Student Number: \_\_\_\_\_ ## St George Girls High School ## **Trial Higher School Certificate Examination** 2017 # Mathematics Extension 2 #### **General Instructions** - Reading time 5 minutes - Working time 3 hours - Write using black pen - Board-approved calculators may be used - A reference sheet is provided - In Questions 11 16, show relevant mathematical reasoning and/or calculations | Section I | /10 | |-------------|------| | Section II | | | Question 11 | /15 | | Question 12 | /15 | | Question 13 | /15 | | Question 14 | /15 | | Question 15 | /15 | | Question 16 | /15 | | Total | /100 | Total Marks - 100 #### Section I Pages 2-6 #### 10 marks - Attempt Questions 1 − 10 - Allow about 15 minutes for this section - Answer on the multiple choice answer sheet provided at the back of this paper #### Section II Pages 7 - 12 #### 90 marks - Attempt Questions 11 16 - Allow about 2 hours and 45 minutes for this section - Begin each question in a new writing booklet #### **Section I** 10 marks **Attempt Questions 1 – 10** Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10. #### **Section I** - 1. What is the value of $\frac{10}{i|z|}$ , if z = -1 + i? - (A) $-5i\sqrt{2}$ - (B) 2-5i - (C) $5i\sqrt{2}$ - (D) 2 + 5i - 2. Which of the following are the coordinates of the foci of $9x^2 36y^2 = 324$ ? - (A) $(\pm \sqrt{5}, 0)$ - (B) $(0, \pm \sqrt{5})$ - (C) $(\pm 3\sqrt{5}, 0)$ - (D) $(0, \pm 3\sqrt{5})$ - Consider the region bounded by the y-axis, the line y = 4 and the curve $y = x^2$ . If this region is retated about the line y = 4 which expression gives the volume of the second If this region is rotated about the line y = 4, which expression gives the volume of the solid of revolution? $$(A) \quad V = \pi \int_0^4 x^2 \, dy$$ (B) $$V = 2\pi \int_0^2 (4 - y)x \, dy$$ (C) $$V = \pi \int_0^2 (4 - y)^2 dx$$ (D) $$V = \pi \int_0^4 (4 - y)^2 dx$$ ## Section I (cont'd) - 4. $\int_0^2 \frac{x^2}{\sqrt{x^3 + 1}} dx.$ - $(A) \qquad \frac{1}{9}$ - (B) $\frac{1}{3}$ - (C) $\frac{4}{3}$ - (D) 9 - 5. For the hyperbola $(y + 1)^2 x^2 = 1$ , find an expression for $\frac{d^2y}{dx^2}$ . - $(A) \qquad \frac{x}{(y+1)^3}$ - $(B) \quad \frac{1}{(y+1)^3}$ - (C) $\frac{x}{y+1}$ - (D) $\frac{1}{y+1}$ - 6. The polynomial $P(x) = 4x^3 + 16x^2 + 11x 10$ has roots $\alpha, \beta$ and $\alpha + \beta$ . What is the value of $\alpha\beta$ ? - $(A) \qquad \frac{5}{2}$ - (B) $-\frac{5}{2}$ - (C) $\frac{5}{4}$ - (D) $-\frac{5}{4}$ ## Section I (cont'd) 7. The diagram below shows the graph of the function y = f(x) Which of the following is the graph of $y = \frac{1}{f(x)}$ ? (A) (B) **(C)** (D) ## Section I (cont'd) 8. The diagram shows the graph of y = P''(x) which is the second derivative of a polynomial P(x). Which of the following expressions could be P(x)? - (A) $(x + 2)^2 (x 1)$ - (B) $(x + 2)^4 (x 1)$ - (C) $(x-2)^4(x-1)$ - (D) $(x-2)^4(x+1)$ 9. In the Argand diagram the point **P** represents the complex number z. When this number is divided by 5i it gives a new complex number. Which one of the points on the diagram above represents the new complex number? - (A) Q - (B) R - (C) S - (D) T - 10. The sides of a triangle are the first three terms of an arithmetic progression with the first term 1 and the common difference d. What is the largest set of possible values of d. - (A) -1 < d < 1 - (B) $-\frac{1}{2} < d < 1$ - (C) $-\frac{1}{3} < d < 1$ - (D) $-\frac{1}{4} < d < 1$ #### **Section II** 90 marks ## **Attempt Questions 11 – 16** ## Allow about 2 hours 45 minutes for this section Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations. ## **Question 11** (15 marks) Use a SEPARATE writing booklet **Marks** For the complex number $z = \sqrt{2} + \sqrt{2}i$ (a) (i) Express z in modulus-argument form 2 Find $z^{12}$ . (ii) 2 $\int_{\frac{1}{2}}^{2} \frac{1}{2x^2 - 2x + 1} dx$ to 4 significant figures. **Evaluate (b)** 4 Find the square root of $1 + 2\sqrt{2}i$ . **(c)** 3 Reduce the polynomial $x^6 - 9x^3 + 8$ to irreducible factors over the: (d) (i) real field 2 (ii) complex field ### **End of Question 11** Question 12 (15 marks) Use a SEPARATE writing booklet Marks 3 1 - (a) Use the substitution $t = \tan \frac{\theta}{2}$ to find $\int \frac{1}{1 + \cos \theta + \sin \theta} d\theta$ . - (b) $P(a \sec \theta, \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} y^2 = 1$ , a > 1, with eccentricity e and asymptotes $L_1$ and $L_2$ . M and N are the feet of the perpendiculars from P to $L_1$ and $L_2$ respectively. Show that $PM.PN = \frac{1}{e^2}$ . - (c) Use integration by parts to find $\int x \sec^2 x dx$ . - (d) The area between the curve $y = 3x x^2$ and y = x, between x = 1 and x = 2 is rotated about the y axis. Using the method of cylindrical shells, find the volume of the solid of revolution formed. - (e) (i) Given that $\sin x$ can be written as $\sin(2x x)$ show that $\sin x + \sin 3x = 2\sin 2x \cos x$ (ii) Hence or otherwise find the general solutions of $\sin x + \sin 2x + \sin 3x = 0$ . **End of Question 12** Question 13 (15 marks) Use a SEPARATE writing booklet. Marks (a) The roots of $x^3 + x^2 + 1 = 0$ are $\alpha$ , $\beta$ and $\gamma$ . Find the cubic equation whose roots are $$\frac{1}{1-\alpha} , \frac{1}{1-\beta} , \frac{1}{1-\gamma}$$ Express your answer in the form $ax^3 + bx^2 + cx + d = 0$ . - (b) (i) On the same Argand diagram carefully sketch the region where $|z-1| \le |z-3|$ and $|z-2| \le 1$ hold simultaneously. - (ii) Find the greatest possible value for |z| and arg z. - (c) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersect the x-axis at the points A and B. The point P ( $x_1, y_1$ ) lies on the ellipse. The tangent at P intersects the vertical line passing through B at the point Q as shown in the diagram. - (i) Show that the equation of tangent at P is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ - (ii) Show that the coordinates of Q are $\left(a, \frac{b^2}{y_1} \left(1 \frac{x_1}{a}\right)\right)$ - (iii) Show that AP is parallel to OQ 3 ## **Question 14** (15 marks) Use a SEPARATE writing booklet. Marks (a) A sketch of the function f(x) is shown below. Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts. $$(i) y = |f(x)| 2$$ (ii) $$y = [f(x)]^2$$ (iii) $$y = \ln f(x)$$ - **(b)** The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$ . - (i) Find the equation of the tangent to the hyperbola at the point P. - (ii) The tangent at P cuts the x-axis at A and the y-axis at B. Show that the area of the triangle AOB is independent of t. - (c) Find the values of the real numbers p and q given that $$x^3 + 2x^2 - 15x - 36 = (x+p)^2(x+q)$$ (d) The region shown below is bounded by the lines x = 1, y = 1, y = -1 and the curve $x = -y^2$ . The region is rotated through 360° about the line x = 2 to form a solid. Calculate the volume of the solid using the method of slicing? Question 15 (15 marks) Use a SEPARATE writing booklet. Marks 2 (a) A particular solid has as its base the region bounded by the hyperbola $\frac{x^2}{4} - \frac{y^2}{5} = 1$ and 4 the line x = 4. Cross-sections perpendicular to this base and the x —axis are equilateral triangles. Find the volume of this solid. - **(b)** Let $I_n = \int_1^4 (\sqrt{x} 1)^n dx$ , where n = 0, 1, 2. - (i) Show that $(n+2)I_n = 8 nI_{n-1}$ . - (ii) Evaluate I<sub>4</sub>. - (c) (i) Use the results $z + \bar{z} = 2Re(z)$ and $|z|^2 = z\bar{z}$ for the complex numbers z to show that $|\alpha|^2 + |\beta|^2 |\alpha \beta|^2 = 2Re(\alpha\bar{\beta})$ . (ii) The diagram shows the angle $\theta$ between the complex numbers $\alpha$ and $\beta$ . Prove that $|\alpha||\beta|\cos\theta = Re(\alpha\bar{\beta}).$ **End of Question 15** Question 16 (15 marks) Use a SEPARATE writing booklet. Marks - (a) Let $F(x) = e^{x^2}$ for all $x \ge 0$ . - (i) Find $F^{-1}(x)$ , the inverse function of F(x) - (ii) State its domain and range of $F^{-1}(x)$ . - (iii) On the same set of axes, sketch $F^{-1}(x)$ and F(x) indicate the region 2 represented by $$\int_0^1 F(x)dx \text{ and } \int_1^e F^{-1}(x)dx$$ (iv) Evaluate $$\int_0^1 F(x) dx + \int_1^e F^{-1}(x) dx$$ . 2 (b) The cubic equation $x^3 + kx + 1 = 0$ , where k is a constant, has roots $\alpha, \beta$ and $\gamma$ . For each positive integer n, $$S_n = \alpha^n + \beta^n + \gamma^n.$$ - (i) State the value of $S_1$ . - (ii) Express $S_2$ in terms of k. - (iii) Show that for all values of $n_{i}$ $$S_{n+3} + kS_{n+1} + S_n = 0.$$ (iv) Hence or otherwise express $\alpha^5 + \beta^5 + \gamma^5$ in terms of k. ### **End of Examination** ## Solutions 2. $$\frac{91^{2} - 36y^{2} - 324}{x^{2} - y^{2} - 1}$$ $\frac{x^{2} - y^{2} - 1}{36}$ $\frac{9^{2} - a^{2}(e^{2} - 1)}{9 - e^{2} - 1}$ $\frac{9}{36}$ $e^{2} - 54$ $e = 6$ Foci $$(\pm ae, 0) = (\pm 6 \times 15 0)$$ = $(\pm 315, 0)$ C 3. Using Disc Method - C $$4 \int_{0}^{2} \frac{\chi^{2}}{\sqrt{\chi^{3}+1}} dx = \frac{1}{3} \int_{c}^{2} \frac{3\chi^{2}}{\sqrt{\chi^{3}+1}} dx$$ $$= \frac{1}{3} \int_{0}^{9} du \frac{du}{du} = \frac{3n^{2}}{3n^{2}}$$ $$= \frac{1}{3} \int_{0}^{9} \sqrt{u} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$ $$= \frac{1}{3} \int_{0}^{2} \left[ u^{2} \right]_{0}^{9} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$ $$= \frac{1}{3} \int_{0}^{2} \left[ u^{2} \right]_{0}^{9} \frac{du}{dn} = \frac{3n^{2}}{3n^{2}}$$ 5. $$(y+1)^{2} - x^{2} - 1$$ $$2(y+1) \frac{dy}{dx} - 2x = 3$$ $$\frac{d^{2}y}{dx^{2}} = \frac{x}{y+1} - x \cdot \frac{y}{y}$$ $$\frac{d^{2}y}{dx^{2}} = \frac{y+1-x^{2}}{y+1}$$ $$= \frac{y+1-x^{2}}{(y+1)^{2}}$$ $$= \frac{(y+1)^{2}-x^{2}}{(y+1)^{3}}$$ $$= \frac{1}{(y+1)^{3}}$$ 6. $f(x) = \frac{4x^{3} + 16x^{2} + 11x - 10}{(y+1)^{3}}$ $$\frac{2(x+\beta) = -16}{4}$$ $$2(x+\beta) = -\frac{1}{4}$$ $$2(x+\beta) = -\frac{1}{4}$$ $$2(x+\beta) + 2(x+\beta) + 3(x+\beta) = \frac{11}{4}$$ $$2(x+\beta) = \frac{1}{4}$$ | three lader! All alone general appropria, justifying help the little three the great great a set for the set o<br>The later and the | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------| | | 8. Second derivative has double root at x=2. | | | So the original function should have a root of multiplicity 4 at x=-2 | | | 9. A division of 57 is equivalent to | | | a multiplicatur of 1 8i - i | | anger and enter the second and an angel and a | Multiply P by i means | | | D, | | | | | | 10. A sides of triangle | | | 1) 1+d, 1+2d | | | Now 1+d+1 < 1+2d | | | 24021+6 | | | 1 2 d | | | 1+1+2d < 1+d | | | 2+2d < 1+d | | | d < -i | | and deviate as sent factories. He differ a sense applied of the feet for the feet for the feet feet feet feet feet feet feet | or 1+d+1+7d < 1 | | | 2 + 3d < 1 $3d < -1$ | | | 3d < -1<br>d < -1/3 | | | | | | | | | <i>C</i> . | | MATHEMATICS EXTENSION 2 – QUESTION () | | | |----------------------------------------------------------------------------------------------------------------|-------|-------------------------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | 9) i z = \1 1+2 | | | | = 2 \(\bar{2}\) | 1 | | | org 2 = ₹ Z = 2 cis ₹ | | | | :. Z = 2 cis = | | | | [2 . 12 . / 1] | | | | ii Z = 212 cis ( | 1,1 | | | = 4096 (cos 3 m + isin 3 m) | | | | = 4 m96 (-1 40) | | | | = 4096 (-1 +0)<br>= -4096 | | | | | | | | b) $\int_{1}^{2} \frac{1}{2\pi^{2}-2x+1} dx = \frac{1}{2} \int_{\frac{1}{2}} \frac{1}{x^{2}-x+\frac{1}{2}} dx$ | | | | ) 2 x2 -2x4 2 x2- x2+ 1 | | | | 1/2 1 dx | | | | $= \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} (x^{-\frac{1}{2}})^{2} (x^{\frac{1}{2}})^{2} dx$ | J | | | | | | | $=\frac{1}{2}\left[\frac{1}{\sqrt{2}} + c_3^{-1} \left(\frac{3(-\frac{1}{2})}{\sqrt{2}}\right]\right]$ | l | | | $1 \cdot 1 \cdot$ | | Note that | | $=\frac{1}{2}\left[2+\alpha_{1}^{-1}\left(2\pi-1\right)\right]_{\frac{1}{2}}^{2}$ | | trigonometric | | 2 tan-13 -ta-10 | l | calculus is | | = 1.249045 | | performed in | | = 1.249 | 1 | radians. | | | | The equivalent | | c) Let x+iy be the square root of 1+2vzi | | in clegirees (71.57) was avaided 3½ | | $\therefore (x+iy)^2 = 1+2\sqrt{2}i \qquad x,y \in \mathbb{R}$ | | was avorded 3½ | | Equating coefficients, | | | | Equating Coefficients, | 1 | | | $x^2 - y^2 = 1$ $2xy = 2\sqrt{2}$ | | | | $xy = \sqrt{2}$ $y = \frac{\sqrt{2}}{x}$ | | | | 1 x | | | | MATHEMATICS EXTENSION 2 – QUESTION \ | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | 50b y= 1 into x2-y2=1: | | | | | | Note that | | $x^2 - \frac{2}{x^2} = 1$ | | ±52±i ≠ ±(52+i) | | $x^4 - 2zx^2$ | | as the LHS | | $x^4 - x^2 - 2 = 0$ | | suggests 4 solutions. | | $(x^2-2)(x^2+1)=0$ | | | | $(x-\sqrt{2})(x+\sqrt{2})(x^2+1)=0$ | 1 | | | :x=±52 (:x EIR) | l | | | : y= ±1 | • | | | : He square root of 1+252i is ± (52+i)<br>ie. 52+i and -52-i | | | | 1e. 12+c ona -12-c | | | | a) $= (x^3 - 9x^3 + 8) = (x^3)^2 - 9x^3 + 8$ | | This is a degree | | $= (x^3 - 1)(x^3 - 8)$ | | 6 polynomial; | | $= (3c-1)(x^2+x+1)(3c-2)(3c^2+2x+4)$ | ( ) | long division | | $= (3c-1)(x^2+x+1)(3c-2)(3c^2+2x+4)$ irreducible over $\mathbb{R}$ | 1 | long division was a bad choice. | | | | | | ii for 22 +2+1, | | | | $x = -1 \pm \sqrt{3}i$ | | | | 2 | | | | =-==================================== | | | | for x2+2x+4, | | | | | | | | $3c = -2 \pm 2\sqrt{3}i$ | | | | = -1 ± 53 i | | | | | 17 | | | $\therefore x^{6} - 9x^{3} + 8 = (x - 1) \left(x - \left[-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right] \left(x - 2\right) \left(x - \left[-\frac{1}{2} + \frac{1}{2} i\right] \left(x - 2\right) 2\right$ | 30) | | | $= (x-1)(x+\frac{1}{2}+\frac{\sqrt{3}}{2}i)(x+\frac{7}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x-2)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}$ | 14136) | (x+1-53i) | | | f sie | 1 M - W - 4 - 10 | | ems | DI 3191 | were worth Zamark. | | MATHEMATICS EXTENSION 2 – QUESTION | | | |------------------------------------|-------------------|--| | MARKS | MARKER'S COMMENTS | | | | | | | | | | | | | | | 1 | | | | | | | | 2 | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | -\1 | | | | | | | | | | | | | | | | | 1 | | | MATHEMATICS EXTENSION 2 – QUESTION | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | 12b) cout PM XPN = 02 ×1 | | | | = a2 ba+b= a(e | -1) | | | = a2 boxb=a(e)<br>Haz b=1, 1-a(e) | 1) / (1 | 1 | | $= \frac{a^{2}}{a^{2}e^{2}} = \frac{1-a^{2}e^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$ $= \frac{a^{2}}{a^{2}e^{2}} = \frac{1+a^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$ $= \frac{a^{2}}{a^{2}e^{2}} = \frac{a^{2}-a^{2}e^{2}}{1+a^{2}-a^{2}e^{2}}$ | ~ / t | 4 | | 202 1ta2 = 200 | | | | : PM x PN = = = = = = = = = = = = = = = = = = | | | | | 一么 | | | 120) Sx. sect x dx u=x dv=secx<br>= uv-Sv.du du=1 v=tanx | | | | | 1 | | | = x. tanx - Stanz dx | 1 | | | = 2. tank - Sinsi dx | | | | = x. tanx + 5 - strok dic | | | | = >c. fansi + li/cos x/ +c | 1 | | | (2d) y=3x-x2 7 | | | | 4=2 | | | | 3z = 3x - >c | | | | x2 +xc -3x=0 3 80 | | | | x2-2x=0 | | | | $\times(x-1)=0$ | | | | X=0 00 2 1 1 2 3 4 X | 1 | | | y=311-22 | | | | A=211x, 8x | | | | SV=2T24.8x 2T2 | | | | = 2T x (2x-2). 8x y, = 3x-22 gm | | | | 1- lin 25 x (2x -22). 8x 4 = 2 > c | 1 | | | | | | | = [im 2T/2)2-22) = 206 ->c | | | | = 2TT (2x2 - x3) dxc | | | | = 21 [2/32] - 24 + 6] | | | | = 11 Tr au units | 1 | | | MATHEMATICS EXTENSION 2 – QUESTION | | | |-------------------------------------------|---------|-------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | 12e)i) sin x + sin3x | | | | = sin(2x-x) +sin(2x+x) | | | | = sindx. cos sc- sos by sinx + sinbx. cox | + (000) | ysinol | | =7.5; ndx.coxx | 1 | , | | sinx +sin3x = 2.51n2x.conc | 1 | | | ii) sinz + sinzx + sinzx = 0 | | | | Z.SENDI. COOX +SINZX = 0 | | | | sindx(2.cox+1)=0 | | | | (Sinlac = 0) or 2-cosx+1=0 | ,5 | | | X=NT 2 (00) X = -1/2) | 1. | | | 2 007 36 10 1/2 | | | | X=2nTTゴ=3 | | | | の凡が =(211+1) T 生号 | | | | 1 2 = NI OR X = 2 NT + 2 3 | | | | (0°(2n+1)# = #3 | 14 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MATHEMATICS EXTENSION 2 – QUESTION 13 | -,- | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | a) Let $c = \frac{1}{1-\lambda}$ | 1 | | | $1-\phi = \frac{1}{x}$ $\phi = 1 - \frac{1}{x}$ | | | | $d = 1 - \frac{1}{x}$ | | | | = ×-1 | 1 | | | $= \frac{x-1}{sc}$ $\therefore \text{ cubic is}$ | | | | $\left(\frac{3c}{x^{-1}}\right)^3 + \left(\frac{x}{x^{-1}}\right)^2 + 1 = 0$ | 1 | | | ( > ) ( \) | | | | $\frac{x^3 - 3x^2 + 3x - 1}{x^3} + \frac{x^2 - 2x + 1}{x^2} + 1 = 0$ | | | | | | | | $x^3 - 3x^2 + 3x - 1 + x(3 - 2x^2 + x + x^3) = 0$ | III.II A | | | $3x^3 - 5x^2 + 4x - 1 = 0$ | 1 | * | | b) <u>i</u> | | | | | | for oc=2 | | | | for 61-2 -17=1 | | (2,1) | | for correct | | · · · · · · · · · · · · · · · · · · · | | for correct<br>region | | 0 1 | | , | | (2,-1) | | | | | | | | | | | | x=2 | | | | | TANKE TO A STATE OF THE O | | | MATHEMATICS EXTENSION 2 – QUESTION 13 | | | |-------------------------------------------------------------------------------------------------|-------|-------------------------------------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | b) ii | | Best responses | | | | Best responses<br>care from students | | | | who redrew the | | <u></u> | | relevant diagrams. | | Max 12 occurs at (2,1) [or (2,-1)] | | 11.10.11.1.6 | | 17.1 - 12.2 | | Note that if your onsur to b) i | | $ 2 = \sqrt{2^2 11^2}$<br>= $\sqrt{5}$ | 1 | | | - 72 | | was incorrect it was difficult | | Max and accurs when toget | | to demonstrate | | Max argz occurs when tagent is perpendicular to radius | | He required skills | | | | for part ii | | A | | | | 0 | | | | Ž / | | Very few students correctly onswered this part. | | | | correctly onswered | | sin 0 = 2 | | this part. | | 0=76 | | | | $\partial_1 = 2^2 + 4^2 = 1$ | | | | 92 7 62 = 1 | | | | $\frac{d}{dx} \left[ \frac{x^2}{9^2} + \frac{y^2}{h^2} \right] = \frac{d}{dx} \left( 1 \right)$ | | | | dx [92 b2 dx L) | | | | 2x , 2y dy = 0 | | | | 92 b2 dx | | | | $\frac{dy}{dz} = \frac{-2x/a^2}{2y/b^2}$ | | | | 012 24/62 | ı | 1.00 111 | | $= -xb^2$ $ya^2$ | L | correct differentiation | | | | | | At $P(x_1, y_1)$ , $\frac{dy}{dx} = \frac{-x_1, b^2}{y_1, q^2}$ | | | | 77. | | | | MATHEMATICS EXTENSION 2 – QUESTION 3 | | | |---------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | Equation of tongert through (x,, y,): | | | | $y-y_1=\frac{-x_1,b^2}{y_1,q^2}\left(x-x_1\right)$ | | | | $yy, a^2 - y, a^2 = -xx, b^2 + x, a^2$ | | | | $xx, b^2 + yy, a^2 = x, 2b^2 + y, 2a^2$ | | | | $\frac{xx_{1}}{g^{2}} + \frac{yy_{1}}{b^{2}} = \frac{x_{1}^{2}}{g^{2}} + \frac{y_{1}^{2}}{b^{2}}$ | | | | Because $\frac{2}{a^2} + \frac{y^2}{b^2} = 1$ as $\frac{p(x_1, y_1)}{a^2}$<br>lies on the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$ | | | | $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ | | and algebra | | <u>jii</u> The wordinates of B are (a,0)<br>Q lies on the line x=9 | | | | Sub x=a into equation of tengent | | | | $\frac{asc,}{9^2} + \frac{yy_1}{b^2} = 1$ $\frac{3c,}{a} + \frac{yy_1}{b^2} = 1$ | | · | | $\frac{yy}{b^2} = \frac{x}{q}$ | | | | MATHEMATICS EXTENSION 2 – QUESTION 13 | | | |----------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | $y = \frac{b^2}{y_1} \left( 1 - \frac{x_1}{q} \right)$ | | substitution of | | y, ( a) | | x 29 and | | $\frac{1}{2}$ | | correct colgebra | | $\therefore Q\left(q, \frac{b^2}{y_1}\left(1-\frac{x_1}{q}\right)\right)$ | | • | | $\frac{\partial iii}{\Delta P} = \frac{\gamma_1 - 0}{x_1 - a}$ | | | | * | | | | = y1<br>x, +a | | | | | l l | | | $\frac{M_{OQ} = \frac{b^2}{y_1} \left(1 - \frac{x_1}{q}\right) - 0}{q}$ | | | | 9 -0 | | | | $=\frac{b^2}{y_1}\times\frac{q_1-x_1}{q_1}\times\frac{1}{q_1}$ | | | | $=b^{2}(a-x.)$ | 1 | simplified expression | | 92 41 | | simplified expression | | Since (x, y,) lies on the ellipse, | | | | $\frac{x_1^2}{q^2} + \frac{y_1^2}{b^2} = 1$ | | | | 12 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 93(,-40-9,-20) | | | | - h <sup>2</sup> (n <sup>2</sup> - x <sup>2</sup> ) | | | | $b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2}$ $a^{2}y^{2} = a^{2}b^{2} - x^{2}b^{2}$ $= b^{2}(a^{2} - x^{2})$ $= b^{2}(a - x^{2})(a + x^{2})$ | | | | $\frac{1}{2} \cdot \frac{a^2y_1^2}{a^2} = b^2(a \cdot x_1)$ (2) | | | | $\frac{1}{\alpha + x_1} = x_2 - (\alpha - x_1)$ | | | | sub (1) into (1) | | | | | 1 | correct algebra | | $M_{QQ} = \frac{q^2 y_1^2}{q^2 y_1 (\alpha + x_1)}$ | | , | | = y, = MAP -: AP110 | Q | | | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | |------------------------------------------|---------|-------------------| | Black | | | | N <sub>O</sub> | | | | | | | | A (0,26g) × | | | | A (COLORE) | | | | | | | | At A y=0 => x+2y-2ct=0 | | | | x +0 -2ct=0 | | | | $\therefore x = 2ct$ | | | | A is (2ct, 0) | ) 1 | | | At B, x=0 => 2y=2ct | | | | y= 2ct<br>y= 2c<br>t | | | | y= 20 | | | | B 75 (0,2c) | 1 | | | Area AAOB = 2x2ctx2c | 1 | | | = 23 | | | | : Area is independent oft. | | | | · | | | | 140) x +2x2-15x -36=(x++)2. (x+q) | | | | -p is a root of multiplicity 2 | : | | | $\delta(x) = x^3 + 2x^2 - 15x - 36$ | | | | $8'60 = 3x^2 + 4x - 15$ | | | | -p is a root of f'a)=0 of muti | plicity | 1 | | $3x^{2} + 4x - 15 = 0$ | | | | (3x-5)(x+3)=0 | | | | $x=\frac{5}{3}$ or $x=-3$ | 1 | | | (局=信)3+1×(分)-15×336年0 | | | | (3) = (-3)3 + 2×(3)2 -15×-3-36=0 | | | | | | | | P = 3 | | | | Let $n=0$ , $-36 = p^2 - q$<br>-36 = 9.9 | | | | | ^ | | | q = -4<br>P = 3, $q = -4$ | | | | u (a) SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | |------------------------------------------------------------------------------------------------------------------------|-------|-------------------| | | | | | 11/1/54 | | | | 1 1 2 3 4 | | | | | | | | about 22 | | | | | | | | r= Innel radus = 1 | | | | R= outer (adius = ml +2 = y2+2 | | | | Area of slice = TT (R2-1) | | | | $= \pi \left( (4^2 + 2)^2 - 1^2 \right)$ | | | | $=\pi(y^{4}+4y^{2}+4-1)$ | | | | $=\pi(y^4+4y^2+3)$ | 2 | | | $\delta V = \pi (y4 + 4y^2 + 3) \cdot \delta y$ $V = \lim_{y \to 0} \frac{\pi (y4 + 4y^2 + 3) \cdot \delta y}{9 = -1}$ | | | | V = lim 2 17 (44 + 442 + 3). Sy | 1 | | | | | | | $= 2\pi \int (y^4 + 4y^2 + 3) dy$ | | | | -2 Fl 4-+ 43 +cl | | | | - 2TT (1/4 + 43 +3+4)-(0+0) | | | | = 21 × 68 | | | | = 27 × 68<br>= 136 II cm units. | 1 | | | 15 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MATHEMATICS EXTENSION 2 – QUESTION | | · · · · · · · · · · · · · · · · · · · | |-------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | 600 | | | | Take PG(, y) on the werve, y >0 | | | | Area of cross-section $A(y) = 2 ab \cdot SinC$ | | | | $A(y) = \angle ab \cdot SinC$ | | | | = 5.24.24.51260° | | | | = 242 x = 3 | 1 | | | $A(0) = \sqrt{3} \cdot y^2$ | 1 | | | 8 V = 13. y .fx<br>V = 1im J3. y . 8x | | | | V = lim 13. 42. 8x | 1 | | | Now 30 - y = 1 | | | | Now 32 - = 1<br>2 + 1 = 3 | | | | y = 5 (22-1) | 1 | | | Su V = 11 pm (3.5(22-1) Ex | | | | 8x→0/<br>x=2 | | | | = 513 (2 - 1) dk | | | | =55 = x+94 | | | | =513[64-4-(82-2)] | | | | = 513 x 3 | | | | = 40 13 mits | 1 | | | <u>S</u> | | | | 16b) In = 54 (1/2 -1) dx, n=0,1,2, | | | | i) $u = (3z^{2} - 1)^{n}$ $dV = 1$<br>$du = n(xz^{2} - 1)^{n} \times 1xz^{2}$ $V = x$<br>$= n(xz^{2} - 1)^{n} \times 1xz^{2}$ | | | | $du = n(x^{2}-1) \times 1x^{2} \sqrt{=x}$ | | | | $=\frac{N(x^2-1)}{2\sqrt{2}c}$ | 1 | | | In= uV-Svdn | | | | MATHEMATICS EXTENSION 2 – QUESTION | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | $= \left[ x \left( \sqrt{x} - 1 \right)^n + c \right]^{\frac{1}{2}} - \left[ x \cdot n \left( \sqrt{x} - 1 \right) \right] dx$ | | | | TO STANCE OF WATER | | | | $= 4 - \frac{1}{2} \int (\sqrt{3x} - 1) + 1)(\sqrt{3x} - 1)^{n-1} dx$ $= 4 - \frac{1}{2} \int (\sqrt{3x} - 1)(\sqrt{3x} - 1)^{n-1} + 1 \times (\sqrt{3x} - 1)^{n-1} dx$ | | | | $=4-12 S((5x-1)(5x-1)^{n-1}+1\times (5x-1)^{n-1}) dx$ | | | | =4-1/2 /(15x-1) doc +1/2c-1) (d)L | | | | $= 4 - \frac{1}{2} \int (\sqrt{x} - 1) - \frac{1}{2} \int (\sqrt{x} - 1) dx$ | 1 2 | | | エームーラエル - ラエハー | | | | 2. In= 8 - n. In - n. In-1 | 1 | | | $(n+2)\cdot \underline{\Gamma}^{n} = 8 - n \cdot \underline{\Gamma}^{n-1}$ | | | | 1.:.\ D | | | | b)ii) Put n=2, 4 I_2= 8-2· I, | | | | T - ) - L (4 (32 - 1) | | | | - 2 - ½ 13 32 - x + c7 | | | | | | | | = 2-5 | | | | = 76 | 1 | | | Putn=3, I=8-3.In | | · | | Putn=3, I=8-3.I <sub>2</sub><br>5:I <sub>3</sub> =8-3×16 | | | | $I_3 = 9/0$ | 1 | | | Pot n=4, 6. I4 = 8-4. I3 | | | | $= 8 - 4 \times 9$ | | | | I,= 1 × 23 | 7 | | | - I = 45 | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | ₩ SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | |-----------------------------------------------------|---------|--------------------------| | 7 A | IVIARRO | - INFARCENCE CONTINUENTS | | i) / L-B | | | | | | | | A | | | | | | | | 0 | | | | 3+3=2Re(3), 131=33 | | | | Prove 212 + 1812 - 12-812 = 2 Re(25) | | | | -HS= X. I + BB - (X-B)( Z-B) | 1 | | | = d.Z +BB - (d-B) (Z-B) | | | | = LZ + BB - (LZ - LB - 15 - +13B) | | | | = x.7 +3/3 - X7 + x/3 + BZ - P/3 | | | | $= \alpha \overline{\beta}^{1} + \overline{2}\beta$ | 1 | | | $=$ $\angle \overline{B}$ + $\overline{\angle B}$ | | | | = 2 Re (2 (3) | 1 | | | | | | | $AB = (\lambda - \beta)$ | | | | Using cosine rule | | | | (1) cos 0 = 1212 + 1312 - 12 - 12 | 1 | | | 2. 1<1.131 | | | | wo = 2 Re (xB) | | | | 2. (~1.18) | | | | coso = Re(XB) | | | | 14.1B) | | | | 1-1 (1(2) | | | | W/ 101 (20 0 0 0 1/2) | 1 1 | | | 11X1: 131-600 = Re(LB) | | | | | | | | | ···· | | | | | | | | | | | | | | | MATHEMATICS EXTENSION 2 – QUESTION 16 | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | a) i $F(x) = e^{x^2}$ $x7.0$<br>let $y = e^{x^2}$<br>For inverse, $x = e^y$ , $y7.0$ | | | | /1 7 | | Frans of sign | | $y = \sqrt{\ln x} (\forall y \ge 0)$ | l | Errors of sign<br>were worth \( \frac{1}{2} \) a mark | | ii lax 7,0 | | | | :x7/ | | | | : domain: all real x, EZ, 1 | 1 | No half marks | | range: all really, 47,0 | 1 | uere quarded. | | <b>V</b> V | | Note that if you | | 111 YA 4= F(2) | | got part i wrong, | | | | it was difficult | | | | to demonstrate the | | e- | | skills for part ii | | y=F-(xc) | | | | | 1 | for curves | | | | for regions | | | (or | one correct curve | | o / re /r | an | one correct curve<br>d its region = 1 mark | | | | | | / / /e // | | | | (F(x)d>c (F(x)d)c | | | | -10 | | | | | 1 | | | iv) Area = Area by symony A B | 1 | | | · (=1) | | | | :. \( \int \int \( \f \) \( \d \times \) \( \f \) \( \d \times \t | | | | = e Units2 | | | | - E 0/1173 | | | | MATHEMATICS EXTENSION 2 – QUESTION 16 | | | |----------------------------------------------------------------------------------------------------|-------|-------------------| | SUGGESTED SOLUTIONS | MARKS | MARKER'S COMMENTS | | b i 5, = L'+β'+ r' | | The answer to | | = -b<br>= 0<br>= 0 | | this question is | | = 0 | | a value, not | | =0 | l | an expression. | | $ii S_2 = d^2 + \beta^2 + r^2$ | | • | | $= (3 + \beta + \gamma)^{2} - 2(3\beta + 3\gamma + \beta\gamma)$ $= -\frac{1}{3} - 2(\frac{1}{3})$ | 1 | | | = = -2(=) | | | | 20-2k | 1 | | | =-2k | | | | 27 1 NS - C 1.6 .C | | | | <u>iii</u> LHS = 5 <sub>n+3</sub> +k5 <sub>n+1</sub> +5 <sub>n</sub> | | , | | = 7 + 8 + 2 + 4 (4 + 8 + 4 ) + 9 + 4 | Buth | | | = 1 <sup>n+3</sup> + k 1 <sup>n+</sup> + 1 <sup>n</sup> | | | | + Bn+3+ kBn+1 Bn + Yn+3+ Xn+1 | 1 | | | = 2" (23 + K & +1) + B" (B3+KB+1) + Y" (Y | "+KY+ | ) 1 | | = 4"(0) + p"(0) + r"(0) | | | | = 0 (: +, Bond r ore roots) | | | | =RHS | | Note that 2 | | | | being a root does | | iv When N=O, | | not imply that an | | $S_3 + KS_1 + S_0 = 0$ | | is also a root. | | $\frac{3}{5} \frac{S_3}{S_3} = -kS_1 - S_0$ $= -k(0) - (+^0 + \beta^0 + \gamma^0)$ | | | | $= -K(0) - (3 + \beta + r^2)$ $= -3$ | | | | | 1 | | | when n=2 | | | | $S_5 + kS_3 + S_2 = 0$<br>$S_5 = -kS_3 - S_2$ | | | | =-k(-3)2k | | | | | | | | 5 = 5k<br>$3 + \beta^5 + r^5 = 5k$ | 1 | | | 0 . 1 | | |