Student Number: _____

St George Girls High School

Trial Higher School Certificate Examination

2017

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Section I	/10
Section II	
Question 11	/15
Question 12	/15
Question 13	/15
Question 14	/15
Question 15	/15
Question 16	/15
Total	/100

Total Marks - 100

Section I

Pages 2-6

10 marks

- Attempt Questions 1 − 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II

Pages 7 - 12

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

Section I

- 1. What is the value of $\frac{10}{i|z|}$, if z = -1 + i?
 - (A) $-5i\sqrt{2}$
 - (B) 2-5i
 - (C) $5i\sqrt{2}$
 - (D) 2 + 5i
- 2. Which of the following are the coordinates of the foci of $9x^2 36y^2 = 324$?
 - (A) $(\pm \sqrt{5}, 0)$
 - (B) $(0, \pm \sqrt{5})$
 - (C) $(\pm 3\sqrt{5}, 0)$
 - (D) $(0, \pm 3\sqrt{5})$
- Consider the region bounded by the y-axis, the line y = 4 and the curve $y = x^2$.

 If this region is retated about the line y = 4 which expression gives the volume of the second second

If this region is rotated about the line y = 4, which expression gives the volume of the solid of revolution?

$$(A) \quad V = \pi \int_0^4 x^2 \, dy$$

(B)
$$V = 2\pi \int_0^2 (4 - y)x \, dy$$

(C)
$$V = \pi \int_0^2 (4 - y)^2 dx$$

(D)
$$V = \pi \int_0^4 (4 - y)^2 dx$$

Section I (cont'd)

- 4. $\int_0^2 \frac{x^2}{\sqrt{x^3 + 1}} dx.$
 - $(A) \qquad \frac{1}{9}$
 - (B) $\frac{1}{3}$
 - (C) $\frac{4}{3}$
 - (D) 9
- 5. For the hyperbola $(y + 1)^2 x^2 = 1$, find an expression for $\frac{d^2y}{dx^2}$.
 - $(A) \qquad \frac{x}{(y+1)^3}$
 - $(B) \quad \frac{1}{(y+1)^3}$
 - (C) $\frac{x}{y+1}$
 - (D) $\frac{1}{y+1}$
- 6. The polynomial $P(x) = 4x^3 + 16x^2 + 11x 10$ has roots α, β and $\alpha + \beta$. What is the value of $\alpha\beta$?
 - $(A) \qquad \frac{5}{2}$
 - (B) $-\frac{5}{2}$
 - (C) $\frac{5}{4}$
 - (D) $-\frac{5}{4}$

Section I (cont'd)

7. The diagram below shows the graph of the function y = f(x)

Which of the following is the graph of $y = \frac{1}{f(x)}$?

(A)

(B)

(C)

(D)

Section I (cont'd)

8. The diagram shows the graph of y = P''(x) which is the second derivative of a polynomial P(x).

Which of the following expressions could be P(x)?

- (A) $(x + 2)^2 (x 1)$
- (B) $(x + 2)^4 (x 1)$
- (C) $(x-2)^4(x-1)$
- (D) $(x-2)^4(x+1)$

9. In the Argand diagram the point **P** represents the complex number z. When this number is divided by 5i it gives a new complex number.

Which one of the points on the diagram above represents the new complex number?

- (A) Q
- (B) R
- (C) S
- (D) T
- 10. The sides of a triangle are the first three terms of an arithmetic progression with the first term 1 and the common difference d. What is the largest set of possible values of d.
 - (A) -1 < d < 1
 - (B) $-\frac{1}{2} < d < 1$
 - (C) $-\frac{1}{3} < d < 1$
 - (D) $-\frac{1}{4} < d < 1$

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet **Marks** For the complex number $z = \sqrt{2} + \sqrt{2}i$ (a) (i) Express z in modulus-argument form 2 Find z^{12} . (ii) 2 $\int_{\frac{1}{2}}^{2} \frac{1}{2x^2 - 2x + 1} dx$ to 4 significant figures. **Evaluate (b)** 4 Find the square root of $1 + 2\sqrt{2}i$. **(c)** 3 Reduce the polynomial $x^6 - 9x^3 + 8$ to irreducible factors over the: (d) (i) real field 2 (ii) complex field

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

Marks

3

1

- (a) Use the substitution $t = \tan \frac{\theta}{2}$ to find $\int \frac{1}{1 + \cos \theta + \sin \theta} d\theta$.
- (b) $P(a \sec \theta, \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} y^2 = 1$, a > 1, with eccentricity e and asymptotes L_1 and L_2 . M and N are the feet of the perpendiculars from P to L_1 and L_2 respectively. Show that $PM.PN = \frac{1}{e^2}$.
- (c) Use integration by parts to find $\int x \sec^2 x dx$.
- (d) The area between the curve $y = 3x x^2$ and y = x, between x = 1 and x = 2 is rotated about the y axis. Using the method of cylindrical shells, find the volume of the solid of revolution formed.
- (e) (i) Given that $\sin x$ can be written as $\sin(2x x)$ show that $\sin x + \sin 3x = 2\sin 2x \cos x$

(ii) Hence or otherwise find the general solutions of $\sin x + \sin 2x + \sin 3x = 0$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) The roots of $x^3 + x^2 + 1 = 0$ are α , β and γ . Find the cubic equation whose roots are

$$\frac{1}{1-\alpha} , \frac{1}{1-\beta} , \frac{1}{1-\gamma}$$

Express your answer in the form $ax^3 + bx^2 + cx + d = 0$.

- (b) (i) On the same Argand diagram carefully sketch the region where $|z-1| \le |z-3|$ and $|z-2| \le 1$ hold simultaneously.
 - (ii) Find the greatest possible value for |z| and arg z.
- (c) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersect the x-axis at the points A and B.

The point P (x_1, y_1) lies on the ellipse. The tangent at P intersects the vertical line passing through B at the point Q as shown in the diagram.

- (i) Show that the equation of tangent at P is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$
- (ii) Show that the coordinates of Q are $\left(a, \frac{b^2}{y_1} \left(1 \frac{x_1}{a}\right)\right)$
- (iii) Show that AP is parallel to OQ 3

Question 14 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) A sketch of the function f(x) is shown below.

Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts.

$$(i) y = |f(x)| 2$$

(ii)
$$y = [f(x)]^2$$

(iii)
$$y = \ln f(x)$$

- **(b)** The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$.
 - (i) Find the equation of the tangent to the hyperbola at the point P.
 - (ii) The tangent at P cuts the x-axis at A and the y-axis at B. Show that the area of the triangle AOB is independent of t.
- (c) Find the values of the real numbers p and q given that

$$x^3 + 2x^2 - 15x - 36 = (x+p)^2(x+q)$$

(d) The region shown below is bounded by the lines x = 1, y = 1, y = -1 and the curve $x = -y^2$. The region is rotated through 360° about the line x = 2 to form a solid. Calculate the volume of the solid using the method of slicing?

Question 15 (15 marks) Use a SEPARATE writing booklet.

Marks

2

(a) A particular solid has as its base the region bounded by the hyperbola $\frac{x^2}{4} - \frac{y^2}{5} = 1$ and 4 the line x = 4.

Cross-sections perpendicular to this base and the x —axis are equilateral triangles. Find the volume of this solid.

- **(b)** Let $I_n = \int_1^4 (\sqrt{x} 1)^n dx$, where n = 0, 1, 2.
 - (i) Show that $(n+2)I_n = 8 nI_{n-1}$.
 - (ii) Evaluate I₄.
- (c) (i) Use the results $z + \bar{z} = 2Re(z)$ and $|z|^2 = z\bar{z}$ for the complex numbers z to show that $|\alpha|^2 + |\beta|^2 |\alpha \beta|^2 = 2Re(\alpha\bar{\beta})$.

(ii) The diagram shows the angle θ between the complex numbers α and β . Prove that

 $|\alpha||\beta|\cos\theta = Re(\alpha\bar{\beta}).$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) Let $F(x) = e^{x^2}$ for all $x \ge 0$.
 - (i) Find $F^{-1}(x)$, the inverse function of F(x)
 - (ii) State its domain and range of $F^{-1}(x)$.
 - (iii) On the same set of axes, sketch $F^{-1}(x)$ and F(x) indicate the region 2 represented by

$$\int_0^1 F(x)dx \text{ and } \int_1^e F^{-1}(x)dx$$

(iv) Evaluate
$$\int_0^1 F(x) dx + \int_1^e F^{-1}(x) dx$$
. 2

(b) The cubic equation $x^3 + kx + 1 = 0$, where k is a constant, has roots α, β and γ . For each positive integer n,

$$S_n = \alpha^n + \beta^n + \gamma^n.$$

- (i) State the value of S_1 .
- (ii) Express S_2 in terms of k.
- (iii) Show that for all values of n_{i}

$$S_{n+3} + kS_{n+1} + S_n = 0.$$

(iv) Hence or otherwise express $\alpha^5 + \beta^5 + \gamma^5$ in terms of k.

End of Examination

Solutions

2.
$$\frac{91^{2} - 36y^{2} - 324}{x^{2} - y^{2} - 1}$$
 $\frac{x^{2} - y^{2} - 1}{36}$
 $\frac{9^{2} - a^{2}(e^{2} - 1)}{9 - e^{2} - 1}$
 $\frac{9}{36}$
 $e^{2} - 54$
 $e = 6$

Foci
$$(\pm ae, 0) = (\pm 6 \times 15 0)$$

= $(\pm 315, 0)$ C

3. Using Disc Method - C

$$4 \int_{0}^{2} \frac{\chi^{2}}{\sqrt{\chi^{3}+1}} dx = \frac{1}{3} \int_{c}^{2} \frac{3\chi^{2}}{\sqrt{\chi^{3}+1}} dx$$

$$= \frac{1}{3} \int_{0}^{9} du \frac{du}{du} = \frac{3n^{2}}{3n^{2}}$$

$$= \frac{1}{3} \int_{0}^{9} \sqrt{u} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$

$$= \frac{1}{3} \int_{0}^{2} \left[u^{2} \right]_{0}^{9} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$

$$= \frac{1}{3} \int_{0}^{2} \left[u^{2} \right]_{0}^{9} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$

5.
$$(y+1)^{2} - x^{2} - 1$$

$$2(y+1) \frac{dy}{dx} - 2x = 3$$

$$\frac{d^{2}y}{dx^{2}} = \frac{x}{y+1} - x \cdot \frac{y}{y}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y+1-x^{2}}{y+1}$$

$$= \frac{y+1-x^{2}}{(y+1)^{2}}$$

$$= \frac{(y+1)^{2}-x^{2}}{(y+1)^{3}}$$

$$= \frac{1}{(y+1)^{3}}$$
6. $f(x) = \frac{4x^{3} + 16x^{2} + 11x - 10}{(y+1)^{3}}$

$$\frac{2(x+\beta) = -16}{4}$$

$$2(x+\beta) = -\frac{1}{4}$$

$$2(x+\beta) = -\frac{1}{4}$$

$$2(x+\beta) + 2(x+\beta) + 3(x+\beta) = \frac{11}{4}$$

$$2(x+\beta) = \frac{1}{4}$$

three lader! All alone general appropria, justifying help the little three the great great a set for the set o The later and the	
	8. Second derivative has double root at x=2.
	So the original function should have a root of multiplicity 4 at x=-2
	9. A division of 57 is equivalent to
	a multiplicatur of 1 8i - i
anger and enter the second and an angel and a	Multiply P by i means
	D,
	10. A sides of triangle
	1) 1+d, 1+2d
	Now 1+d+1 < 1+2d
	24021+6
	1 2 d
	1+1+2d < 1+d
	2+2d < 1+d
	d < -i
and deviate as sent factories. He differ a sense applied of the feet for the feet for the feet feet feet feet feet feet feet	or 1+d+1+7d < 1
	2 + 3d < 1 $3d < -1$
	3d < -1 d < -1/3
	<i>C</i> .

MATHEMATICS EXTENSION 2 – QUESTION ()		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
9) i z = \1 1+2		
= 2 \(\bar{2}\)	1	
org 2 = ₹ Z = 2 cis ₹		
:. Z = 2 cis =		
[2 . 12 . / 1]		
ii Z = 212 cis (1,1	
= 4096 (cos 3 m + isin 3 m)		
= 4 m96 (-1 40)		
= 4096 (-1 +0) = -4096		
b) $\int_{1}^{2} \frac{1}{2\pi^{2}-2x+1} dx = \frac{1}{2} \int_{\frac{1}{2}} \frac{1}{x^{2}-x+\frac{1}{2}} dx$		
) 2 x2 -2x4 2 x2- x2+ 1		
1/2 1 dx		
$= \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} (x^{-\frac{1}{2}})^{2} (x^{\frac{1}{2}})^{2} dx$	J	
$=\frac{1}{2}\left[\frac{1}{\sqrt{2}} + c_3^{-1} \left(\frac{3(-\frac{1}{2})}{\sqrt{2}}\right]\right]$	l	
$1 \cdot 1 \cdot$		Note that
$=\frac{1}{2}\left[2+\alpha_{1}^{-1}\left(2\pi-1\right)\right]_{\frac{1}{2}}^{2}$		trigonometric
2 tan-13 -ta-10	l	calculus is
= 1.249045		performed in
= 1.249	1	radians.
		The equivalent
c) Let x+iy be the square root of 1+2vzi		in clegirees (71.57) was avaided 3½
$\therefore (x+iy)^2 = 1+2\sqrt{2}i \qquad x,y \in \mathbb{R}$		was avorded 3½
Equating coefficients,		
Equating Coefficients,	1	
$x^2 - y^2 = 1$ $2xy = 2\sqrt{2}$		
$xy = \sqrt{2}$ $y = \frac{\sqrt{2}}{x}$		
1 x		

MATHEMATICS EXTENSION 2 – QUESTION \		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
50b y= 1 into x2-y2=1:		
		Note that
$x^2 - \frac{2}{x^2} = 1$		±52±i ≠ ±(52+i)
$x^4 - 2zx^2$		as the LHS
$x^4 - x^2 - 2 = 0$		suggests 4 solutions.
$(x^2-2)(x^2+1)=0$		
$(x-\sqrt{2})(x+\sqrt{2})(x^2+1)=0$	1	
:x=±52 (:x EIR)	l	
: y= ±1	•	
: He square root of 1+252i is ± (52+i) ie. 52+i and -52-i		
1e. 12+c ona -12-c		
a) $= (x^3 - 9x^3 + 8) = (x^3)^2 - 9x^3 + 8$		This is a degree
$= (x^3 - 1)(x^3 - 8)$		6 polynomial;
$= (3c-1)(x^2+x+1)(3c-2)(3c^2+2x+4)$	()	long division
$= (3c-1)(x^2+x+1)(3c-2)(3c^2+2x+4)$ irreducible over \mathbb{R}	1	long division was a bad choice.
ii for 22 +2+1,		
$x = -1 \pm \sqrt{3}i$		
2		
=-====================================		
for x2+2x+4,		
$3c = -2 \pm 2\sqrt{3}i$		
= -1 ± 53 i		
	17	
$\therefore x^{6} - 9x^{3} + 8 = (x - 1) \left(x - \left[-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right] \left(x - 2\right) \left(x - \left[-\frac{1}{2} + \frac{1}{2} i\right] \left(x - 2\right) \left(x - 2\right$	30)	
$= (x-1)(x+\frac{1}{2}+\frac{\sqrt{3}}{2}i)(x+\frac{7}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}$	14136)	(x+1-53i)
	f sie	1 M - W - 4 - 10
ems	DI 3191	were worth Zamark.

MATHEMATICS EXTENSION 2 – QUESTION		
MARKS	MARKER'S COMMENTS	
1		
2		
1		
1		
-\1		
	1	

MATHEMATICS EXTENSION 2 – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
12b) cout PM XPN = 02 ×1		
= a2 ba+b= a(e	-1)	
= a2 boxb=a(e) Haz b=1, 1-a(e)	1) / (1	1
$= \frac{a^{2}}{a^{2}e^{2}} = \frac{1-a^{2}e^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$ $= \frac{a^{2}}{a^{2}e^{2}} = \frac{1+a^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$ $= \frac{a^{2}}{a^{2}e^{2}} = \frac{a^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$	~ / t	4
202 1ta2 = 200		
: PM x PN = = = = = = = = = = = = = = = = = =		
	一么	
120) Sx. sect x dx u=x dv=secx = uv-Sv.du du=1 v=tanx		
	1	
= x. tanx - Stanz dx	1	
= 2. tank - Sinsi dx		
= x. tanx + 5 - strok dic		
= >c. fansi + li/cos x/ +c	1	
(2d) y=3x-x2 7		
4=2		
3z = 3x - >c		
x2 +xc -3x=0 3 80		
x2-2x=0		
$\times(x-1)=0$		
X=0 00 2 1 1 2 3 4 X	1	
y=311-22		
A=211x, 8x		
SV=2T24.8x 2T2		
= 2T x (2x-2). 8x y, = 3x-22 gm		
1- lin 25 x (2x -22). 8x 4 = 2 > c	1	
= [im 2T/2)2-22) = 206 ->c		
= 2TT (2x2 - x3) dxc		
= 21 [2/32] - 24 + 6]		
= 11 Tr au units	1	

MATHEMATICS EXTENSION 2 – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
12e)i) sin x + sin3x		
= sin(2x-x) +sin(2x+x)		
= sindx. cos sc- sos by sinx + sinbx. cox	+ (000)	ysinol
=7.5; ndx.coxx	1	,
sinx +sin3x = 2.51n2x.conc	1	
ii) sinz + sinzx + sinzx = 0		
Z.SENDI. COOX +SINZX = 0		
sindx(2.cox+1)=0		
(Sinlac = 0) or 2-cosx+1=0	,5	
X=NT 2 (00) X = -1/2)	1.	
2 007 36 10 1/2		
X=2nTTゴ=3		
の凡が =(211+1) T 生号		
1 2 = NI OR X = 2 NT + 2 3		
(0°(2n+1)# = #3	14	

MATHEMATICS EXTENSION 2 – QUESTION 13	-,-	
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) Let $c = \frac{1}{1-\lambda}$	1	
$1-\phi = \frac{1}{x}$ $\phi = 1 - \frac{1}{x}$		
$d = 1 - \frac{1}{x}$		
= ×-1	1	
$= \frac{x-1}{sc}$ $\therefore \text{ cubic is}$		
$\left(\frac{3c}{x^{-1}}\right)^3 + \left(\frac{x}{x^{-1}}\right)^2 + 1 = 0$	1	
(>) (\)		
$\frac{x^3 - 3x^2 + 3x - 1}{x^3} + \frac{x^2 - 2x + 1}{x^2} + 1 = 0$		
$x^3 - 3x^2 + 3x - 1 + x(3 - 2x^2 + x + x^3) = 0$	III.II A	
$3x^3 - 5x^2 + 4x - 1 = 0$	1	*
b) <u>i</u>		
		for oc=2
		for 61-2 -17=1
(2,1)		for correct
· · · · · · · · · · · · · · · · · · ·		for correct region
0 1		,
(2,-1)		
x=2		
	TANKE TO A STATE OF THE STATE O	

MATHEMATICS EXTENSION 2 – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) ii		Best responses
		Best responses care from students
		who redrew the
<u></u>		relevant diagrams.
Max 12 occurs at (2,1) [or (2,-1)]		11.10.11.1.6
17.1 - 12.2		Note that if your onsur to b) i
$ 2 = \sqrt{2^2 11^2}$ = $\sqrt{5}$	1	
- 72		was incorrect it was difficult
Max and accurs when toget		to demonstrate
Max argz occurs when tagent is perpendicular to radius		He required skills
		for part ii
A		
0		
Ž /		Very few students correctly onswered this part.
		correctly onswered
sin 0 = 2		this part.
0=76		
$\partial_1 = 2^2 + 4^2 = 1$		
92 7 62 = 1		
$\frac{d}{dx} \left[\frac{x^2}{9^2} + \frac{y^2}{h^2} \right] = \frac{d}{dx} \left(1 \right)$		
dx [92 b2 dx L)		
2x , 2y dy = 0		
92 b2 dx		
$\frac{dy}{dz} = \frac{-2x/a^2}{2y/b^2}$		
012 24/62	ı	1.00 111
$= -xb^2$ ya^2	L	correct differentiation
At $P(x_1, y_1)$, $\frac{dy}{dx} = \frac{-x_1, b^2}{y_1, q^2}$		
77.		

MATHEMATICS EXTENSION 2 – QUESTION 3		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Equation of tongert through (x,, y,):		
$y-y_1=\frac{-x_1,b^2}{y_1,q^2}\left(x-x_1\right)$		
$yy, a^2 - y, a^2 = -xx, b^2 + x, a^2$		
$xx, b^2 + yy, a^2 = x, 2b^2 + y, 2a^2$		
$\frac{xx_{1}}{g^{2}} + \frac{yy_{1}}{b^{2}} = \frac{x_{1}^{2}}{g^{2}} + \frac{y_{1}^{2}}{b^{2}}$		
Because $\frac{2}{a^2} + \frac{y^2}{b^2} = 1$ as $\frac{p(x_1, y_1)}{a^2}$ lies on the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$		
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$		and algebra
<u>jii</u> The wordinates of B are (a,0) Q lies on the line x=9		
Sub x=a into equation of tengent		
$\frac{asc,}{9^2} + \frac{yy_1}{b^2} = 1$ $\frac{3c,}{a} + \frac{yy_1}{b^2} = 1$		·
$\frac{yy}{b^2} = \frac{x}{q}$		

MATHEMATICS EXTENSION 2 – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$y = \frac{b^2}{y_1} \left(1 - \frac{x_1}{q} \right)$		substitution of
y, (a)		x 29 and
$\frac{1}{2}$		correct colgebra
$\therefore Q\left(q, \frac{b^2}{y_1}\left(1-\frac{x_1}{q}\right)\right)$		•
$\frac{\partial iii}{\Delta P} = \frac{\gamma_1 - 0}{x_1 - a}$		
*		
= y1 x, +a		
	l l	
$\frac{M_{OQ} = \frac{b^2}{y_1} \left(1 - \frac{x_1}{q}\right) - 0}{q}$		
9 -0		
$=\frac{b^2}{y_1}\times\frac{q_1-x_1}{q_1}\times\frac{1}{q_1}$		
$=b^{2}(a-x.)$	1	simplified expression
92 41		simplified expression
Since (x, y,) lies on the ellipse,		
$\frac{x_1^2}{q^2} + \frac{y_1^2}{b^2} = 1$		
12 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1		
93(,-40-9,-20)		
- h ² (n ² - x ²)		
$b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2}$ $a^{2}y^{2} = a^{2}b^{2} - x^{2}b^{2}$ $= b^{2}(a^{2} - x^{2})$ $= b^{2}(a - x^{2})(a + x^{2})$		
$\frac{1}{2} \cdot \frac{a^2y_1^2}{a^2} = b^2(a \cdot x_1)$ (2)		
$\frac{1}{\alpha + x_1} = x_2 - (\alpha - x_1)$		
sub (1) into (1)		
	1	correct algebra
$M_{QQ} = \frac{q^2 y_1^2}{q^2 y_1 (\alpha + x_1)}$,
= y, = MAP -: AP110	Q	

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Black		
N _O		
A (0,26g) ×		
A (COLORE)		
At A y=0 => x+2y-2ct=0		
x +0 -2ct=0		
$\therefore x = 2ct$		
A is (2ct, 0)) 1	
At B, x=0 => 2y=2ct		
y= 2ct y= 2c t		
y= 20		
B 75 (0,2c)	1	
Area AAOB = 2x2ctx2c	1	
= 23		
: Area is independent oft.		
·		
140) x +2x2-15x -36=(x++)2. (x+q)		
-p is a root of multiplicity 2	:	
$\delta(x) = x^3 + 2x^2 - 15x - 36$		
$8'60 = 3x^2 + 4x - 15$		
-p is a root of f'a)=0 of muti	plicity	1
$3x^{2} + 4x - 15 = 0$		
(3x-5)(x+3)=0		
$x=\frac{5}{3}$ or $x=-3$	1	
(局=信)3+1×(分)-15×336年0		
(3) = (-3)3 + 2×(3)2 -15×-3-36=0		
P = 3		
Let $n=0$, $-36 = p^2 - q$ -36 = 9.9		
	^	
q = -4 P = 3, $q = -4$		

u (a) SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
11/1/54		
1 1 2 3 4		
about 22		
r= Innel radus = 1		
R= outer (adius = ml +2 = y2+2		
Area of slice = TT (R2-1)		
$= \pi \left((4^2 + 2)^2 - 1^2 \right)$		
$=\pi(y^{4}+4y^{2}+4-1)$		
$=\pi(y^4+4y^2+3)$	2	
$\delta V = \pi (y4 + 4y^2 + 3) \cdot \delta y$ $V = \lim_{y \to 0} \frac{\pi (y4 + 4y^2 + 3) \cdot \delta y}{9 = -1}$		
V = lim 2 17 (44 + 442 + 3). Sy	1	
$= 2\pi \int (y^4 + 4y^2 + 3) dy$		
-2 Fl 4-+ 43 +cl		
- 2TT (1/4 + 43 +3+4)-(0+0)		
= 21 × 68		
= 27 × 68 = 136 II cm units.	1	
15		

MATHEMATICS EXTENSION 2 – QUESTION		· · · · · · · · · · · · · · · · · · ·
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
600		
Take PG(, y) on the werve, y >0		
Area of cross-section $A(y) = 2 ab \cdot SinC$		
$A(y) = \angle ab \cdot SinC$		
= 5.24.24.51260°		
= 242 x = 3	1	
$A(0) = \sqrt{3} \cdot y^2$	1	
8 V = 13. y .fx V = 1im J3. y . 8x		
V = lim 13. 42. 8x	1	
Now 30 - y = 1		
Now 32 - = 1 2 + 1 = 3		
y = 5 (22-1)	1	
Su V = 11 pm (3.5(22-1) Ex		
8x→0/ x=2		
= 513 (2 - 1) dk		
=55 = x+94		
=513[64-4-(82-2)]		
= 513 x 3		
= 40 13 mits	1	
<u>S</u>		
16b) In = 54 (1/2 -1) dx, n=0,1,2,		
i) $u = (3z^{2} - 1)^{n}$ $dV = 1$ $du = n(xz^{2} - 1)^{n} \times 1xz^{2}$ $V = x$ $= n(xz^{2} - 1)^{n} \times 1xz^{2}$		
$du = n(x^{2}-1) \times 1x^{2} \sqrt{=x}$		
$=\frac{N(x^2-1)}{2\sqrt{2}c}$	1	
In= uV-Svdn		

MATHEMATICS EXTENSION 2 – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$= \left[x \left(\sqrt{x} - 1 \right)^n + c \right]^{\frac{1}{2}} - \left[x \cdot n \left(\sqrt{x} - 1 \right) \right] dx$		
TO STANCE OF WATER		
$= 4 - \frac{1}{2} \int (\sqrt{3x} - 1) + 1)(\sqrt{3x} - 1)^{n-1} dx$ $= 4 - \frac{1}{2} \int (\sqrt{3x} - 1)(\sqrt{3x} - 1)^{n-1} + 1 \times (\sqrt{3x} - 1)^{n-1} dx$		
$=4-12 S((5x-1)(5x-1)^{n-1}+1\times (5x-1)^{n-1}) dx$		
=4-1/2 /(15x-1) doc +1/2c-1) (d)L		
$= 4 - \frac{1}{2} \int (\sqrt{x} - 1) - \frac{1}{2} \int (\sqrt{x} - 1) dx$	1 2	
エームーラエル - ラエハー		
2. In= 8 - n. In - n. In-1	1	
$(n+2)\cdot \underline{\Gamma}^{n} = 8 - n \cdot \underline{\Gamma}^{n-1}$		
1.:.\ D		
b)ii) Put n=2, 4 I_2= 8-2· I,		
T -) - L (4 (32 - 1)		
- 2 - ½ 13 32 - x + c7		
= 2-5		
= 76	1	
Putn=3, I=8-3.In		·
Putn=3, I=8-3.I ₂ 5:I ₃ =8-3×16		
$I_3 = 9/0$	1	
Pot n=4, 6. I4 = 8-4. I3		
$= 8 - 4 \times 9$		
I,= 1 × 23	7	
- I = 45	1	

₩ SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
7 A	IVIARRO	- INFARCENCE CONTINUENTS
i) / L-B		
A		
0		
3+3=2Re(3), 131=33		
Prove 212 + 1812 - 12-812 = 2 Re(25)		
-HS= X. I + BB - (X-B)(Z-B)	1	
= d.Z +BB - (d-B) (Z-B)		
= LZ + BB - (LZ - LB - 15 - +13B)		
= x.7 +3/3 - X7 + x/3 + BZ - P/3		
$= \alpha \overline{\beta}^{1} + \overline{2}\beta$	1	
$=$ $\angle \overline{B}$ + $\overline{\angle B}$		
= 2 Re (2 (3)	1	
$AB = (\lambda - \beta)$		
Using cosine rule		
(1) cos 0 = 1212 + 1312 - 12 - 12	1	
2. 1<1.131		
wo = 2 Re (xB)		
2. (~1.18)		
coso = Re(XB)		
14.1B)		
1-1 (1(2)		
W/ 101 (20 0 0 0 1/2)	1 1	
11X1: 131-600 = Re(LB)		
	····	

MATHEMATICS EXTENSION 2 – QUESTION 16		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) i $F(x) = e^{x^2}$ $x7.0$ let $y = e^{x^2}$ For inverse, $x = e^y$, $y7.0$		
/1 7		Frans of sign
$y = \sqrt{\ln x} (\forall y \ge 0)$	l	Errors of sign were worth \(\frac{1}{2} \) a mark
ii lax 7,0		
:x7/		
: domain: all real x, EZ, 1	1	No half marks
range: all really, 47,0	1	uere quarded.
V V		Note that if you
111 YA 4= F(2)		got part i wrong,
		it was difficult
		to demonstrate the
e-		skills for part ii
y=F-(xc)		
	1	for curves
		for regions
	(or	one correct curve
o / re /r	an	one correct curve d its region = 1 mark
/ / /e //		
(F(x)d>c (F(x)d)c		
-10		
	1	
iv) Area = Area by symony A B	1	
· (=1)		
:. \(\int \int \(\f \) \(\d \times \) \) \(\d \t		
= e Units2		
- E 0/1173		

MATHEMATICS EXTENSION 2 – QUESTION 16		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b i 5, = L'+β'+ r'		The answer to
= -b = 0 = 0		this question is
= 0		a value, not
=0	l	an expression.
$ii S_2 = d^2 + \beta^2 + r^2$		•
$= (3 + \beta + \gamma)^{2} - 2(3\beta + 3\gamma + \beta\gamma)$ $= -\frac{1}{3} - 2(\frac{1}{3})$	1	
= = -2(=)		
20-2k	1	
=-2k		
27 1 NS - C 1.6 .C		
<u>iii</u> LHS = 5 _{n+3} +k5 _{n+1} +5 _n		,
= 7 + 8 + 2 + 4 (4 + 8 + 4) + 9 + 4	Buth	
= 1 ⁿ⁺³ + k 1 ⁿ⁺ + 1 ⁿ		
+ Bn+3+ kBn+1 Bn + Yn+3+ Xn+1	1	
= 2" (23 + K & +1) + B" (B3+KB+1) + Y" (Y	"+KY+) 1
= 4"(0) + p"(0) + r"(0)		
= 0 (: +, Bond r ore roots)		
=RHS		Note that 2
		being a root does
iv When N=O,		not imply that an
$S_3 + KS_1 + S_0 = 0$		is also a root.
$\frac{3}{5} \frac{S_3}{S_3} = -kS_1 - S_0$ $= -k(0) - (+^0 + \beta^0 + \gamma^0)$		
$= -K(0) - (3 + \beta + r^2)$ $= -3$		
	1	
when n=2		
$S_5 + kS_3 + S_2 = 0$ $S_5 = -kS_3 - S_2$		
=-k(-3)2k		
5 = 5k $3 + \beta^5 + r^5 = 5k$	1	
0 . 1		