The Quadratic Polynomial and the Parabola

Quadratic polynomial $-ax^2 + bx + c$ Quadratic function $-y = ax^2 + bx + c$ Quadratic equation $-ax^2 + bx + c = 0$ Coefficients -a,b,cIndeterminate -xRoots - Solutions to the quadratic equation Zeroes -x intercepts of the quadratic function

a quadratic with a = 1is called **monic**

<u>Zeroes</u> – x intercepts of the quadratic function e.g. Find the roots of $x^2 - 1 = 0$ $x^2 - 1 = 0$ $x^2 = 1$ $x = \pm 1$ ∴ the roots are x = -1 and x = 1

(*ii*) Find the quadratic with;

a) roots 3 and 6

$$\frac{y = a\left(x^2 - 9x + 18\right)}{-(6+3)}$$
 6×3

c) roots 2 and 8 and vertex (5,3) $y = a(x^2 - 10x + 16)$ (5,3): $3 = a(5^2 - 10(5) + 16)$ 3 = -9a $a = -\frac{1}{3}$ $\therefore y = -\frac{1}{3}(x^2 - 10x + 16)$

b) monic roots $3 + \sqrt{2}$ and $3 - \sqrt{2}$ $y = x^2 - 6x + 7$ $-(3 + \sqrt{2} + 3 - \sqrt{2})(3 + \sqrt{2})(3 - \sqrt{2})$

