The Quadratic Polynomial and the Parabola

Quadratic polynomial $-a x^{2}+b x+c$
Quadratic function - $y=a x^{2}+b x+c$
Quadratic equation $-a x^{2}+b x+c=0$
a quadratic with $a=1$
is called monic

Coefficients - a, b, c
Indeterminate - x
Roots - Solutions to the quadratic equation
Zeroes - x intercepts of the quadratic function
e.g. Find the roots of $x^{2}-1=0$
$x^{2}-1=0$
$x^{2}=1$
$x= \pm 1 \quad \therefore$ the roots are $x=-1$ and $x=1$

Graphing Quadratics

The graph of a quadratic function is a parabola.

$$
y=a x^{2}+b x+c
$$

с $=y$ intercept
zeroes (roots) $=x$ intercepts
$x=\frac{-b}{2 a} \quad=$ axis of symmetry
vertex x value is the AOS
y value is found by substituting AOS into the function. (It is the maximum/minimum value of the function)
e.g. Graph $y=x^{2}+8 x+12$
a $=1>0 \therefore$ concave up
zeroes $x^{2}+8 x+12=0$

$$
(x+6)(x+2)=0
$$

$$
x=-6 \text { or } x=-2
$$

$\therefore x$ intercepts are
$(-6,0)$ and $(-2,0)$
AOS $\quad x=\frac{-b}{2 a} \quad$ OR $\quad x=\frac{-6-2}{2}$

$$
\begin{aligned}
& =\frac{-8}{2} \\
& =-4
\end{aligned}
$$

vertex $y=(-4)^{2}+8(-4)+12$

$$
=-4
$$

\therefore vertex is $(-4,-4)$

$$
\underline{\mathbf{c}}=12 \therefore y \text { intercept is }(0,12)
$$

(ii) Find the quadratic with;
a) roots 3 and 6

$$
\frac{y=a\left(x^{2}-9 x+18\right)}{-(6+3)} 6 \times 3
$$

c) roots 2 and 8 and vertex $(5,3)$

$$
\begin{aligned}
y & =a\left(x^{2}-10 x+16\right) \\
(5,3): 3 & =a\left(5^{2}-10(5)+16\right) \\
3 & =-9 a \\
a & =-\frac{1}{3} \\
\therefore y & =-\frac{1}{3}\left(x^{2}-10 x+16\right)
\end{aligned}
$$

$$
-(3+\sqrt{2}+3-\sqrt{2}) \overbrace{(3+\sqrt{2})(3-\sqrt{2})}^{\stackrel{y=x^{2}-6 x+7}{ }}
$$

Exercise 3D; 1a, 2b(ii), 3a,4bd, 6b, 7c, 8a, 9c, 10c,11ad,
12 (use desmos), 13b, 14, 15

