2}$$

Suggested Solutions Marker's commons
(11) DE1/AX.
Let - ZABX = d.
 $LAK = LABX = d.$
 $LXAC = LABA (free put thi-
Corresponding angles
 $LXAC = LABA (free put thi-
Corresponding angles
 $L = LABA = d.$
 $LXAC = LABA (free put thi-
Corresponding angles
 $L = CED = 180 - d. (opporthe angles in a cyclic
quadrifothal and singe the angles are
alkinede and equal then DEHAR.
 $D(1)$ Tech reit Ara,
 $B_{1}=b,$
 $TE_{1}=\frac{1}{2}$, $B_{2}=b,$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $Assume tree for nach
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $Assume tree for nach
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $AED = d.$
 $TE_{2}=\frac{1}{2}$, $B_{2}=\frac{1}{2}$, $B_$$$$$$$

Exam	MATHEMATICS : Question	2
	Suggested Solutions	Marker's Comments
$\begin{array}{l} (i) \\ A_{r} \leq B_{r} \\ \hline \\ $	$\begin{aligned} A_{r-1} + \dots \left(\int_{b_{1}}^{L} - \int_{b_{2}}^{L} A_{j} \right) \\ &\leq \int_{b_{n}}^{L} B_{n} + \left(\int_{b_{n-1}}^{L} - \int_{b_{n}}^{L} B_{n-1} + \dots \left(\int_{b_{n-1}}^{L} A_{j} \right) \right) \\ &\leq \int_{b_{n}}^{C} B_{n} + \left(\int_{b_{n-1}}^{L} - \int_{b_{n}}^{L} B_{n} + \dots \left(\int_{b_{n}}^{L} A_{j} \right) \right) \\ &\leq \int_{b_{n}}^{C} A_{i} < B_{r} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{r} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 3, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} < B_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, 2, \dots \\ \\ \int_{b_{n}}^{C} A_{i} for \ r = \lfloor 2, \dots \\ \\ \int_$	well dore
(ii) $u^{2}+b^{2}-2a$ $b^{2}+c^{2}-2b$ $c^{2}+a^{2}-2c$ $\therefore 2(a^{2}+b^{2}+c^{2})$ (a-b), (b-c) $\therefore (a-b)^{2} \ge 0$ siminal and for (b) Hence if $a^{2}+b^{2}$ Hence if $a^{2}+b^{2}$	$b=(a-b)^{2}$ $c=(b-c)^{2}$ $a=(c-a)^{2}$ $=(ab+bc+ca)=(a-b)^{2}+(b-c)^{2}+(c-a)^{2}$ $(c-a) a+e real numbers since a,b,c pos$ with equality if and only if $a=b$. $=-c)^{2}(c-a)^{2}$ $b=c^{2}(c-a)^{2}$ $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$ $\therefore (a-b)^{2}=(b-c)^{2}=(c-a)^{2}=0$ $\therefore a=b b=c c=a$ $a=b-b=c and \Delta ABc is -equilateral$	students must use a 3 b 3 tc 2 = ab the if 3, then and shot assume equality and see if it works.