Representing Real Numbers

All real numbers can be placed on the number line and described;

- geometrically (using a picture of the number line)
- algebraically (using an inequation or equation)
- using interval notation (often used when describing domain & range)
- using set notation (formal way of describing all possible numbers)

Types of Intervals

(i) bounded: interval has two endpoints

(ii) unbounded: interval has one endpoint

(iii) closed: all endpoints are included

(iv) open: an endpoint is not included

(v) degenerate: a single point

closed bounded interval $[-2,1] = \{x: -2 \le x \le 1\}$

Rational Numbers

Rational numbers can be expressed in the form $\frac{a}{b}$ where *a* and *b* are integers.

Irrational Numbers

Irrational numbers are numbers which are not rational.

All irrational numbers can be expressed as a unique infinite decimal.

e.g. Prove $\sqrt{2}$ is irrational

Assume $\sqrt{2}$ is rational

 $\therefore \sqrt{2} = \frac{a}{b}$ where *a* and *b* are integers with no common factors $b\sqrt{2} = a$

 $2b^2 = a^2$

Thus a^2 must be divisible by 2

As prime factors of squares must appear in pairs, any square that

is divisible by 2 is also divisible by 4

Thus a^2 must be divisible by 4

$$\therefore 2b^2 = 4k$$
 where k is an integer

 $b^2 = 2k$

So a^2 and b^2 are both divisible by 2 and must have a common factor

However, *a* and *b* have no common factors

so $\sqrt{2}$ is not rational

 $\therefore \sqrt{2}$ is irrational

Significant Figures

Irrational numbers cannot be calculated exactly, so sometimes an approximation is required.

When approximating we write a number correct to either;

- a certain number of decimal places; **OR**
- a certain number of significant figures

Rounding off to a given number of significant figures

Start at the first **non-zero** digit and count to the required number and round (*if the answer is ambiguous, scientific notation should be used*) e.g. Write correct to the given number of significant figures

(<i>i</i>) $0.050703(2) = 0.051$	$(iv) \ 3000 \ (2) = 3000$	$=3.0\times10^{3}$
$(ii) \ 0.050703 \ (3) = 0.0507$	$(vii) \ 3000 \ (3) \ = 3000$	$=3.00\times10^{3}$
$(iii) \ 0.050703 \ (4) = 0.05070$	$(vi) \ 3000 \ (4) \ = 3000$	$= 3.000 \times 10^3$

Finding the number of significant figures

Start at the first **non-zero** digit and count the number of digits until the end of the number

e.g. (i) 0.050703 (5 significant figures)

(*ii*) 0.010031 (5 significant figures)

(*iii*) 0.0100310 (6 significant figures)

(*iv*) 1200 (2, 3 or 4 significant figures) (4 significant figures)

Exercise 2B; 1cdfikl, 3, 6, 7, 8, 11hkl, 14, 15