
Conics
The conic sections were first discovered by the Greeks about 350 – 400BC

They again came into prominence at the time of Galileo and Kepler, but it 
was not until the work of Descartes and de Fermat in the 1600’s that the 
curves were described algebraically.

Generally there are two Conics 
questions in the HSC.

You will need to know how to find the 
eccentricity and how to find focal
points, the equations of directrices and 
asymptotes, etc

You will need to be able to derive the 
equations of chords, tangents and 
normals.
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Examples
1. A conic has the equation                     

Find the value of k if the equation represents:
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(i) a hyperbola with focii on the x axis.

(ii) an ellipse with its major axis along the x axis.
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2. Find the eccentricity, foci and directrices of 1
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3. A hyperbola in standard form has a vertex at (5,0) and a focus at        
(-8,0). Find:

a) its equation
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b) the eccentricity
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Parametric Coordinates

1. Circle

cosax  sinay 

2. Ellipse

cosax  sinby 

3. Hyperbola

secax  tanby 



For ellipse 12
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For hyperbola 12
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Examples

(i) Show that the equation of the tangent at P is 12
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(ii) Find the coordinates of Q  
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Chord of Contact
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Take external point as                  and the tangents from T touch the 
ellipse at                and 
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Not only is this the condition for               to lie on                         , but 
it is the condition for              to lie on 
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i.e. P lies on this line.

Similarly, T lies on tangent TR, leading to a similar condition for Q
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i.e. Equation of the chord of contact from  00 , yx
Example
Prove that the chord of contact from a point on the directrix is a focal 
chord.
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Some Geometrical Properties
For any ellipse the sum of the focal lengths is a constant.
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By definition of an ellipse;
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Example
For any hyperbola the difference of the focal lengths is a constant.
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Reflection Property
Tangent to an ellipse at a point P on it is equally inclined to the focal 
chords through P.
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Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
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The rectangular hyperbola with x and y axes as aymptotes, 
has the equation;
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Parametric Coordinates



Locus questions in the HSC will be restricted 
to the rectangular hyperbolaExample

1.                lies on the rectangular hyperbola
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a) Show that the normal at P cuts the hyperbola again at the point Q with 
coordinates 
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Q also lies on the 
hyperbola, so the 
normal intersects 
the hyperbola at Q



b) Hence find the coordinates of the point R where the normal at Q cuts 
the hyperbola again.
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c) The normal at P meets the x axis at A and the tangent at P meets the y
axis at B. M is the midpoint of AB. Find the locus of M.
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2006 Extension 2 HSC Q4c)
Let                ,               and               be three distinct points on the 

hyperbola
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(i) Show that the equation of the line, l, through R, perpendicular to PQ is
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(ii) Write down the equation of m, through P, perpendicular to QR.
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(iii) The lines l and m intersect at T. Show that T lies on the hyperbola.
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T lies on the hyperbola



2002 Extension 2 HSC Q3b)
The distinct points                 and                 are on the same branch of 

the hyperbola H with equation            . The tangents to H at P and Q
meet at the point T.
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(i) Show that the equation of the tangent is cpypx 22 
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(ii) Show that T is the point
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(iii) Suppose P and Q move so that the tangent at P intersects the x axis 
at (cq,0). Show that the locus of T is a hyperbola, and state its 
eccentricity.
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1998 Extension 2 HSC Q5a)
and                  where p > 0 and q > 0, are two points on the 

hyperbola             . 
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(i) Find the equation of the chord PQ.
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(ii) Prove the equation of the tangent at P is pypx 82 
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(iii) The tangents at P and Q intersect at T. Find the coordinates of T.
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(iv) The chord PQ produced passes through the point N(0,8). Find the 
locus of T.
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However tangents could only 
meet in the area between the x
axis and the hyperbola

40ofrangeawith ,4islocusthe  yx


